焊接生产看板

焊接生产看板
焊接生产看板

这三张拼成一张板;

储罐焊接方案

吉林众鑫化工集团有限公司12万吨/年生物法环氧乙烷装置和动力厂及配套公用工程 乙醇储罐焊接施工方案 1、编制说明 1.1 为了保证储罐焊接工程质量,满足设计和生产对工艺的要求,特编制本方案。 1.2 本方案作为施焊过程中必须遵守的焊接技术文件和合格焊接工艺评定一起作为编制焊接工艺卡的依据。 1.3本方案经监理审查通过后,即可用于指导储罐制作的焊接工作,其所规定的内容与其它方案不符时,一律以本方案为准。各有关人员要严格依照执行,加强工艺纪律,以确保储罐焊接质量和进度。 1.3在储罐安装焊接过程中,将以焊接工艺卡的形式对本方案进行进一步细化,并下发作业班组进行技术交底,用于具体地指导具体部位的焊接施工。 1.4本方案在实施过程中若有设计修改或不合适之处,也将以焊接工艺卡的形式对之进行修改,补充完善,并下发指导施焊。 2、工程概况 2.1本工程为吉林众鑫化工集团有限公司12万吨/年生物法环氧乙烷装置和动力厂及配套公用工程项目。制作安装乙醇储罐2台,外形尺寸为φ21000×18375*14/6,重量为139.47吨、材质为Q245R/Q235B。 2.2设计参数一览表

材质:Q245R/Q235B 3、编制依据 3.1. 设计院设计蓝图。 3.2 相关规范 《立式圆筒形钢制焊接油罐设计规范》GB50341-2003 《立式圆筒形钢制焊接储罐施工及验收规范》GB50128-2005 《压力容器焊接规程》JB/T47019-2011 《承压设备无损检测》JB/T4730-2005 《焊接工艺评定规程》 DL/T 868-2004 3.3企业工艺标准的名称及编号: 《施工技术方案管理规定》 Q/JH223.22101.02-2013 《施工技术通用管理标准》 Q/JH222·21100.01-2013 《施工质量通用管理标准》 Q/JH223·21500.01-2013 《质量、环境、职业安全健康综合管理手册》 Q/JH223·20001.2007 《安全生产责任管理规定》 Q/JH223·21801.01 4、施工方法 4.1施工顺序

罐体焊接技术规范

罐体焊接技术规范 一T形接头角焊缝试件制备和检验 一、本适用于验证罐壁板与罐底边缘板之间角焊缝的焊接工艺能否满足使用性能要求,确保油罐长期安全运行。 二、试板应采用与油罐底圈壁板及罐底边缘板同材质、同厚度的钢板制成,其形状及尺寸见附图1.1。 三、试板的焊接工艺及焊脚应与油罐相同。角焊缝焊完一侧后,应自然冷却至室温,再焊接另一侧。 四、应采用机械方法由试板上切取试件。试件宽度应为32mm,试件数量应为2件。 五、弯曲试验应在万能试验机上进行,弯模尺寸应按附图1.2制备。

六、试件的板厚T应夹紧于导向十字头。缓慢加载,当载荷下降时应停止加载,观察有无裂纹产生。当出现裂纹时,应记录开始产生裂纹的变形角度α。当无裂纹时应继续加载,直至变形角度α达到60°(附图1.3)。 变形角度α不应小于15°。当不符合要求时,应调整焊接工艺或焊缝形状重新评定。 二油罐基础沉降观测方法 一、新建罐区,每台罐充水前,均应进行一次观测。 二、坚实地基基础,预计沉降量很小时,第一台罐可快速充水到罐高的1/2,进行沉降观测,并应与充水前观测到的数据进行对照,计算出实际的不均匀沉降量。当未超过允许的不均匀沉降量时,可继续充水到罐高的3/4,进行观测,当仍未超过允许的不均匀沉降量,可继续充水到最高操作液位,分别在充水后和

保持48h后进行观测,当沉降量无明显变化,即可放水;当沉降量有明显变化,则应保持最高操作液位,进行每天的定期观测,直至沉降稳定为止。 当第一台罐基础沉降量符合要求,且其它油罐基础构造和施工方法和第一台罐完全相同,对其它油罐的充水试验,可取消充水到罐高的1/2和3/4时的两次观测。 三、软地基基础,预计沉降量超过300mm或可能发生滑移失效时,应以0.6m/d的速度向罐内充水,当水位高度达到3m时,停止充水,每天定期进行沉降观测并绘制时间燉沉降量的曲线图,当日沉降量减少时,可继续充水,但应减少日充水高度,以保证在荷载增加时,日沉降量仍保持下降趋势。当罐内水位接近最高操作液位时,应在每天清晨作一次观测后再充水,并在当天傍晚再作一次观测,当发现沉降量增加,应立即把当天充入的水放掉,并以较小的日充水量重复上述的沉降观测,直到沉降量无明显变化,沉降稳定为止。 三交工验收表格

