等差数列练习题(有答案) 百度文库

等差数列练习题(有答案) 百度文库
等差数列练习题(有答案) 百度文库

一、等差数列选择题

1.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列

{}n a ,已知11a =,2

2a

=,且满足()211+-=+-n

n n a a (n *∈N ),则该医院30天入

院治疗流感的共有( )人

A .225

B .255

C .365

D .465

2.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45

B .50

C .60

D .80

3.设数列{}n a 的前n 项和2

1n S n =+. 则8a 的值为( ).

A .65

B .16

C .15

D .14

4.已知数列{}n a 的前n 项和n S 满足()

12n n n S +=,则数列11n n a a +??????

的前10项的和为

( ) A .

89

B .

910

C .10

11

D .

1112

5.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29

B .38

C .40

D .58

6.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6

12S

S =( ) A .

17

7

B .

83 C .

143

D .

103

7.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12

15

a b =( ) A .

3

2

B .

7059

C .

7159

D .85

8.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121

B .161

C .141

D .151

9.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2 10.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )

A .9

B .12

C .15

D .18

11.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019

B .4040

C .2020

D .4038

12.已知等差数列{}n a 的前n 项和为n S ,且2

n S n =.定义数列{}n b 如下:

()*1m m b m m

+∈N 是使不等式()

*

n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b +++

+=( )

A .25

B .50

C .75

D .100 13.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9

9

S a =( ) A .9

B .5

C .1

D .

59

14.设等差数列{}n a 的前n 和为n S ,若()*

111,m m a a a m m N +-<<->∈,则必有( )

A .0m S <且10m S +>

B .0m S >且10m S +>

C .0m S <且10m S +<

D .0m S >且10m S +<

15.在数列{}n a 中,11a =,且11n

n n

a a na +=+,则其通项公式为n a =( ) A .

21

1n n -+

B .2

1

2n n -+

C .22

1

n n -+

D .2

2

2

n n -+

16.若数列{}n a 满足121

()2

n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020

D .2021

17.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51

B .57

C .54

D .72

18.已知数列{}n a 的前n 项和()2

*

n S n n N =∈,则{}n

a 的通项公式为( )

A .2n a n =

B .21n a n =-

C .32n a n =-

D .1,1

2,2

n n a n n =?=?

≥?

19.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .

32

B .

92

C .2

D .9

20.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237

n n S n T n =+,则6

3a b 的值为

( ) A .

5

11

B .38

C .1

D .2

二、多选题

21.已知数列{}n a 满足0n a >,

121

n n n a n

a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )

A .11a =

B .121a a =

C .201920202019S a =

D .201920202019S a >

22.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >

D .若67S S >则56S S >.

23.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =

C .135********a a a a a +++

+= D .222

2123202020202021a a a a a a ++++=

24.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减

D .数列{}n S 有最大值

25.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-

B .310n

a n

C .2

28n S n n =- D .2

4n S n n =-

26.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的

是( ) A .110S =

B .10n n S S -=(110n ≤≤)

C .当110S >时,5n S S ≥

D .当110S <时,5n S S ≥

27.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =

C .95S S >

D .67n S S S 与均为的最大值

28.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =

D .当8n ≥时,0n a <

29.无穷数列{}n a 的前n 项和2

n S an bn c =++,其中a ,b ,c 为实数,则( )

A .{}n a 可能为等差数列

B .{}n a 可能为等比数列

C .{}n a 中一定存在连续三项构成等差数列

D .{}n a 中一定存在连续三项构成等比数列 30.已知数列{}n a 是递增的等差数列,5105a a +=,

6914a a ?=-.12n n n n b a a a ++=??,数列{}n b 的前n 项和为n T ,下列结论正确的是( )

A .320n a n =-

B .325n a n =-+

C .当4n =时,n T 取最小值

D .当6n =时,n T 取最小值

【参考答案】***试卷处理标记,请不要删除

一、等差数列选择题 1.B 【分析】

直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】

解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==???==,

2430,,,a a a ???是以2为首项,2为公差的等差数列,

所以30132924301514

()()1515222552

S a a a a a a ?=++???++++???+=+?+?=, 故选:B 2.C 【分析】

利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】

{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =

1158158()15215

156022

a a a S a +??=

===

故选:C 【点睛】

本题考查等差数列性质及前n 项和公式,属于基础题

3.C 【分析】

利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】

由2

1n S n =+得,12a =,()2

111n S n -=-+,

所以()2

21121n n n a S S n n n -=-=--=-, 所以2,1

21,2

n n a n n =?=?-≥?,故828115a =?-=.

