基于Zigbee的低功耗数据采集系统设计

密级一般

分类号TP393硕士学位论文

作者:杨朋伟

指导教师:侯宏录教授

申请学位学科:

2009年4月20日

XI’ANTECHNOLOGICAL UNIVERSITY

基于Zigbee的低功耗数据采集系统设计

测试计量技术及仪器

题目:

基于Zigbee的低功耗数据采集系统设计

学科:测试计量技术及仪器

研究生签字:

指导教师签字:

摘要

Zigbee无线传感器网络技术是一种全新的短距离无线通信技术,广泛应用于智能控制、无线监控及环境监测等领域。目前,对于Zigbee无线传感器网络技术的应用还存在诸多问题,本文重点对无线传感器网络时间同步算法、低功耗系统设计开展深入研究。

1.对Zigbee无线传感器网络时间同步算法进行了全面分析研究,从降低同步开销和关键路径长度的角度出发,提出了两种应用于不同环境下的时间同步算法。1)当网络规模较小时,采用二层拓扑结构的Zigbee时间同步算法,该算法通过构造二层拓扑结构和时延估计的方法实现了ms级的时间同步精度.降低了时间同步开销;2)当网络规模较大时,采用多跳传感器网络时间同步算法,该算法通过构造较优拓扑结构和累计时延估计的办法降低了时间同步开销及关键路径长度。

2.通过对Zigbee协议栈的研究及分析,从低功耗设计的角度出发,完成了Zigbee低功耗无线数据采集及传输系统设计。主要内容包括如下几个方面:

1)完成了Zigbee无线网络节点的电路设计及相关应用电路设计,在此基础上,应用IAR7.20H开发平台完成了Zigbee无线网络节点的功能软件设计。

2)使用TI公司的CC2430芯片完成了Zigbee节点点对点无线通信的设计及Zigbee 简单网络节点通信设计。

3)完成了多路传感器数据采集接口的设计及Zigbee无线网络监控管理软件设计。

4)研究了无线网络节点功能软件的低功耗设计方法。

5)搭建了Zigbee低功耗无线数据采集及传输系统,对其进行了调试和实验,结果表明该系统在70m范围内工作稳定,误码率较低,时间同步精度较高,能够满足工业环境下的参数远程监控。

关键词:数据采集及传输;低功耗;无线传感器网络;时间同步算法;Zigbee

Design of Low-power Data Acquisition System

Based on Zigbee

Discipline:Measuring and Testing Technologies and Instruments

Student Signature:

Supervisor:

Ab Abstra stra stract

ct Zigbee wireless sensor network technology is a new short-range wireless communication`s technology,which is used widely in intelligent control,wireless control,environmental monitoring and other fields.At present,there are still some problems for Zigbee wireless sensor network technology.This paper focuses on wireless sensor network time synchronization algorithm and low-power system design.

1.Wireless sensor network time synchronization algorithm is analyzed and studied deeply,then two time synchronization algorithms used in different environments are proposed from the reduced synchronization overhead and critical path length point of view.1)The Zigbee time synchronization algorithm with two-story topology which realize the ms-level time synchronization accuracy and reduces the time synchronization overhead through the methods of constructing two-story topology structure and estimating the time-delay can be used when the network size is small;2)The multi-hop sensor network time synchronization algorithm which realize the better time synchronization accuracy ,reduces the time synchronization overhead and critical path length through the methods of constructing better topology structure and estimating the cumulative time-delay can be used when the network size is larger.

2.Through research and analysis for Zigbee protocol stack,the low-power wireless data acquisition and transmission system based on Zigbee is designed from low-power design point of view.The main work include the following aspects:

1)The circuit design of a Zigbee wireless network node and system application are completed.on this basis,the software design with the Zigbee wireless network node are completed in development platform IAR 7.20H.

2)The design of peer-to-peer wireless communications and Sample network node communication of those Zigbee nodes is completed by using TI's CC2430chip.

3)The multi-channel sensor data acquisition interface and Zigbee wireless network

monitoring and management software is designed.

4)the low-power design methodology for a wireless network node software is studied.

5)The low-power wireless data acquisition and transmission system based on Zigbee is builded and debugged.The results show that the system have some belifet with lower data error rate and high precision of time synchronization.It is able to meet the needs of remote monitoring of the parameters on industrial environment.

Key Words:data acquisition and transmission;low-power;wireless sensor networks;time synchronization algorithm;Zigbee

目录

1绪论 (1)

1.1Zigbee无线数据采集及传输网络描述 (1)

1.2研究Zigbee低功耗数据采集及传输系统的必要性 (1)

1.3本文的主要内容和结构 (2)

2无线传感器网络及IEEE802.15.4/Zigbee技术 (3)

2.1无线传感器网络技术 (3)

2.1.1无线传感器网络发展概况 (3)

2.1.2无线传感器网络的特点 (4)

2.1.3无线传感器网络的体系结构 (4)

2.2IEEE802.15.4/Zigbee技术 (5)

2.2.1IEEE802.15.4/Zigbee协议 (5)

2.2.2Zigbee无线传感器网络关键技术 (6)

2.2.3Zigbee技术优势 (7)

2.2.4Zigbee应用前景 (7)

3无线传感器网络时间同步算法的研究 (8)

3.1二层拓扑结构的Zigbee时间同步算法 (8)

3.1.1求区域簇首节点集 (9)

3.1.2求支配节点集 (9)

3.1.3二层拓扑结构的构造 (10)

3.1.4时间同步的实现 (10)

3.1.5算法性能分析 (11)

3.2无线传感器网络多跳时间同步算法 (11)

3.2.1最优拓扑结构的构造 (11)

3.2.2时间同步的实现 (12)

3.2.3应用举例 (12)

3.2.4算法性能实验分析 (13)

4Zigbee无线传感器网络的设计和实现 (14)

4.1Zigbee无线传感器网络的总体方案设计 (14)

4.2Zigbee节点硬件电路设计及测试 (15)

4.2.1硬件模块划分 (15)

4.2.2Zigbee无线通信模块设计 (15)

4.2.3系统应用电路设计 (21)

4.2.4电路板PCB图及其布线规则 (25)

4.2.5节点硬件实现 (26)

4.3Zigbee节点软件设计及关键方法实现 (26)

4.3.1液晶显示程序设计 (26)

4.3.2按键ADC采样方法及多级菜单显示的实现 (29)

4.3.3数据接收端程序 (29)

4.3.4终端节点主程序 (35)

4.3.5Zigbee网络节点发送及接收数据 (37)

5Zigbee低功耗数据采集系统的设计和实现 (42)

5.1A/D转换模块及数据采集程序设计 (42)