低合金钢(16Mn)焊接工艺特点

低合金钢(16Mn)在钢结构中的焊接工艺特点 摘要:低合金钢(16Mn)中,16Mnq与Q345是最典型的两种钢材,分别运用于桥梁与建筑钢结构。如何采用正确的焊接工艺来保证该类钢材的焊接质量,是本文讨论的重点。 关键词:钢结构低合金钢单面焊双面成形焊接工艺层状撕裂 在承重钢结构中,经常采用掺加合金元素的低合金钢,其强度高于碳素结构钢,它的强度增加不是靠增加含碳量,而是靠加入合金元素的程度。所以,其韧性并不降低。低合金钢(16Mn)的综合性能较好,在钢结构领域已广泛使用。 1:16Mnq钢焊接工艺 16Mnq钢是广泛运用于钢桥梁的低合金钢, 该钢材以热轧状态交货化学成分与力学性能见表1,2: 表1 表2 由碳当量公式:Ceq(%)=C+1/6Mn+1/24Si可知该钢焊接性接近中碳钢,因而在施焊过程中要防止因淬硬带来的微裂纹等缺陷。 1.1 单面焊双面成形 图1 单面焊双面成形示意图 (1:二氧化碳气体保护打底焊 2:二氧化碳气体保护中间层焊 3;埋弧直动焊盖面)

1.1.1 板缝间隙 通过焊接工艺试验发现: 当板缝间隙过窄,小于6毫米时,则二氧化碳气体保护打底焊焊丝无法摆动,焊缝反面成型不规则,反面余高过高。 当板缝间隙大于8毫米时,则显过宽,容易产生夹渣与边缘未融合以及焊缝收缩量大现象。同时,板缝间隙过宽,二氧化碳气体保护焊丝摆动大,焊缝融敷金属受二氧化碳气体保护效果差,焊工也难于控制其面焊接质量。板缝间隙过宽,还会造成埋弧直动焊一次盖面不能彻底盖住,造成偏焊,达不到焊接质量要求。 当板缝间隙处于6~8毫米时,再配合适当的运条方法,则能避免上述问题出现,达到焊接质量要求。 1.1.2 打底层数和运条方法 对于8~14毫米间板厚,如果只进行一层二氧化碳气体保护打底焊,则易造成埋弧直动焊盖面时烧穿。所以,需采取两层二氧化碳气体保护打底。 但当板薄且运条方式不正确,又易造成打底焊焊缝高于母材,对埋弧直动焊盖面带来困难。 在实际施焊过程中,第一道二氧化碳气体保护打底焊需采用前月牙形右焊法,见图2。 图2 前月牙形右焊法 此种运条方法易保证焊接时不断弧,焊丝突然送进时,不对陶瓷衬垫造成破坏。 第二道二氧化碳气体保护打底焊需采用后月牙左焊法,见图3。 图3 后月牙左焊法 此种运条方法易保证埋弧直动焊盖面所需深度,也易避免坡口边缘产生夹渣和未融合。 1.1.3 接头处理方法 由于16Mnq钢淬硬带来的微裂纹趋向大,易出现弧坑裂纹与缩孔。 在收弧时,要采用慢收弧方法,并对这种冷接头采取打磨处理,将弧坑微裂纹与缩孔磨出,并将端部打磨成1:5的斜坡。 当要进行下次施焊时,要对其预热处理。 对于端部和收尾,要求每条焊缝必须安置与正式焊缝同材质同坡口的引熄弧板。同时,焊接

焊接的工艺特点及流程介绍

可通过与波峰焊的比较来了解选择性焊接的工艺特点。两者间最明显的差异在于波峰焊中PCB的下部完全浸入液态焊料中,而在选择性焊接中,仅有部分特定区域与焊锡波接触。由于PCB本身就是一种不良的热传导介质,因此焊接时它不会加热熔化邻近元器件和PCB 区域的焊点。在焊接前也必须预先涂敷助焊剂。与波峰焊相比,助焊剂仅涂覆在PCB下部的待焊接部位,而不是整个PCB。另外选择性焊接仅适用于插装元件的焊接。选择性焊接是一种全新的方法,彻底了解选择性焊接工艺和设备是成功焊接所必需的。选择性焊接的流程典型的选择性焊接的工艺流程包括:助焊剂喷涂,PCB预热、浸焊和拖焊。助焊剂涂布工艺在选择性焊接中,助焊剂涂布工序起着重要的作用。焊接加热与焊接结束时,助焊剂应有足够的活性防止桥接的产生并防止PCB产生氧化。助焊剂喷涂由X/Y机械手携带PCB通过助焊剂喷嘴上方,助焊剂喷涂到PCB待焊位置上。助焊剂具有单嘴喷雾式、微孔喷射式、同步式多点/图形喷雾多种方式。回流焊工序后的微波峰选焊,最重要的是焊剂准确喷涂。微孔喷射式绝对不会弄污焊点之外的区域。微点喷涂最小焊剂点图形直径大于2mm,所以喷涂沉积在PCB上的焊剂位置精度为±0.5mm,才能保证焊剂始终覆盖在被焊部位上面,喷涂焊剂量的公差由供应商提供,技术说明书应规定焊剂使用量,通常建议100%的安全公差范围。预热工艺在选择性焊接工艺中的预热主要目的不是减少热应力,而是为了去除溶剂预干燥助焊剂,在进入焊锡波前,使得焊剂有正确的黏度。在焊接时,预热所带的热量对焊接质量的影响不是关键因素,PCB材料厚度、器件封装规格及助焊剂类型决定预热温度的设置。在选择性焊接中,对预热有不同的理论解释:有些工艺工程师认为PCB应在助焊剂喷涂前,进行预热;另一种观点认为不需要预热而直接进行焊接。使用者可根据具体的情况来安排选择性焊接的工艺流程。焊接工艺选择性焊接工艺有两种不同工艺:拖焊工艺和浸焊工艺。选择性拖焊工艺是在单个小焊嘴焊锡波上完成的。拖焊工艺适用于在PCB上非常紧密的空间上进行焊接。例如:个别的焊点或引脚,单排引脚能进行拖焊工艺。PCB以不同的速度及角度在焊嘴的焊锡波上移动达到最佳的焊接质量。为保证焊接工艺的稳定,焊嘴的内径小于6mm。焊锡溶液的流向被确定后,为不同的焊接需要,焊嘴按不同方向安装并优化。机械手可从不同方向,即0°~12°间不同角度接近焊锡波,于是用户能在电子组件上焊接各种器件,对大多数器件,建议倾斜角为10°。与浸焊工艺相比,拖焊工艺的焊锡溶液及PCB板的运动,使得在进行焊接时的热转换效率就比浸焊工艺好。然而,形成焊缝连接所需要的热量由焊锡波传递,但单焊嘴的焊锡波质量小,只有焊锡波的温度相对高,才能达到拖焊工艺的要求。例:焊锡温度为275℃~300℃,拖拉速度10mm/s~25mm/s通常是可以接受的。在焊接区域供氮,以防止焊锡波氧化,焊锡波消除了氧化,使得拖焊工艺避免桥接缺陷的产生,这个优点增加了拖焊工艺的稳定性与可靠性。https://www.360docs.net/doc/2b7864768.html,机器具有高精度和高灵活性的特性,模块结构设计的系统可以完全按照客户特殊生产要求来定制,并且可升级满足今后生产发展的需求。机械手的运动半径可覆盖助焊剂喷嘴、预热和焊锡嘴,因而同一台设备可完成不同的焊接工艺。机器特有的同步制程可以大大缩短单板制程周期。机械手具备的能力使这种选择焊具有高精度和高质量焊接的特性。首先是机械手高度稳定的精确定位能力(±0.05mm),保证了每块板生产的参数高度重复一致;其次是机械手的5维运动使得PCB能够以任何优化的角度和方位接触锡面,获得最佳焊接质量。机械手夹板装置上安装的锡波高度测针,由钛合金制成,在程序控制下可定期测量锡波高度,通过调节锡泵转速来控制锡波高度,以保证工艺稳定性。尽管具有上述这么多优点,单嘴焊锡波拖焊工艺也存在不足:焊接时间是在焊剂喷涂、预热和焊接三个工序中时间最长的。并且由于焊点是一个一个的拖焊,随着焊点数的增加,焊接时间会大幅增加,在焊接效率上是无法与传统波峰焊工艺相比的。但情况正发生着改变,多焊嘴设计可最大限度地提高产量,例如,采用双焊接喷嘴可以使产量提高一倍,对助焊剂也同样