故选:C. 【点睛】

本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 4.C 【分析】

首先根据()12

n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】

当1n =时,111a S ==,

当2n ≥时,()()

11122

n n n n n n n a S S n -+-=-=-=.

检验111a S ==,所以n a n =. 设()11111

11

n n n b a a n n n n +=

==-++,前n 项和为n T , 则10111111101122310111111T ??????=-+-++-=-= ? ? ???????

…. 故选:C 5.A 【分析】

根据等差中项的性质,求出414a =,再求10a ; 【详解】

因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 6.D 【分析】

由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】

已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,

所以()()633962S S S S S ?-=+-,且9

3

6S S =,化简解得633S S =.

()()()96631292S S S S S S ?-=-+-,∴31210S S =,从而

126103

S S =. 故选:D 【点睛】 思路点睛:

(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,

(2)()()633962S S S S S ?-=+-,且9

3

6S S =,化简解得633S S =, (3)()()()96631292S S S S S S ?-=-+-,化简解得31210S S =. 7.C 【分析】

可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】

因为{}n a ,{}n b 是等差数列,且

3221

n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,

又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴

1215(6121)71(4151)59

a k

b k ?-==?-, 故选:C . 8.B 【分析】

由条件可得127a =,然后231223S a =,算出即可. 【详解】

因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即

127a =

所以231223161S a == 故选:B 9.B

【分析】

根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】

因为各项不为0的等差数列{}n a 满足2

6780a a a -+=,

所以2

7720a a -=,解得72a =或70a =(舍);

又数列{}n b 是等比数列,且772b a ==,

所以3

3810371178b b b b b b b ===.

故选:B. 10.A 【分析】

在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】

在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,

所以139522639a a a =-=?-=, 故选:A 11.B 【分析】

由等差数列的性质可得52012016024a a a a +==+,则

()15202020

202016202010102

a a a a S +=

?=?+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+

()12020

202052016202010104101040402

a a a a S +=

==?=+?? 故选:B 12.B 【分析】

先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到2121

2

k k b --=,结合等差数列的求和公式,即可求解. 【详解】

由题意,等差数列{}n a 的前n 项和为n S ,且2

n S n =,可得21n a n =-,

因为n a m ≥,即21n m -≥,解得12

m n +≥

当21m k =-,(*

k N ∈)时,

1

m m b k m

+=,即()()11212m m m mk m b m m +===++, 即2121

2

k k b --=

, 从而()135191

13519502

b b b b ++++=

++++=.

故选:B. 13.B 【分析】

由已知条件,结合等差数列通项公式得1a d =,即可求9

9

S a . 【详解】

4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,

∴1999()

452

a a S d ?+=

=,99a d =,且0d ≠, ∴9

9

5S a =. 故选:B 14.D 【分析】

由等差数列前n 项和公式即可得解. 【详解】

由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()

02

m m m a a S ++++=<. 故选:D. 15.D 【分析】

先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出212

2

n n n a -+=,进而求出n a .

【详解】 解:11n

n n

a a na +=

+, ()11n n n a na a ++=∴,

化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:

111

n n

n a a +-=, 即

21

11

1a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --

=-≥∈, 将上述1n -个式子相加得:

213243111111+a a a a a a --+-+ (1)

11

123n n a a -+-=+++…1n +-, 即

111(1)

2

n n n a a --=, 2111(1)(1)2=1(2,)222

n n n n n n n n n z a a ---+∴=++=≥∈, 又

1

1

1a =也满足上式, 212()2

n n n n z a -+∴=∈, 2

2

()2

n a n z n n ∴=

∈-+. 故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 16.B 【分析】

根据递推关系式求出数列的通项公式即可求解. 【详解】 由121

()2n n a a n N *++=

∈,则11()2

n n a a n N *+=+∈, 即11

2

n n a a +-=

, 所以数列{}n a 是以1为首项,

1

2

为公差的等差数列, 所以()()11111122

n n a a n d n +=+-=+-?=, 所以2021a =20211

10112

+=. 故选:B 17.B 【分析】

根据等差数列的性质求出103a =,再由求和公式得出答案.

【详解】

317102a a a += 1039a ∴=,即103a =

()11910

19191921935722

a a a S +?∴===?=

故选:B 18.B 【分析】

利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】

2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,

当1n =时,111a S ==,上式也成立,

()

*21n a n n N ∴=-∈,

故选:B. 【点睛】

易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即

11,1

,2n n

n S n a S S n -=?=?-≥?,算出之后一定要判断1n =时对应的式子是否成立,最后求得结

果,考查学生的分类思想与运算求解能力,属于基础题. 19.A 【分析】

由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】

设公差为d ,则42363

4222a a d --=

==--, 所以5433322

a a d =+=-=. 故选:A 20.C 【分析】

令2

2n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则6

3

a b 可得.