5.1.1ADC参考电压 (42)

5.1.2ADC初始化 (42)

5.1.3单次数据采集程序设计 (43)

5.1.4连续数据采集程序设计 (43)

5.2节点低功耗设计 (45)

5.2.1节点的休眠机制及节点休眠方法 (45)

5.2.2节点的低功耗设计 (45)

5.3Zigbee网络监控软件的设计 (46)

5.3.1Zigbee网络监控软件的总体设计 (46)

5.3.2网络监控软件关键方法及设计 (46)

5.3.3实验结果 (49)

6系统测试及结果 (50)

6.1点对点数据传输测试 (50)

6.2简单路由网络数据传输测试 (50)

6.3系统的功耗测试 (51)

6.4结果分析 (51)

7结论 (52)

参考文献 (53)

攻读硕士学位期间发表的论文 (56)

致谢 (57)

学位论文知识产权声明 (58)

学位论文独创性声明 (59)

1绪论

1绪论

1.1Zigbee无线数据采集及传输网络描述

Zigbee是一种短距离、低速率的无线传感器网络新技术,在非常短的时间内,Zigbee 技术得到了广泛的应用,它主要适合于自动控制和远程控制等领域。

简单的说,Zigbee是一种高可靠性的无线数据传输网络,类似于CDMA和GSM网络。Zigbee数传模块类似于移动网络基站。通讯距离从标准的75m到几百米、几公里,并且支持无限扩展。

Zigbee是一个由可多到65000个Zigbee无线传输模块组成的一个无线数据传输网络平台,在整个网络范围内,每一个Zigbee无线传输模块之间可以相互通信,每个网络节点间的距离可以从标准的75m无限扩展。

与移动通信的CDMA网或GSM网不同的是,Zigbee网络主要是为工业现场自动化控制数据传输而建立,因而,它必须具有简单,使用方便,工作可靠,价格低的特点。而移动通信网主要是为语音通信而建立,每个基站价值一般都在百万元人民币以上,而每个Zigbee基站却不到1000元人民币。每个Zigbee网络节点不仅本身可以作为监控对象,例如,其所连接的传感器直接进行数据采集和监控;另外它还可以自动中转别的网络节点传过来的数据资料。除此之外,每一个Zigbee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。

1.2研究Zigbee低功耗数据采集及传输系统的必要性

在有线的数据采集及传输系统中,存在着布线麻烦、功耗大、代价高的特点;即便是采用传统的无线数据采集及传输方式,也存在着协议复杂、系统代价昂贵及功耗大的缺点。

ZigBee协议是专用于无线传感器网络的通信协议,能最大可能的节省网络中的能量,可随时接入大量节点,具有高容错性,强鲁棒性,逐渐成为了无线传感器网络的首选网络协议。Zigbee可以嵌入各种设备中,由传感器和ZigBee装置构成的ZigBee无线传感器监控网络,可自动采集、分析和处理各个节点的数据,同时,基于ZigBee技术的网络扩展能力很强,理论上,一个ZigBee网络可容纳65536个节点,适合于各种需要数据自动采集并要求网络传输的领域。

因此,考虑将Zigbee技术应用于数据采集及传输系统,从而实现对工业现场的智能控制,通过研究降低Zigbee节点功耗的方法来实现低功耗数据采集及传输,将具有重要的意义。

本设计通过在大连化物所能源工程楼太阳能光伏发电系统项目中使用Zigbee技术,

西安工业大学硕士学位论文

从而实现风能和太阳能发电系统中数据的传输,从而达到应用Zigbee技术实现低功耗数据采集及传输的目的。

1.3本文的主要内容和结构

本课题旨在建立一个基于Zigbee技术的低功耗数据采集及传输系统,应用这样的系统,用户能够通过计算机监控软件获取传感器采集的数据信息。

本文全面深入地对无线传感器网络以及IEEE802.15.4/ZigBee技术做了研究分析,从减小时间同步开销和时间累计误差的角度出发,研究了Zigbee无线传感器网络时间同步算法,提出了二层拓扑结构的Zigbee时间同步算法和多跳传感器网络时间同步算法。以IEEE802.15.4/ZigBee协议为基础,研究了Zigbee无线传感器网络节点的硬件原理及软件设计方法,应用ZigBee CC2430芯片实现了Zigbee网络节点的硬件及软件设计,在此基础上搭建了基于Zigbee的低功耗数据采集及传输系统。本文对数据采集及传输系统进行了试验测试,给出了Zigbee节点通信的结论。最后,在服务端实现了传感器采集数据的监控系统。

论文的结构如下:

第1章绪论。简要介绍了本文的课题背景以及课题研究的必要性,概述了研究的主要内容,并介绍了本文的整体结构。

第2章无线传感器网络及IEEE802.1.5.4/ZigBee技术介绍。介绍了无线传感器网络的特点、应用、国内外研究态势,无线传感器网络的关键技术等概念。概述了ZigBee 技术发展、技术特点,并与其他技术进行了比较,描述了ZigBee技术的协议架构以及网络的体系结构。

第3章无线传感器网络时间同步算法的研究。针对传感器网络中同步误差累积和同步开销大的问题,提出了新的时间同步算法,通过构造拓扑结构和在网络节点之间传递时间同步报文来减小时间同步开销,通过时延估计技术来进行时间偏差补偿,进而减少时间累计误差。

第4章Zigbee无线传感器网络的设计和实现。对Zigbee节点的硬件及软件进行了设计和实现,搭建了Zigbee无线传感器网络系统。

第5章Zigbee低功耗数据采集系统的设计和实现。对Zigbee节点数据采集进行了设计及实现,分析了Zigbee节点的低功耗设计。

第6章系统测试及结果。对系统进行了试验测试,分别对星型网络及简单路由网络进行了测试,验证了试验结果。

第7章结论。对本文工作进行总结,并对后续工作进行了展望。

简易数据采集系统的设计

简易数据采集系统设计 题目:二选一 1. 设计一个单片机控制的数据采集系统,要求A/D 精度12位,采样频率最高100KHz,输 入8路信号,分时复用A/D 芯片,将采集到的波形进行4K 的SRAM 存储,然后通过串行口发送给计算机 2. 设计一波形发生电路,计算机通过串行口向板卡发送波形电路,波形存储到板卡上的 SRAM 中,然后进行计算机控制的D/A 波形产生,板卡上用单片机进行控制 要求: 1. 选择器件,确定具体型号。 2. 画原理图。 3. 根据器件封装画PCB 图。 4. 写出相应的单片机和微机控制程序。 5. 写出详细的原理分析报告。 器件选择: TI 公司生产的8位逐次逼近式模数转换器ADC0809,8051,MAX232 原理图如下: 原理报告原理报告:: 采集多路模拟信号时,一般用多路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,A/D 转换器前端还需加采样/保持(S/H)电路。 待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等