车间看板设计

车间看板设计 看板的本质是在需要的时间,按需要的量对所需零部件发出生产指令的一种信息媒介体,而实现这一功能的形式可以是多种多样的。 央达车间看板是专门为生产型企业设计生产,用于标示当天或当班的计划生产量、实际生产量等信息,加强工厂车间生产过程的管理,相关信息做到目视化,信息传递做到快捷化,工序过程透明化,把制造车间每个环节紧密地相联,保证生产全过程顺畅及高效率,准时制生产,目视化管理,降低生产成本。 一、车间看板分类 1、工序内看板 工序内看板是指某工序进行加工时所用的看板。这种看板用于装配线以及即使生产多种产品也不需要实质性的作业更换时间(作业更换时间接近于零)的工序,例如机加工工序等。 2、信号看板 信号看板是在不得不进行成批生产的工序之间所使用的看板。例如树脂成形工序、模锻工序等。 信号看板挂在成批制作出的产品上,当该批产品的数量减少到基准数时摘下看板,送回到生产工序,然后生产工序按该看板的指示开始生产。另外,从零部件出库到生产工序,也可利用信号看板来进行指示配送。 3、工序间看板 工序间看板是指工厂内部后工序到前工序领取所需的零部件时所使用的看板。典型的工序间看板,前工序为部件1#线,本工序总装2#线所需要的是号码为A232-60857的零部件,根据看板就可到前一道工序领取。 4、临时看板

临时看板是在进行设备保全、设备修理、临时任务或需要加班生产的时候所使用的看板。与其它种类的看板不同的是,临时看板主要是为了完成非计划内的生产或设备维护等任务,因而灵活性比较大。 二、车间看板功能特点 1、可将车间现场的生产、物料、品质、设备、异常信息的数据信息通过设备看板 及时显示出来,将所有的管理问题都暴露出来,让所有的职能部门关注,围绕现场解决问题创造价值。 2、通过对生产设备、生产线、生产区域的状况进行标示和动态监控,实现工厂的 全面目视化,构建透明工厂。 3、实时查询各种异常问题发生的时间点、问题解决点、解决问题的时间长度,工 位发生频率,问题发生的原因及现象等。 4、实现按需生产,物料按节拍流动,减少浪费,提高效率。 5、根据产品的价值流分析,改善生产布局,定义工作单元。 6、当跟不上生产节拍或有非标准的状况产生时,寻求帮助。使操作过程能够防止 缺陷产生或流入下一道工序。

车间生产管理看板

车间生产管理看板 生产管理看板能够有效的对生产现场进行管理,是解放管理者管理力度,同时确保生产正常进行的有效手段。在车间生产管理过程中,灵活的运用起车间生产管理看板是一种不错的手段。 一、常见的几种车间生产管理看板 1.车间月排期进度看板:车间按照目标效率评估月产能,向PMC接单,根据物料齐套情况与PMC 的客交期安排生产排期,监控生产部门各工段的生产进度。 2.物料管理看板:物料管理模块通过精确计算每种物料的出入库时间、数量变化,清楚记录每种物料的过去与未来的库存变化,从而更好控制和管理物料,有效消减库存并防止缺货。 3.周目视看板:生产小组按照车间的生产排期,根据小组的目标效率,人员,工作时间,标准工时,计算出每天的目标产量,安排小组的生产计划,每日生产完成情况。 4.IE信息看板:记录各生产小组的生产数据,效率、达成率、良品率、实际产量、等数据,b现场ie改善项目、标准作业张贴,改善提案,精益思维意识宣导等。