【详解】

令2

2n S n λ=,()37n T n n λ=+,

可得当2n ≥时,()()2

21221221n n n a S S n n n λλλ-=-=--=-,

()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,

当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,

()232n b n λ=+

故622a λ=,322b λ=,

故6

3

1a b =. 【点睛】

由n S 求n a 时,11,1

,2

n n n S n a S S n -=?=?-≥?,注意验证a 1是否包含在后面a n 的公式中,若不符

合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解.

二、多选题

21.BC 【分析】

根据递推公式,得到11n n n

n n a a a +-=-,令1n =,得到121

a a =,可判断A 错,B 正确;

根据求和公式,得到1

n n n

S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】

由121n n n a n a a n +=+-可知2111

n n n n n a n n n a a a a ++--==+,即11n n n

n n a a a +-=-, 当1n =时,则12

1

a a =

,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321

111102110n n n n n n n n n n S a a a a a a a a a a a a +++??????-=++

+=-+-+

+-=-= ? ? ???????,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:

由递推公式求通项公式的常用方法:

(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;

(2)累乘法,形如()1

n n

a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1

n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通

项时,常需要构造成等比数列求解;

(4)已知n a 与n S 的关系求通项时,一般可根据11

,2

,1n n n S S n a a n --≥?=?=?求解.

22.BC 【分析】

根据等差数列的前n 项和性质判断. 【详解】

A 错:67895911415000S a a a a a S a S ?+++<>?+

B 对:n S 对称轴为

n =7;

C 对:6770S S a >?<,又10a >,887700a S a d S ??<

D 错:6770S S a >?<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】

关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()

2

n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 23.BCD 【分析】

根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】

对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;

对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得

135********a a a a a +++???+=,故C 正确;

对D ,该数列总有21n n n a a a ++=+,2

121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222

123202*********a a a a a a +++???+=,故D 正确.

故选:BCD 【点睛】

关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形. 24.ABD 【分析】

由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】

根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;

由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD. 25.AD 【分析】

设等差数列{}n a 的公差为d ,根据已知得1145

460

a d a d +=??

+=?,进而得13,2a d =-=,故

25n a n =-,24n S n n =-.

【详解】

解:设等差数列{}n a 的公差为d ,因为450,5S a ==

所以根据等差数列前n 项和公式和通项公式得:11

45

460a d a d +=??+=?,

解方程组得:13,2a d =-=,

所以()31225n a n n =-+-?=-,2

4n S n n =-.

故选:AD. 26.BC 【分析】 设公差d 不为零,由38a a =,解得192

a d =-,然后逐项判断.

【详解】 设公差d 不为零, 因为

38a a =,

所以1127a d a d +=+, 即1127a d a d +=--, 解得192

a d =-,

11191111551155022S a d d d d ??

=+=?-+=≠ ???

,故A 错误;

()()()()()()221101110910,10102222

n n n n n n d d

na d n n n a n n S S d ----=+=-=-+=-

,故B 正确;

若11191111551155022S a d d d d ??

=+=?-

+=> ???

,解得0d >,

()()2

2510525222

n d d d n n S n S =

-=--≥,故C 正确;D 错误; 故选:BC 27.ABD 【分析】 由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】

因为5665600S S S S a ?>,677670S S S S a =?-==,

788780S S S S a >?-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;

()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;

由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】

本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 28.AD 【分析】

利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】

因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,

故1a 最大,选项A 正确;选项B 不正确;

10345678910770S S a a a a a a a a -=++++++=>,

所以310S S ≠,故选项C 不正确;

当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】

本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 29.ABC

【分析】

由2

n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.

【详解】

当1n =时,11a S a b c ==++.

当2n ≥时,()()2

21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .

所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c

时,{}n a 是等差数列, 0

0a c b ==??

≠?

时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】

本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 30.AC 【分析】

由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】

解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,

又6914a a =-,联立解得62a =-,97a =, 则967(2)

3963

a a d ---=

==-,16525317a a d =-=--?=-. 173(1)320n a n n ∴=-+-=-.

故A 正确,B 错误;

12(320)(317)(314)n n n n b a a a n n n ++==---

可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.

∴当4n =时,n T 取最小值,故C 正确,D 错误.

故选:AC . 【点睛】

本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.

相关主题
相关文档
最新文档