环节的预处理。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D 转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。 通常希望输入到A/D 转换器的信号能接近A/D 转换器的满量程以保证转换精度,因此在直流电流电源输出端与A/D 转换器之间应接入放大器以满足要求。 本题要求中的被测量为0~5V 直流信号,由于输出电压比较大,满足A/D 转换输入的要求,故可省去放大器,而将电源输出直接连接至A/D 转换器输入端。 关于A/D 转换器的选取: 1.转换时间的选择 转换速度是指完成一次A/D 转换所需时间的倒数,是一个很重要的指标。A/D 转换器型号不同,转换速度差别很大。通常,8位逐次比较式ADC 的转换时间为100us 左右。由于本系统的控制时间允许,可选8位逐次比较式A/D 转换器。 2.ADC 位数的选择 A/D 转换器的位数决定着信号采集的精度和分辨率。 要求精度为0.5%。对于该8个通道的输入信号,8位A/D 转换器,其精度为 8 0.39%2 ?= 输入为0~5V 时,分辨率为 8 50.019611 22Fs N V v ==?? Fs v —A/D 转换器的满量程值 N —ADC 的二进制位数 量化误差为 8 50.0098(1)2 (1)2 22Fs N Q V v = = =?×?× ADC0809是8位逐次逼近式模数转换器,包括一个8位的逼近型的ADC 部分,并提供一个8通道的模拟多路开关和联合寻址逻辑,为模拟通道的设计提供了很大的方便。

Z-STACK低功耗设置

Zigbee低功耗设置 1.在预编译选项中使能POWER_SAVING 2.设置 :RFD_RCVC_ALWAYS_ON = FALSE; //(in f8wConfig.cfg(默认情况下就是FALSE))并执行: else if ( ZSTACK_END_DEVICE_BUILD ) { ZDO_Config_Node_Descriptor.CapabilityFlags = (CAPINFO_DEVICETYPE_RFD #if ( RFD_RC VC_ALWAYS_ON == TRUE) | CAPINFO_RCVR_ON_IDLE #endif ); } 实现功能: End-Device 默认的只有CAPINFO_DEVICETYPE_RFD, 这样就设置了电池供电模式,并且在节点空闲的时候关闭射频接收器。 3.在进入sleep mode之前,2项重要的检查需要执行: First: pwrmgr_device必须为 PWRMGR_BATTERY! 说明:{系统初始化时,调用osal_pwrmgr_init(),pwrmgr_device初始化为 PWRMGR_ALWAYS_ON} 该项的正确设置是在节点加入网络之后。在ZDApp.c文件中,若POWER_SAVING选项已使能,则调用会 osal_pwrmgr_device(PWRMGR_BATTERY),设置为允许节电; 当器件为路由或协调器时,调用osal_pwrmgr_device( PWRMGR_ALWAYS_ON ),不允许节电(睡眠)! Second:pwrmgr_task_state 必须为no task,这项机制有利于节点在执行重要操作时,禁止sleep mode。 说明:{系统初始化时,调用osal_pwrmgr_init(),pwrmgr_attribute.pwrmgr_task_state初始化为0,no task,允许节电} 协议栈并没有调用osal_pwrmgr_task_state()函数,即各项任务一直允许节 电。原文如下: If the task always wants to converse power, it doesn't need to call this function at all.(见OSAL_PwrMgr.h文件)

TYZS3 ZigBee模块

Zigbee模组介绍--TYZS3 工程版 1.产品概述 TYZS3(工程版)是由杭州涂鸦信息技术有限公司开发的一款低功耗嵌入式Zigbee模块。它由一颗高集成度的无线射频处理器芯片EFR32MG13P732和少量外围器件构成,内置了802.15.4 PHY/MAC Zigbee 网络协议栈和丰富的库函数。TYZS3(工程版)内嵌低功耗的32位ARM Cortex-M4内核,512KByte 闪存程序存储器,64KB RAM数据存储器和丰富的外设资源。 TYZS3(工程版)是一个FreeRTOS平台,集成了所有Zigbee MAC以及TCP/IP协议的函数库。用户可以基于这些开发满足自己需求的嵌入式Zigbee产品。 TYZS3(工程版)支持工程版app配置智能方案,批量无网络一键配置设备、场景、户型;支持工程版数据管理平台数据可视化管理,监控落地工程进度、服务稳定性。 TYZS3(工程版)功能原理图如图1所示: 图1 TYZS3 (工程版)功能原理图 1.1 特点 ?内置低功耗32位ARM Cortex-M4处理器,带有DSP指令和浮点单元可以兼作应用处理器主频支持40MHz ?宽工作电压:1.8V-3.8V ?外设:9×GPIOs, 1×UART, 1×ADC ?Zigbee 工作特性 支持802.15.4 MAC/PHY 工作信道11 - 26 @2.400-2.483GHz,空口速率250Kbps 内置DC-DC 电路,有利于最大程度提高电源效率 最大+19dBm 的输出功率,输出功率动态>35dB 63uA/MHz 运行时功耗;1.4uA 休眠电流 终端设备主动配网 内置板载PCB 天线/ 预留Ipex 接头可搭配高增益外置天线 工作温度:-40℃to 85℃ 支持硬件加密,支持AES 128/256