5.生产异常看板:记录车间各部门出现的异常,汇总,因此造成的损失,寻找问题根源,加于改善,确保同样的问题不再重复出现,责任部门纳入绩效考核依据。 6.质量管理:质量管理涉及到产品良率、产品质量信息记录等。通过看板管理系统,可以直观的了解产品实时质量信息并对不良品进行追踪与管控,并及时做出改正措施以预防不良品的产生。 7.电子看板:将生产看板的生产任务以电子牌(电子看板)形式显示到各个生产线下,工人员根据电子看板内容明确加工任务,从而使得各个生产人员职责更加清晰,避免生产人员凭感觉生产,实现车间生产现场管理透明化。 8.绩效考核:(计划与实际)负荷率、物品平均生产周期、工序平均生产工时、平均生产准备时间等进行有效统计与考核分析,对各层级计划的合理性及现场执行情况进行有效考核,进一步加强生产管控,方便企业作出正确决策。 二、看板管理模块 目前,车间生产管理还是主要以粗放式的手工管理为主,这样的管理远远落后于市场以及用户对企业的要求。一个企业要想生产出高质量、低成本的产品,就必须对生产管理进行信息化,用计算机的精确管理、控制来代替手工的粗放式管理,用以实现车间生产管理的有效性、高效率性以及低成本性。而看板管理作为精益生产的核心手段之一,无疑对提高工作效率及降低生产成本方面发挥了重要的作用。 1.生产看板:生产看板是将计划部门的排程计划以生产指示的形式分发到各个车间,明确各车间的生产任务及生产进度等。

下向焊工艺的特点及技术【最新版】

下向焊工艺的特点及技术 其焊接特点是,在管道水平放置固定不动的情况下,焊接热源从顶部中心开始垂直向下焊接,一直到底部中心。其焊接部位的先后顺序是:平焊、立平焊、立焊、仰立焊、仰焊。下向焊焊接工艺采用纤维素下向焊焊条,这种焊条以其独特的药皮配方设计,与传统的由下向上施焊方法相比,其优点主要表现在: (1)焊接速度快,生产效率高。因该种焊条铁水浓度低,不淌渣,比由下向上施焊提高效率50%。 (2)焊接质量好,纤维素焊条焊接的焊缝根部成形饱满,电弧吹力大,穿透均匀,焊道背面成形美观,抗风能力强,适于野外作业。 (3)减少焊接材料的消耗,与传统的由下向上焊接方法相比焊条消耗量减少20%-30%。 (4)焊接一次合格率可达90%以上。 下向焊焊接中易产生的缺陷及其防止措施如下: 1焊接中易产生的缺陷

1.1 夹渣产生的原因 (1)打底焊后清根不彻底,致使在快速热焊时,未能使根部熔渣完全溢出。 (2)打底焊清根的方法不当,使根部焊道两侧沟槽过深,呈现“W”状。在快速热焊时,流到深槽的熔渣来不及溢出而形成夹渣。 (3)在6点钟位置收弧过快也易产生夹渣。 1.2 气孔产生的原因 (1)盖面焊时,熔池过热,吸覆大量的周边空气。 (2)盖面焊时,焊条摆动幅度太大,熔池保护不良。 (3)根部间隙过小,容易产生根部针形气泡。 (4)焊条未在规定时间内用完或长时间暴露在空气中。 1.3 裂纹产产的原因

(1)如果施工地段起伏较大,土墩未及时垫到位,使管子处在受力状态,在焊接收弧点(尤其是6点钟位置)易出现应力裂纹。 (2)在焊接过程中,如过早松开或撤离对口器,致使熔池中的铁水未来得及凝固好,在焊接收弧处容易产生裂纹。 (3)焊工在6点钟位置采用直线熄弧等不当的收弧方法,致使熔池未填满形成弧坑而出现弧坑裂纹。 1.4 内凹产生的原因 (1)对口间隙过大。 (2)打底焊时焊条送人深度不够。 (3)焊接电流过大,热焊时在5-7点钟位置运弧太慢。 2针对易产生的缺陷所应采取的措施 根据工程用的管材和焊材要求,对每次工程要作好焊接工艺评定,编写好焊接工艺操作规程,并要求电焊工严格按焊接工艺规程要