过程装备中数据采集系统的低功耗设计

收稿日期:2002 08 05 作者简介:黄志勇(1978 ),男,江西南昌人,硕士生,研究方向为便携式数据采集系统的开发与研制。 过程装备中数据采集系统的低功耗设计 黄志勇,邹久朋 (大连理工大学过程装备与控制工程系,辽宁大连116012) [摘 要] 从理论分析和实际应用两个方面阐述和讨论了低功耗大容量便携式数据采集仪的研制方案。主要从芯片的选型、外围电路的设计、软件设计等方面入手来分析如何使电池供电的数据采集系统长时间工作于无人看管的场所。 [关键词] 单片机;低功耗;外围电路;数据采集 [中图分类号]TM911 [文献标识码]A [文章编号]1000 0682(2003)01 0034 03 The Low dissipation design of a data acqusition system in process equipment HUANG Zhi yong,ZOU Jiu Peng (Proc ess Equi pment &Cont rol Engineering De pt o f DaLian U niversity o f Tec hnology ,Liaoning Dalian 116012,China ) Abstract:This paper expatiates on the method of designing a portable and large capacity microcontroller system with low power dissipation and discusses its development through both theoretic analysis and actual ap plications.Proceeding from the circuits,design,components and selection to software configuration,the paper analyses how the design conception can realize the function that keeps the battery operated data acquisition sys tem working for a long time at its working field without tenders. Key words:Microcontroller;Lo w power dissipation;Peripheral circuit;Data acquisition 1 前 言 由单片机组成的数据采集系统已经广泛的应用在过程装备的各个领域。通常在野外偏远地区、高温高压场所要进行压力、温度和应力等的数据采集时,由于没有持续的电力供给,而且工作温度有限制,不太适合使用笔记本电脑等设备进行数据采集,只能使用电池供电的数据采集系统。而一般情况下数据采集需持续几天到几个月,这样整个系统的功耗成为影响系统设计的关键问题。 2 低功耗的硬件设计 在实际应用中数据采集系统主要由传感器、A/ D 转换器、单片机、存储器、与微机接口电路等组成。除传感器外,设计人员基本上是选用低功耗C MOS 或HCMOS 型工艺制造的IC 。而CMOS 电路的功耗由静态功耗(Ps )和动态功耗(Pd )组成。静态功耗是在电路的所有输入信号保持状态不变时的直流功 耗。它包括PN 结反向漏电流引起的功耗和MOS 晶体管的亚阈电流引起的功耗。由于它一般在微安( A)量级[1],可以忽略。动态功耗是C MOS 电路在正常操作时所消耗的能量。它一般在毫安级(mA)。所以在低功耗设计时,应尽量减少动态功耗。 动态功耗Pd 是对电路节点负载电容进行充放电所消耗的功率。表示为: Pd =RC L V L V dd f (2 1) 式中:C L 负载电容; V L 逻辑摆幅;V dd 电源电压;f 工作频率; R 能量状态转换活动几率。 R 又简称 开关活动率 ,它是指节点一个周期内做耗能状态转换所用的时间与时钟周期之比,它的大小与电路结构、逻辑功能、输入数据的组合状态及节点的初始状态有关。一般情况下C MOS 电路的逻辑摆幅V L 与电源电压V dd 近似,故(2 1)式可简化为: P d =RC L V 2dd f (2 2) 由上式可知,降低动态功耗的主要途径是:降低耗能状态转换活动几率、减少负载电容、降低工作电 34 工业仪表与自动化装置 2003年第1期

多路数据采集系统设计毕业论文

多路数据采集系统设计毕业论文 第1章绪论 1.1 多路数据采集系统介绍 随着工、农业的发展,多路数据采集势必将得到越来越多的应用,为适应这一趋势,作这方面的研究就显得十分重要。在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。总之,不论在哪个应用领域中,数据采集与处理将直接影响工作效率和所取得的经济效益。 此外,计算机的发展对通信起了巨大的推动作用。算机和通信紧密结合构成了灵活多样的通信控制系统,也可以构成强有力的信息处理系统,这样对社会的发展产生了深远的影响。数据通信是计算机广泛应用的必然产物[2]。 数据采集系统,从严格的意义上来说,应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。 数据采集系统一般由数据输入通道,数据存储与管理,数据处理,数据输出及显示这五个部分组成。输入通道要实现对被测对象的检测,采样和信号转换等

工作。数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。数据处理就是从采集到的原始数据中,删除有关干扰噪声,无关信息和必要的信息,提取出反映被测对象特征的重要信息。另外,就是对数据进行统计分析,以便于检索;或者把数据恢复成原来物理量的形式,以可输出的形态在输出设备上输出,例如打印,显示,绘图等。数据输出及显示就是把数据以适当的形式进行输出和显示。 由于RS-232在微机通信接口中广泛采用,技术已相当成熟。在近端与远端通信过程中,采用串行RS-232标准,实现PC机与单片机间的数据传输。在本毕业设计中对多路数据采集系统作了初步的研究。本系统主要解决的是怎样进行数据采集以及怎样进行多路的数据采集,并将数据上传至计算机[2]。 1.2 设计思路 多路数据采集系统采用ADC0809模数转换器作为数据采集单元和AT89C51单片机来对它们进行控制,不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高采集数据的灵敏度及指标。通过MAX232电平转换芯片实现单片机与PC 机的异步串行通信,设计中的HD7279实现了键盘控制与LED显示显示功能。本文设计了一种以AT89C51和ADC0809及RS232为核心的多路数据采集系统。 多路数据采集系统就是通过键盘控制选择通路,将采集到的电压模拟两转换成数字量实时的送到单片机里处理从而显示出采集电压和地址值,最终控制执行单片机与PC机的异步串行通信。 连接好硬件后,给ADC0809的三条输入通路通入直流电压。4-F键为功能键,4-E键为复位键,F键为确认键。1-3键为通道选择键,分别采集三个通道的数据值并实时显示出数值和地址值。结合单片机RS232串口功能还实现了与PC机的异

DRF系列ZigBee模块数据传输指南

DRF 系列 Zigbee 模块数据传输指南 (DRF1601,DRF1602,DRF1605,DRF2617-ZR232,DRF2618-ZUSB , DRF2619-ZR485,DRF1605-USB ,DRF1605-RS485) 一,怎样使用配置软件 配置软件是用来设定及读取模块的基本参数; 模块可设置4个参数:PAN ID 、波特率、节点类型、无线频道; (1),PAN ID : 同一个网络内的每个节点具有相同的PAN ID ,不同的网络之间PAN ID 是不同的,在同一空间,二个不同PAN ID 的网络是不会相互影响的; 软件连接后,这里会显示连接的波特率,这个也是模块的波特率 点击Connect ,软件会自动连接模块

对于Coordinator: ●设定新的PAN ID,重启,则马上读取为新的PAN ID; ●设定新的PAN ID后,则以前储存在Coordinator内的网络信息会全部清空,重启后,Coordinator 会重新创建一个网络; ●对于一个已经存在的网络,重新设定Coordinator的PAN ID为同样的值,重启,此时,Coordinator 里的网络值会被全部清空,由于以前的网络仍然存在,此时的Coordinator的PAN ID会自动加 1,避免PAN ID冲突; 对于Router: ●设定新的PAN ID,重启,如果读取为FF FE,表示Router还没有加入网络; ●设定新的PAN ID,重启,如果读取为新的PAN ID,表示Router已经加入网络; ●设定新的PAN ID为FF FF,重启,Router会自动寻找网络并加入; ●设定新的PAN ID为FF FF,重启,Router会自动寻找网络并加入,在没有加入网络之前,读 取的值为FF FE; (2),波特率: 与模块直接连接的设备的硬件波特率,同一个网络内,多个Zigbee模块与多个设备连接,并不需要全网具有同样的波特率,只要模块与设备之间具有相同的波特率即可;

基于Zigbee的低功耗数据采集系统设计

密级一般 分类号TP393硕士学位论文 作者:杨朋伟 指导教师:侯宏录教授 申请学位学科: 2009年4月20日 XI’ANTECHNOLOGICAL UNIVERSITY 基于Zigbee的低功耗数据采集系统设计 测试计量技术及仪器 题目:

基于Zigbee的低功耗数据采集系统设计 学科:测试计量技术及仪器 研究生签字: 指导教师签字: 摘要 Zigbee无线传感器网络技术是一种全新的短距离无线通信技术,广泛应用于智能控制、无线监控及环境监测等领域。目前,对于Zigbee无线传感器网络技术的应用还存在诸多问题,本文重点对无线传感器网络时间同步算法、低功耗系统设计开展深入研究。 1.对Zigbee无线传感器网络时间同步算法进行了全面分析研究,从降低同步开销和关键路径长度的角度出发,提出了两种应用于不同环境下的时间同步算法。1)当网络规模较小时,采用二层拓扑结构的Zigbee时间同步算法,该算法通过构造二层拓扑结构和时延估计的方法实现了ms级的时间同步精度.降低了时间同步开销;2)当网络规模较大时,采用多跳传感器网络时间同步算法,该算法通过构造较优拓扑结构和累计时延估计的办法降低了时间同步开销及关键路径长度。 2.通过对Zigbee协议栈的研究及分析,从低功耗设计的角度出发,完成了Zigbee低功耗无线数据采集及传输系统设计。主要内容包括如下几个方面: 1)完成了Zigbee无线网络节点的电路设计及相关应用电路设计,在此基础上,应用IAR7.20H开发平台完成了Zigbee无线网络节点的功能软件设计。 2)使用TI公司的CC2430芯片完成了Zigbee节点点对点无线通信的设计及Zigbee 简单网络节点通信设计。 3)完成了多路传感器数据采集接口的设计及Zigbee无线网络监控管理软件设计。 4)研究了无线网络节点功能软件的低功耗设计方法。 5)搭建了Zigbee低功耗无线数据采集及传输系统,对其进行了调试和实验,结果表明该系统在70m范围内工作稳定,误码率较低,时间同步精度较高,能够满足工业环境下的参数远程监控。 关键词:数据采集及传输;低功耗;无线传感器网络;时间同步算法;Zigbee

zigbee模块的配置说明5-20

现场zigbee模块配置说明 陕西星际电子科技发展有限公司 2014.3.9

1 测试设备 1.1 井口RTU 1.2 无线通信模块 长庆数字规范中规定无线通信模块是美国DIGI 公司的Xbee 模块与深圳华奥通的Zigbee 模块。 表格 1 测试无线通信模块 2 现场设备连接方式与无线配置 主RTU 上位机 井口RTU 井口RTU 井口RTU …… 以太网 Zigbee Zigbee Zigbee Zigbee 图 2-1 井场设备连接方式 2.1 数据链路工作方式 表 2-1 各厂家数据链路工作方式

北京安控的使用方式与其它各家不一样,北京安控RTU与XBEE模块之间采用AT指令集,使用这种方式时,族ID与Zigbee规范ID规定为0x0011和0xC105,而非0x0011和0x1857。 2.2Zigbee配置 协调器配置 API方式: 1、工作模式(Function Set):ZIGBEE COORDINATOR API; 2、PAN ID:中国石油定义协议器的值,如指定油气田公司、工程代码,规定见A11标准附录C; 3、SC-Scan Channels:设定为7FFF,由于现场使用不同家的模块,Xbee Pro模块的为FFFF,Xbee Pro S2模块为7FFF,Xbee Pro S2B模块为3FFF,为了统一设定为3FFF; 4、其他参数默认; 5、配置完后读取并记录IO-Operationg 16-bit PAN ID,如90B9:

图2-2协调器配置API方式 路由配置 API方式(使用0x91,0x11指令): 1、工作模式(Function Set):ZIGBEE ROUTER API; 2、PAN ID:中国石油定义协议器的值,如指定油气田公司、工程代码,规定见A11标准附录C, 与同一井场协调器PAN ID保持一致; 3、SC-Scan Channels:设定为7FFF,由于现场使用不同家的模块,Xbee Pro模块的为FFFF,Xbee Pro S2模块为7FFF,Xbee Pro S2B模块为3FFF,为了统一设定为3FFF,且与同一井场协调器SC 参数保持一致; 4、API Output Mode:设定为1,在串口(Serial Interfacing)参数选项中; 5、其他参数默认; 6、配置完后读取IO-Operationg 16-bit PAN ID,确保与协调器的一致,如90B9;

数据采集系统简介研究意义和应用

一前言 1.1 数据采集系统简介 数据采集,是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机(或微处理器)的测量软硬件产品来实现灵活的、用户自定义的测量系统。该数据采集系统是一种基于TLC549模数转换芯片和单片机的设备,可以把ADC采集的电压信号转换为数字信号,经过微处理器的简单处理而交予数码管实现电压显示功能,并且通过与PC的连接可以实现计算机更加直观化显示。 1.2 数据采集系统的研究意义和应用 在计算机广泛应用的今天,数据采集的在多个领域有着十分重要的应用。它是计算机与外部物理世界连接的桥梁。利用串行或红外通信方式,实现对移动数据采集器的应用软件升级,通过制订上位机(PC)与移动数据采集器的通信协议,实现两者之间阻塞式通信交互过程。在工业、工程、生产车间等部门,尤其是在对信息实时性能要求较高或者恶劣的数据采集环境中更突出其应用的必要性。例如:在工业生产和科学技术研究的各行业中,常常利用PC或工控机对各种数据进行采集。这其中有很多地方需要对各种数据进行采集,如液位、温度、压力、频率等。现在常用的采集方式是通过数据采集板卡,常用的有A/D 卡以及422、485等总线板卡。卫星数据采集系统是利用航天遥测、遥控、遥监等技术,对航天器远地点进行各种监测,并根据需求进行自动采集,经过卫星传输到数据中心处理后,送给用户使用的应用系统。 1.3 系统的主要研究内容和目的 本课题研究内容主要包括:TLC549的工作时序控制,常用的单片机编辑C语言,VB 串口通信COMM控件、VB画图控件的运用等。 本课题研究目的主要是设计一个把TLC549(ADC)采集的模拟电压转换成八位二进制数字数据,并把该数据传给单片机,在单片机的控制下在实验板的数码管上实时显示电压值并且与计算机上运行的软件示波器连接,实现电压数据的发送和接收功能。