储罐焊接方案重要

T03、T04 主要焊接方案 根据母材化学成份和力学性能分析和焊缝使用性能要求,结合我单位施工的技术力量和以往施工的经验,罐主体焊接方法选择如下: 罐壁板焊缝全部采用自动焊接工艺:纵缝采用CO2药芯双保护自动焊接,焊机为VEGA-VB-AC型气电立焊机;横缝采用美国林肯AGWISINGLE型埋弧自动焊机;罐底中幅板的焊接采用半自动焊打底+碎焊丝+高速埋弧自动焊盖面成型;罐底大角缝采用手工焊内外打底,角缝自动焊填充盖面;浮顶及附件的焊接采用CO2半自动焊和手工电弧焊相结合的焊接方法,其中浮顶底板必须采用手工电弧焊。 罐底的焊接 为减少罐底的焊接变形,采用自由收缩法施工,罐底组对焊接顺序为:边缘板组对、点焊→焊接边缘板外侧300mm焊缝→中幅板短焊缝组对焊接→长焊缝组对焊接→组对焊接通长缝→边缘板与壁板大角缝组对焊接→边缘板剩余对接焊缝焊接→边缘板与中幅板收缩缝组对焊接。 6.1.1罐底中幅板的焊接 1、罐底中幅板全部为对接加垫板的结构形式。罐底施焊两遍,初层焊的焊肉为7mm,凸出部分采用砂轮机打磨至 6 mm,并进行着色检查,合格后再施焊第二遍。中幅板的焊接方法为:打底焊采用CO2气体保护半自动焊,盖面采用添加碎焊丝的高速埋弧自动焊。焊接工艺如下: 2、中幅板的组对点焊要严格按焊接作业指导书规定的程序执行。 3、中幅板组对完后,应用钢丝刷清除干净坡口及两侧25mm内的锈、赃物,方可进行施焊。 4、罐底中幅板焊接时应采用分段退步施焊。先焊短缝,后焊长缝,最后施焊通长缝。通长缝焊前应使用大型槽钢及龙门板进行加固,以减少焊接变形。通长缝的焊接,由中心开始向两侧分段退步施焊,焊至距边缘板300mm处停止施焊。 5、对较多平行排列的焊缝(长缝),应由二台焊机从中心向外对称隔缝施焊,施焊程序如附图2: 6.为减少中幅板短缝和长缝在焊接后两端产生的下凹变形,中幅板短缝和长缝的端部应在焊道两侧加短背杠,同时端部焊接预留长度尽量短,以不焊至垫板为原则。 6.1.2边缘板的焊接 1、边缘板的焊接采用手工电弧焊,顺序为:先焊外侧500mm,由外向内施焊,注意层间接头相

超声波焊接工艺特点

超声波焊接工艺特点 信息来源:www.66csb.cn发布时间:2008-01-23字号:小中大 关键字:超声波焊接超声波 超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。

6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。

储罐焊接方法(重要)

T03、T04主要焊接方案 根据母材化学成份和力学性能分析和焊缝使用性能要求,结合我单位施工的技术力量和以往施工的经验,罐主体焊接方法选择如下: 罐壁板焊缝全部采用自动焊接工艺:纵缝采用CO2药芯双保护自动焊接,焊机为VEGA-VB-AC型气电立焊机;横缝采用美国林肯AGWISINGLE型埋弧自动焊机;罐底中幅板的焊接采用半自动焊打底+碎焊丝+高速埋弧自动焊盖面成型;罐底大角缝采用手工焊内外打底,角缝自动焊填充盖面;浮顶及附件的焊接采用CO2半自动焊和手工电弧焊相结合的焊接方法,其中浮顶底板必须采用手工电弧焊。 6.1罐底的焊接 为减少罐底的焊接变形,采用自由收缩法施工,罐底组对焊接顺序为:边缘板组对、点焊→焊接边缘板外侧300mm焊缝→中幅板短焊缝组对焊接→长焊缝组对焊接→组对焊接通长缝→边缘板与壁板大角缝组对焊接→边缘板剩余对接焊缝焊接→边缘 板与中幅板收缩缝组对焊接。 6.1.1罐底中幅板的焊接 1、罐底中幅板全部为对接加垫板的结构形式。罐底施焊两遍,初层焊的焊肉为7mm,凸出部分采用砂轮机打磨至6 mm,并进行着色检查,合格后再施焊第二遍。中幅板的焊接方法为:打底焊采用CO2气体保护半自动焊,盖面采用添加碎焊丝的高速埋 2、中幅板的组对点焊要严格按焊接作业指导书规定的程序执行。 3、中幅板组对完后,应用钢丝刷清除干净坡口及两侧25mm内的锈、赃物,方可进 行施焊。 4、罐底中幅板焊接时应采用分段退步施焊。先焊短缝,后焊长缝,最后施焊通长缝。通长缝焊前应使用大型槽钢及龙门板进行加固,以减少焊接变形。通长缝的焊接,由中心开始向两侧分段退步施焊,焊至距边缘板300mm处停止施焊。

简述常用的焊接方法及其特点

简述常用的焊接方法及其特点 【摘要】焊接技术在现代工业中起到至关重要的作用,本文简要阐述了常用的焊接方法及其特点。 【关键词】焊接技术;特点 在人类社会步入21世纪的今天,焊接已经进入了一个崭新的发展阶段。当今世界的许多最新科研成果、前沿技术和高新技术,诸如:计算机、微电子、数字控制、信息处理、工业机器人、激光技术等,已经被广泛地应用于焊接领域,这使得焊接的技术含量得到了空前的提高,并在制造过程中创造了极高的附加值。 一、焊接的概述 焊接是被焊工件的材质(同种或异种),通过加热或加压或两者并用,并且用或不用填充材料,使工件的材质达到原子间的建和而形成永久性连接的工艺过程。 焊接过程中,工件和焊料熔化形成熔融区域,熔池冷却凝固后便形成材料之间的连接。这一过程中,通常还需要施加压力。焊接的能量来源有很多种,包括气体焰、电弧、激光、电子束、摩擦和超声波等。 二、焊接技术发展概况 在人类社会步入21世纪的今天,焊接已经进入了一个崭新的发展阶段。当今世界的许多最新科研成果、前沿技术和高新技术,诸如:计算机、微电子、数字控制、信息处理、工业机器人、激光技术等,已经被广泛地应用于焊接领域,这使得焊接的技术含量得到了空前的提高,并在制造过程中创造了极高的附加值。 焊接作为一种通用的共性技术,在制造业中被相当数量的企业用作关键的加工工艺,焊接直接决定着其产品质量的好坏。这些企业构成了焊接技术应用的主体。 三、常用的焊接方法及其特点 1、气焊(1)气焊的概念。气焊,英文为:oxygen fuel gas welding (简称OFW)。利用可燃气体与助燃气体混合燃烧生成的火焰为热源,熔化焊件和焊接材料使之达到原子间结合的一种焊接方法。由于所用储存气体的气瓶为压力容器、气体为易燃易爆气体,所以该方法是所有焊接方法中危险性最高的之一。(2)气焊的优点,①设备简单,移动方便,在无电力供应地区可以方便进行焊接。②可以焊接很薄的工件。③焊接铸铁和部分非铁金属时好。(3)气焊的缺点,①热

储罐焊接方案重要

储罐焊接方案重要 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

T03、T04 主要焊接方案 根据母材化学成份和力学性能分析和焊缝使用性能要求,结合我单位施工的技术力量和以往施工的经验,罐主体焊接方法选择如下: 罐壁板焊缝全部采用自动焊接工艺:纵缝采用CO2药芯双保护自动焊接,焊机为VEGA-VB-AC型气电立焊机;横缝采用美国林肯AGWISINGLE型埋弧自动焊机;罐底中幅板的焊接采用半自动焊打底+碎焊丝+高速埋弧自动焊盖面成型;罐底大角缝采用手工焊内外打底,角缝自动焊填充盖面;浮顶及附件的焊接采用CO2半自动焊和手工电弧焊相结合的焊接方法,其中浮顶底板必须采用手工电弧焊。 罐底的焊接 为减少罐底的焊接变形,采用自由收缩法施工,罐底组对焊接顺序为:边缘板组对、点焊→焊接边缘板外侧300mm焊缝→中幅板短焊缝组对焊接→长焊缝组对焊接→组对焊接通长缝→边缘板与壁板大角缝组对焊接→边缘板剩余对接焊缝焊接→边缘板与中幅板收缩缝组对焊接。 6.1.1罐底中幅板的焊接 1、罐底中幅板全部为对接加垫板的结构形式。罐底施焊两遍,初层焊的焊肉为7mm,凸出部分采用砂轮机打磨至 6 mm,并进行着色检查,合格后再施焊第二遍。中幅板的焊接方法为:打底焊采用CO2气体保护半自动焊,盖面采用添加碎焊丝的高速埋弧自动焊。焊接工艺如下:

2、中幅板的组对点焊要严格按焊接作业指导书规定的程序执行。 3、中幅板组对完后,应用钢丝刷清除干净坡口及两侧25mm内的锈、赃物,方可进行施焊。 4、罐底中幅板焊接时应采用分段退步施焊。先焊短缝,后焊长缝,最后施焊通长缝。通长缝焊前应使用大型槽钢及龙门板进行加固,以减少焊接变形。通长缝的焊接,由中心开始向两侧分段退步施焊,焊至距边缘板300mm处停止施焊。 5、对较多平行排列的焊缝(长缝),应由二台焊机从中心向外对称隔缝施焊,施焊程序如附图2: 6.为减少中幅板短缝和长缝在焊接后两端产生的下凹变形,中幅板短缝和长缝的端部应在焊道两侧加短背杠,同时端部焊接预留长度尽量短,以不焊至垫板为原则。 6.1.2边缘板的焊接 1、边缘板的焊接采用手工电弧焊,顺序为:先焊外侧500mm,由外向内施焊,注意层间接头相互错开30-50mm,外侧加引弧板防止起弧产生缺陷。剩余焊缝用半自动焊机打底,埋弧自动焊+碎丝填充盖面。焊接工艺如下:

不同焊接工艺的焊接烟尘污染特征-焊接烟尘净化器

为什么说焊接烟尘净化器是焊接车间污染治理的最佳选择? 焊接是机电行业热加工的一个工艺大类,它指得是固体材料与固体材料(不单指金属材料,还有非金属材料)之间局部受热熔融后结合在一起的一种机械电子制造热加工工艺。焊接工艺过程产生的大气污染物——焊接烟尘的特征,取决于被焊接材料的材质、焊接材料的成分、焊接工艺方法及焊接工艺参数。不同的焊接工艺产生的焊接烟尘,其有害物质、有害气体的种类、性质与数量有很大的区别。因此,在对建设项目进行环境影响评价中,对工程分析进行工艺污染分析涉及“焊接工艺过程产生的大气污染物”时,不能笼统地说污染物为“焊接烟尘”,其“发尘量”一概是多少多少,治理措施一概是“移动式焊接烟尘净化器”。 按热熔融方式的不同,焊接工艺方法可分为:电弧焊、电阻焊、高频焊、电渣焊、电子束焊、锡焊等,上述焊接工艺均为利用电能转换为热能;氧炔焊、摩擦焊、激光焊等,则利用了化学能、机械能、激光能转换为热能。堆焊、钎焊等则可为利用电能,亦可为利用其它能源。被熔融物,有的是被焊接材料与焊条、焊丝,有的仅为被焊接材料自身熔融,也有的是焊接材料熔融而被焊接材料不熔融。但不管谁熔融,都要避免被氧化。为此要使用各种不同的焊剂或保护气体。施焊过程中产生的焊接烟尘也就各不相同了。 1 电弧焊: 1.1 手工电弧焊: 这是最常见的焊接工艺,为“闪光焊”。多用于钢材与钢材间的焊接。焊接材料为焊条。对大量结构用低碳钢、低合金钢焊接,使用最多的J422焊条(钛钙型、酸性焊条),其焊条芯熔融钢材成分为:C<0.12%,Mn=0.3~0.6%;药皮成分中:TiO占24~48%,CaCO3<20%.药皮熔融温度比钢芯低200多度。而J502焊条(低氢型、碱性焊条),CaO占8~26%,CaF2占10~23%。 手工电弧焊接时,在电弧高温作用下,药皮首先熔融。组成药皮的稳弧剂(Ca及K、Na等电离电位低的物质)、还原剂(Mn、Ti、Al、Si等,可使进入熔池的氧化物还原,S、P被去除)、造渣剂及造气剂、合金剂、胶粘剂、稀渣剂、增塑剂等,大量变为焊接烟尘,其粒径在0.10~1.25μm。焊接烟尘中毒害最大的物质是MnO2(约在焊接烟尘中占7.5%左右)及Fe2O3(约在焊接烟尘中占近50%)、SiO2(约在焊接烟尘中占近20%)等,会导致焊工锰中毒及矽肺病。有害气体有CO、NOx 等,而F会与H反应生成有害气体HF。针对此,GB16194《车间空气中电焊烟尘卫生标准》中规定:“车间空气中电焊烟尘最高容许浓度为6mg/m3”、“在施焊过程中产生的其它有害物质仍按这些毒物现行规定的卫生标准执行”。 J422焊条施焊时发尘量为200~280mg/min,焊接材料的发尘量为6~8g/kg;J502焊条施焊时发

焊接特点及方法

焊接特点及方法 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

焊接特点及方法 一、焊接的特点 焊接是通过加热或加压,或者两者并用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法。所以焊接是一种把分离的金属件连接成为不可拆卸的一个整体的加工方法。 在焊接被广泛应用以前,不同拆卸连接的主要方法是铆接。与铆接相比,焊接具有节省金属、生产率高、致密性好、操作条件好、易于实现机械化和自动化。所以现在焊接已基本取代连接铆接。 焊接的另一个特点是可以化大为小、以小拼大。在制造大型机件与结构件或复杂的机器零件时,可以化大为小、化复杂为简单的方法准备坏料,用铸-焊、锻-焊联合工艺,用小型铸、锻设备生产大或复杂零件。例如我国生产的大型水压机立柱或发电机主轴等。 第三,焊接可制造双金属结构。用焊接方法可制不同材料的复杂层容器,对焊不同材料的零件或工具(如较粗的钻头,就是用45号作钻柄,高速钢作钻头的切削部分)等。 所以,焊接是进行金属构件、机器零件等的重要加工方法,如桥梁、建筑构件、船体、锅炉、车箱、容器等。此外,焊接还是修补铸、锻件的缺陷和磨损零件的重要方法。 二、焊接方法的分类 焊接的方法很多,按焊接过程的特点不同可分为:熔焊、压焊和钎焊三大类。 1.熔焊 焊接过程中,将焊件接头加热至熔化状态,不加压力完成焊接的方法称为熔焊。根据热源不同,这类焊接方法有气焊、熔焊、电渣焊、气体保护焊、电子束焊等多种。

2.压焊 焊接过程中,必须对焊件施加压力(加热或不加热),以完成焊接的方法称为压焊,属于这类焊接的方法有电阻焊(点焊、缝焊、对焊等)、摩擦焊、超声波焊、冷压焊等多种。 3.钎焊 钎焊是采用比母材熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点,低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法,属于这类焊接方法的有硬钎焊与软钎焊等。 三、焊接接头的组成 用焊接方法连接的接头称为焊接接头(简称接头),焊接接头包括焊缝、熔合区和热影响区三部分。 被焊的工件材料称为母材(或称基本金属)。焊缝是焊接后所形成的结合部分(即在焊接时,经受加热熔化后冷却凝固的那部分金属);热影响区是焊接或切割过程中,材料因受热的影响(但未熔化)而发生金相组织和力学性能变化的区域;熔合区是焊缝向热影响区过渡的区域。因此,焊接质量常用焊接接头的性能来评价。 四、金属材料的焊接性 金属材料的焊接性亦称为可焊性,是指金属材料对焊接加工的适应性。主要指在一定的焊接工艺条件下,获得优质焊接接头的难易程度。对于钢与铸铁材料,一般随含碳量的增加、合金元素的增多,材料的可焊性逐渐变差。因此低碳钢和低碳合金钢的可焊良好,常用作合金结构件使用。 ?