zigbee模块使用手册

2.4G无线模块WLT2408NZ 产品数据手册编号:DSWLT01003 更新日期:2012/04/26 版本:V1.03 产品概述 WLT2408NZ模块是广州晓网电子出品的WLT系列ZigBee数据传输模块,具备最大8dBm 输出功率,视距传输距离可达500米(@5dbi天线),工作频段2.380GHz~2.500Ghz,除标准ZigBee的16个通道外,还有9个扩展频段,可以有效避开WIFI、蓝牙等其他2.4G信号干扰。 广州晓网电子为WLT2408NZ用户提供mesh对等无线路由协议,无组网延时,采用时间空间权值均衡原则,路由时间短,通讯稳定可靠。 基本参数产品图片 输出功率: 供电电压: 天线接口: 数字接口: 视距传输距离:功耗: 休眠电流 工作温度: 存储温度: 尺寸:-50~+8dBm 1.9~3.3V SMA,U.FL UART,GPIO,AD 500米@5dbi天线 发送峰值电流46.3mA,接收时36.4mA <1uA -40℃至+85℃ -40℃至+105℃ 16×23mm 公司简介 广州晓网电子科技有限公司是一家专门从事无线通讯方案设计、生产及服务的公司,公司拥有一流的设计团队,运用先进的工作方法,集合无线设计经验,公司拥有业界实用的各种模块,也为客户提供客制化服务。 订货信息 WLT2408NZ-S SMA形式天线接头 WLT2408NZ-U U.FL形式天线接头 WLT2408NZ SDK 无线模块评估板套件,包含两个评估板,搭载的模块为 WLT2408NZ-S。 数据手册

版权声明 本文档提供有关晓网电子产品的信息,并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可,任何单位和个人未经版权所有者授权不得在任何形式的出版物中摘抄本手册内容。 产品命名规则 图1-1 产品命名规则 例如:WLT2408NZ-S表示晓网电子模块类的产品,频段为2.4GHz,理论输出功率为﹢8dBm(实际输出为﹢7.7dBm),超小封装,调制方式为ZigBee,外置SMA头的模块。

数据采集系统

湖南工业大学科技学院 毕业设计(论文)开题报告 (2012届) 教学部:机电信息工程教学部 专业:电子信息工程 学生姓名:肖红杰 班级: 0801 学号 0812140106 指导教师姓名:杨韬仪职称讲师 2011年12 月10 日

题目:基于单片机的数据采集系统的控制器设计 1.结合课题任务情况,查阅文献资料,撰写1500~2000字左右的文献综述。 近年来,数据采集及其应用技术受到人们越来越广泛的关注,数据采集系统在各行各业也迅速的得到应用。如在冶金、化工、医学、和电器性能测试等许多场合需要同时对多通道的模拟信号进行采集、预处理、暂存和向上位机传送、再由上位机进行数据分析和处理,信号波形显示、自动报表生成等处理,这些都需要数据采集系统来完成。但很多数据采集系统存在功能单一、采集通道少、采集速率低、操作复杂、并且对操作环境要求高等问题。人们需要一种应用范围广、性价比高的数据采集系统,基于单片机的数据采集系统具有实现处理功能强大、处理速度快、显示直观,性价比高、应用广泛等特点,可广泛应用于工业控制、仪器、仪表、机电一体化,智能家居等诸多领域。总之,无论在那个应用领域中,数据采集与处理越及时,工作效率就超高,取得的经济效益就越大。 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的信号,并送入计算机,然后将计算得到的数据进行显示或打印,以便实现对某些物理量的监测,其中一些数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的市场需求量大,特别是随着技术的发展,可用数据器为核心构成一个小系统,而目前国内生产的主要是数据采集卡,存在无显示功能、无记忆存储功能等问题,其应用有很大的局限性,所以开发高性能的,具有存储功能的数据采集产品具有很大的市场前景。 随着电子技术的迅速发展,,一些高性能的电子芯片不断推出,为我们进行电子系统设计提供的更多的选择和更多的方便,单片机具有体积小、低功耗、使用方便、处理精度高、性价比高等优点,这些都使得越来越广泛的选用单片机作为数据采集系统的核心处理器。一些高性能的A/D转换芯片的出现也为数据采集系统的设计提供了更多的方便,无论是采集精度还是采样速度都比以前有了较大的提高。其中一些知名的大公司如MAXIM公司、TI公司、ADI公司都有推出性能比效突出的 A/D转换芯片,这些芯片普通具有低功耗、小尺寸的特点,有些芯片还具有多通道的同步转换功能。这些芯片的出现,不仅因为芯片价格便宜,能够降低系统设计的成本,而且可以取代以前繁琐的设计方法,提高系统的集成度。 数据采集器是目前工业控制中应用较多的一类产品,数据采集器的研制已经相当成熟,而且数据采集器的各类不断增多,性能越来越好,功能也越来越强大。 在国外,数据采集器已发展的相当成熟,无论是在工业领域,还是在生活中的应用,比如美国FLUKE公司的262XA系列数据采集器是一种小型、便携、操作简单、使用灵活的数据采集器,它既可单独使用又可和计算机连接使用,它具有多种测量

zigbee芯片与zigbee模块的区别和优缺点对比

zigbee芯片与zigbee模块的区别和优缺点对比 ZigBee在个人网络中越来越被称为短距离无线通信协议。它的最大特点是具有低功耗,低网络,特别是可路由的网络功能,并且在理论上可以无限扩展ZigBee期望的通信范围。对于蓝牙,红外点对点通信和WLAN星型通信,ZigBee协议要复杂得多。因此,我应该选择ZigBee芯片自行开发协议,还是应该直接选择具有ZigBee协议的模块直接应用? 芯片研发:需要足够的人力和技术储备以及长时间的开发 市场上的ZigBee无线收发器“芯片”实际上是符合物理层标准的芯片。因为它仅调制和解调无线通信信号,所以必须将其与单片机结合使用以完成数据收发器和协议的实现。另一方面,单片机仅集成了射频部分和单片机部分,并且不需要额外的单片机。它的优点是节省成本和简化电路。 在这两种情况下,用户都需要自己通过微控制器的结构和寄存器的设置自行开发所有软件部分,还要参考物理层部分的IEEE802.15.4协议和网络层部分的ZigBee协议。对于实际应用用户而言,这种工程量很大,开发周期和测试周期都非常长,并且由于它是无线通信产品,因此不容易保证其产品质量。 目前,许多ZigBee公司都在提供自己的芯片ZigBee协议栈,它仅提供该协议的功能,并不意味着它具有真正的适用性和可操作性。没有提供用户数据界面的详细描述。用户为什么可以忽略芯片中的程序,而只使用芯片来传输自己的数据?这不仅可以简单地实现包含ZigBee协议栈的芯片,也不能仅实现包含ZigBee协议栈的芯片。 所有这些都要求用户基于完整的协议代码和他们自己的上层通信协议,完整的简单

数据无线发送和接收,完整的路由,完整的网络通信以及调试步骤,来修改协议栈的内容。因此,对于实际应用的用户来说,开发周期大大延迟了,具有如此复杂协议的无线产品具有更多不确定因素,并且容易受到外部环境条件的影响。实际的发展问题是多种多样的,难以解决。 模块生产的成本 通过节省ZigBee开发周期,或许可以抓住项目推广的第一个机会。ZigBee模块已经包括所有外围电路和完整的协议栈。这是一种即用型产品。经过制造商的优化设置修订和老化测试,具有一定的质量保证。出色且可靠的zigBee应用程序“模块”紧凑,硬件小巧,具有芯片焊盘设置校正功能,能够内置芯片和外部SMA天线,通信距离范围为100米至1200米。 该软件包括完整的ZigBee协议栈。它在PC上具有自己的部署工具。它可以使用串行端口与用户的产品通信并部署模块的网络拓扑参数,例如发射功率和信道,使用方便快捷。 透传模块的优点在于,用户无需考虑其程序的工作方式,只要用户通过串行端口将其数据发送到模块,模块就会根据预设的网络自动无线传输数据结构体。

数据采集系统设计

目录 摘要 (1) 1 引言 (2) 1.1 数据采集系统的简介. (2) 1.2 课程设计内容和要求 (3) 1.3 设计工作任务及工作量的要求 (3) 2 内容提要 (3) 3 系统总体方案 (3) 3.1 系统设计思路 (3) 3.2 系统总体框图 (4) 4 硬件电路设计及描述 (4) 4.1 8253芯片及工作原理 (4) 4.1.1 基本组成及工作原理 (4) 4.1.2 8253与系统连接 (5) 4.2 ADC0809内部功能与引脚介绍 (5) 4.2.1 引脚排列及各引脚的功能 (6) 4.2.2 ADC0809工作方式 (7) 4.2.3 ADC0809与系统连接 (8) 4.3 单片机89C51的引脚与功能介绍 (8) 4.4 8255并行口芯片基本组成及工作原理 (10) 4.4.1 8255的内部结构 (11) 4.4.2 8255的工作方式 (12) 4.2.3 8255与系统连接 (12) 4.5 LED显示部分接线及工作原理 (13) 4.5.1 LED显示工作原理 (13) 4.5.2 LED显示部分接线 (14) 4.6 总体电路图 (14) 5 软件设计流程及描述 (15) 5.1 主程序设计思路 (15)

5.2 部分程序设计流程图 (16) 5.2.1 8253程序流程图 (16) 5.2.2 8255程序流程图 (17) 5.2.3 数据处理流程图 (17) 5.2.4 LED显示流程图 (17) 5.3 汇编语言程序清单 (18) 5.4 仿真结果 (21) 6 课程设计体会 (21) 参考文献 (23)

摘要 数据采集是从一个或多个信号获取对象信息的过程。随着微型计算机技术的飞速发展和普及,数据采集监测已成为日益重要的检测技术,广泛应用于工农业等需要同时监控温度、湿度和压力等场合。数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。 本课程设计采用89C51系列单片机,89C51系列单片机基于简化的嵌入式控制系统结构,具有体积小、重量轻,具有很强的灵活性。设计的系统由硬件和软件两部分构成,硬件部分主要完成数据采集,软件部分完成数据处理和显示。数据采集采用AD0809模数转换芯片,具有很高的稳定性,采样的周期由可编程定时/计数器8253控制。完成采样的数据后输入单片机内部进行处理,并送到LED显示。软件部分用Keil软件编程,操作简单,具有良好的人机交互界面。程序部分负责对整个系统控制和管理,采用了汇编语言进行了判别通道、数据采集处理、数据显示、数据通信等程序设计,具有较好的可读性。 随着计算机在工业控制领域的不断推广应用,将模拟信号转换成数字信号已经成为计算机控制系统中不可缺少的重要环节,因此数据采集系统有着重要的意义。

基于DSP的低功耗高速数据采集系统设计

基于DSP的低功耗高速数据采集系统设计 随着电子技术的发展及新器件的不断涌现,电子系统在手持设备、便携 医疗仪器以及野外测试仪器等领域得到了广泛的应用。在这些领域的应用中, 由于客观条件的限制,通常采用电池或蓄电池为仪器设备提供电源。在这种情 况下,如要实现系统长时间工作,必然对仪器设备系统功耗的要求较高,因此 低功耗系统的设计在这些应用领域中得到广泛重视。 1 TMS320VC5509 简介 TMS320VC5509(以下简称VC5509)是德州仪器(TI)公司针对低功耗应用领域推出的一款低功耗高性能DSP,采用1.6V 的核心电压以及3.3V 的外围接口电压,最低可支持0.9V 的核心电压以0.05mW/MIP 的低功耗运行。 VC5509 支持丰富的外设接口,最高支持144MHz 的时钟频率,片内具有双乘累加器,每周期可执行一条指令或两条并行指令,具有高达288MIPS 的处理能力。VC5509 内部存储器采用统一编址,带有128K 字RAM,其中包括32K 字双存取RAM(DARAM)以及96K 字单存取RAM(SARAM),另外还有 64KB 片内只读ROM,并可以实现高达4MB 的外部存储空间扩展,是一款具 有较高性价比的低功耗DSP 芯片。VC5509 的结构框图如图1 所示。 2 系统设计与实现 本系统要求实现四通道同步采样,每通道采样频率为50kHz,系统供电为 +5V,全速运行时整体功耗低于250mW。针对这些技术指标,本系统以低功耗DSP 芯片TMS320VC5509 为核心,采用串行EEPROM 作为程序存储器,选用四片微功耗12 位ADC 实现四个通道模拟信号的同步采集。系统中设计铁电存储器(FRAM)作为掉电保护数据存储器,并设计一个异步串口实现与外部系 统的通讯。系统原理框图如图2 所示。在保证实现系统功能的前提下,本系统