车间电子看板方案设计

生产车间电子看板工程解决方案 一、系统总体介绍 在日益追求效率与精益管理的现代企业工厂里,生产线上的管理受到越来越高的重视,通过各种技术手段实现生产线上的现代管理,其中可视化生产管理技术受到更多的关注。视频监控技术就是其中之一,在许多的制造业企业已被成功地应用在日常的工厂管理中,并取得了一定的成效,然而视频监控只是对可见的生产现场进行监控,如何对于生产、品质、设备的整体状况如何转化成可视化管理,使管理层在第一时间即时掌握整体的生产、品质、设备状况?通过智能电子看板整体解决方案将彻底使制造流程中的原本不可见的内容转变成完全的可视化管理,使生产、品质、设备的状况完全处于可控状态,相关人员可在第一时间发现问题,并解决问题,可视化的管理模式比当前的邮件或是电话通知的方式更加有效,通过数字可视化管理,制造效率、设备效率、产品品质必将得到更大的提升。 相比过去工厂管理模式,现代企业更注重品质与效率,特别是服务制造业。目前在同业里普遍推行的理念是智能工厂(SmartFactory),其解决方案主要以智能电子看板系统来实现。该系统主要是通过硬件和软件技术的集成,结合当前先进的管理手段,帮助制造业企业不断地完善其管理水平,提高生产效率,提升企业的效益和效能。 智能电子看板解决方案的核心特点是:智能化,即时化,可视化,是可视管理等精益生产手段的进一步深化,系统对不同层次的人员的作用如下: 管理层:随时随地掌握生产线上的所有状况。 车间主管:所有生产线上的作业情况。 作业人员:了解前后工序的生产状况,按节拍进行生产,提高生产效率。 设备维护主管:及时掌握设备的运行状况,以及设备运行的整体效率(OEE)。 设备维修人员:即时获悉需要维修的设备所处的位置,及时进行维修。 QA主管:随时随地掌握各生产线的产品品质状况,良品率,缺陷分布。 QA工程师:对不良品率异常的工序进行分析,并进行改善。 仓库管理人员:预知生产线上用料状况,避免缺料等情况的发生。 生产计划主管:将生产工作单及时提供给到生产线,并随时掌握订单的完成状况,保证准时交货。 二、解决方案组成结构 (一)解决方案系统组成 智能电子看板解决方案的核心是通过实现工厂的全面可视化、自动化管理,最终达到提高效率、降低成本及提高产品质量的目标,整体系统包含三大子系统:管理软件(如:智能看板控制软件,MES、SPC、IE工业工程软件等);智能电子看板;数据采集装置。 三个子系统在整个系统的角色分别是:管理软件是负责系统的数据分析工作,是系统的分析控制中心,智能电子看板负责将管理软件分析的结果广播出去,数据采集装置负责将信息采集到系统中,将所看到的信息输入到管理软件进行分析。

储罐焊接工艺方案

目录 一工程概况 二现场焊接执行标准、规范 三坡口加工与接头形式 四一般要求 五焊接施工要点 六防变形措施 七质量检验 八无损探伤程序 九安全技术措施 一、工程概述 上海孚宝漕泾罐储罐区共计47台储罐,详见储罐安装工艺方案: 二、现场焊接执行标准、规范 1、 API650标准 2、《立式圆桶形钢制焊接油罐施工及验收规范》GBJ128-90 三、坡口加工与接头形式 坡口加工与接头形式应符合施工图纸的要求,其中坡口、碳钢采用半自动氧烟切割机、不锈钢采用等离子切割机加工,加工后用角向磨光机打磨表面硬化层。碳钢用砂轮片不得与不锈钢混用。 四、一般要求: 1、焊工必须持有技术监督局颁发的焊工证(在有效期内),并通过孚宝现场检验考试,取得孚宝发放的合格证书。焊工施焊的相应位置应与此次考试合格证的合格项目相符。上岗必须佩戴专用标识,并在焊缝附近用记号笔标出焊工编号。 2、焊接设备完好,接线牢固。

3、严格遵守所给定的工艺参数施焊,不得改变和随意突破。 4、储罐主体主要使用三种焊材 碳钢Q235-A采用J422酸性焊条(不需烘烤) 不锈钢304、304L采用A002焊条 碳钢+不锈钢(Q235-A+304L)采用 焊条的烘烤、发放、回收由我公司负责。焊条烘烤温度150℃,烘烤时间1小时。各焊工班组应于前一天下班提出焊条用量,并负责领出新焊条,放入焊条烘箱内,现场使用焊条(包括J422)必须采用保温筒携带,焊条放在保温筒最多6个小时。当天未用完的焊条应交回焊条库保管或复烘。 5、焊前应将坡口表面及其周边不小于20mm范围内的油、锈迹、漆、垢、水分、毛刺等清理干净,并检查确认其坡口角度、对口间隙、错边量等。 6、引弧、收弧均应在焊道上或用引弧板,禁止随意在母材上打火,试电流。 7、点固焊、工卡具焊接应采用与正式焊接相同的焊条和焊接工艺。工卡具及其他临时焊点拆除时,严禁用大锤强力打下,宜采用氧-乙炔焰切割或砂轮机打磨,避免损伤母材。 8、焊接环境出现下列任一情况时,无有效防护措施,禁止施焊: 风速大于8m/s; 相对湿度大于90%; 气温低于0℃; 雨、雪天气。 附:储罐WPS选用图(见图1) 储罐焊接用WPS 五、焊接施工要点 1、罐底板焊接程序(见附图2)

常用焊接方法及特点

一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点? 钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。 根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。 (1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。 (2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。 钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。 二、电弧焊的分类有哪些,有什么优点? 利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。 三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点? (1)焊接接头由焊缝金属和热影响区组成。 1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。 2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。 (2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。 1)熔合区位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。 2)过热区紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。

铝及铝的焊接工艺

铝及铝的焊接工艺 铝及铝合金的焊接特点 (1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。 (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。 (3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi條(硅含量4.5%~6%)焊丝会有更好的抗裂性。 (4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。 (5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝性能下降。 (7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。(8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 2. 焊接方法 几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气) 3.焊接材料 (1)焊丝 铝及铝合金焊丝的选用除考虑良好的焊接工艺性能外,按容器要求应使对接接头的抗拉强度、塑性(通过弯曲试验)达到规定要求,对含镁量超过3%的铝镁合金应满足冲击韧性的

相关文档
最新文档