数据采集软件设计方案

数据采集软件设计方案 1背景 由于尾矿监控系统的数据来源复杂,而且数据格式多样,而对于一个监控软件来说,如果要涉及到复杂的数据采集及其处理过程的话,对于软件本身运行的稳定性或造成一定的负担,而且也不利于于软件的后续开发和后期维护。 所以需要一个统一的数据采集程序,来为尾矿监控系统所涉及到的数据源进行整合,处理。把复杂的来源,格式多样的数据整合为单一来源,标准格式的数据,从而提高尾矿监控系统的可靠性。 2设计思路 从目前对数据源的分析情况来看,尾矿监控系统的数据主要有以下几种: 全站仪的采集数据,其数据存放在全站仪自己的SQL Server 数据库中。 内部位移,浸润线等监控数据( BGK的设备),其数据是放在采集软件运行的本地ACCESS数据库文件中。 气象, 水文等监控数据(WAGO设备),其数据源为通过它的WAGO Server 软件提供的OPC DA数据。 摄影头视频数据,存放在海康自己的视频录像机上面。 其他人为观测的数据。 其中,摄像头实时监控数据由海康提供控件,直接从海康设备上获取,其他人为观测数据由用户手动输入,通过尾矿监控系统软件直接存放到数据库。 剩下的三类数据,也是尾矿监测系统需要用到的主要数据,则由本软件来负责处理。主要处理思路如下图。

数据采集软件通过不同的接口分别从全站仪,BGK设备和WAGO设备采集数据。并根据各自的数据格式对数据进行分析,并将分析处理后的标准数据存放到尾矿监测系统的数据库。 3软件结构 数据采集软件采用模块化设计,其系统架构如下图:

如图所示,软件总共分为四层: 数据接口层:主要用于和设备进行数据交互,目前需要接入全站仪,BGK,WAGO 数据;并且存入数据接口将数据保存到数据库。由于考虑到以后的扩展性,数据接口层的数据接口要能做到可配置化,即能通过添加模块的方式增加其他类型的数据接入。 数据处理层:配合数据接口,对采集上来的数据的数据格式进行处理,转换为标准格式。也需要做到可配置化。 数据交互层:由于考虑到数据的复杂性,所以软件内部的数据交互采用XML作为标准交互格式,即交互数据统一为XElement对象。 表现层:也就是用户界面,用户要能够通过用户界面对一些参数进行配置,如:全站仪数据库地址,用户名,密码;ACCESS数据库路径;OPC服务器名;存入数据库地址等等。 根据软件架构图,可将软件分为以下四个功能模块: 3.1全站仪模块 主要负责采集处理全站仪数据,由于全站仪数据是保存到SQL Server数据库中,所以处理过程相对简单,只需要从SQL数据库中将需要的数据读取出来,调整为标准格式,保存到尾矿监测系统的数据库中。 3.2BGK模块 主要负责从BGK设备采集数据,BGK数据是存放在本地ACCESS数据库文件中,那就需要先建立ACCESS数据库文件的本地磁盘映射,然后再通过ODBC驱动从中读取数据,保存到尾矿监测系统的数据库中。 3.3WAGO模块 WAGO是通过WAGO OPC Server软件采用OPC DA协议进行交互的,所以需要采用OPC SDK 连接到WAGO的OPC服务器端,通过OPC协议进行数据采集,并将其转换为标准格式,保存到尾矿监测系统的数据库中。

ZigBee模块特点及调制方式

ZigBee 模块特点 厦门四信ZigBee 模块目前是基于美国德州仪器TI公司ZigBee2007/PRO协议的ZigBee模块。用户不需要了解复杂的 ZigBee协议,所有的ZigBee协议的处理部分,在ZigBee模块内部自动完成,用户只需要通过串口(TTL、RS232、RS485等)传输 数据即可,是目前市场上应用ZigBee最简单的方式。 1、低功耗。在低耗电待机模式下,2节5号干电池可支持1个节点工作6~24 个月,甚至更长。这是ZigBee的突出优势。相比较,蓝牙能工作数周、WiFi可工作数小时。 2、低成本。通过大幅简化协议(不到蓝牙的1/10),降低了对通信控制器的要求,按预测分析,以8051的8位微控制器测算,全功能的主节点需要32KB代码,子功能节点少至4KB代码,而且ZigBee免协议专利费。每块芯片的价格大约为2美元。 3、低速率。ZigBee工作在20~250kbps的速率,分别提供250 kbps(2.4GHz)、40kbps(915 MHz)和20kbps(868 MHz)的原始数据吞吐率,满足低速率传输数据的应用需求。 4、近距离。传输范围一般介于10~100m之间,在增加发射功率后,亦可增加 到1~3km。这指的是相邻节点间的距离。如果通过路由和节点间通信的接力,传输距离将可以更远。 5、短时延。ZigBee的响应速度较快,一般从睡眠转入工作状态只需15ms,节点连接进入网络只需30ms,进一步节省了电能。相比较,蓝牙需要3~10s、WiFi 需要 3 s。 6、高容量。ZigBee可采用星状、片状和网状网络结构,由一个主节点管理若干 子节点,最多一个主节点可管理254个子节点;同时主节点还可由上一层网络节点管理,最多可组成65000 个节点的大网。 7、高安全。ZigBee提供了三级安全模式,包括无安全设定、使用访问控制清单(Access Control List, ACL) 防止非法获取数据以及采用高级加密标准(AES 128)的对称 密码,以灵活确定其安全属性。 8、免执照频段。使用工业科学医疗(ISM)频段,915MHz(美国), 868MHz(欧洲), 2. 4GHz(全球) 。 由于此三个频带物理层并不相同,其各自信道带宽也不同,分别为0.6MHz, 2MHz和5MHz。分别有1个, 10个和16个信道。这三个频带的扩频和调制方式亦有 区别。扩频都使用直接序列扩频(DSSS),但从比特到码片的变换差别较大。调制方式

数据采集系统的设计与实现

长江大学工程技术学院 课程设计报告
课设题目
课程名称




学生姓名




指导教师


数据采集系统的设计与实现 汇编语言+微型计算机技术
信息系
2012 年 8 月 28 日~2012 年 9 月 9 日

目录
目录 长江大学工程技术学院 ..................... 错误!未定义书签。 一、设计目的 ............................. 错误!未定义书签。 二、设计内容 ............................. 错误!未定义书签。 三、硬件设计及分析 ....................... 错误!未定义书签。
1.总体结构图......................... 错误!未定义书签。 2.各部件端口地址设计及分析 ............ 错误!未定义书签。 3.各部件的组成及工作原理 .............. 错误!未定义书签。 四、软件设计及分析 ....................... 错误!未定义书签。 1.总体流程图......................... 错误!未定义书签。 2.主要程序编写及分析.................. 错误!未定义书签。 五、系统调试 ............................. 错误!未定义书签。 1.调试环境介绍........................ 错误!未定义书签。 2. 各部件的调试....................... 错误!未定义书签。 3.调试方法及结果...................... 错误!未定义书签。 六、总结与体会 ........................... 错误!未定义书签。 七、附录 ................................. 错误!未定义书签。

相关文档
最新文档