电磁仿真软件flux教程

电磁仿真软件flux教程
电磁仿真软件flux教程

电磁场仿真软件教程

随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent 公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS (HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。

德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS (定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT 成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。

另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉

及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进行仿真。

虽然,Zeland公司的Fidelity和IMST GmbH公司的EMPIRE也可以仿真三维结构。但由于这些软件的功能不如前面的软件,所以用户相对较少。

1.1 几个主要相关类型软件的简介:

1.1.1 ADS(Advanced Design System )

它是Agilent Technoligyies公司推出的一套电路自动设计软件。Agilent Technoligyies公司把已有产品HP MDS(Microwave Design System)和HP EEsof IV(Electronic Engineering Software)两者的精华有机的结合起来,并增加了许多新的功能,构成了功能强大的ADS软件。ADS软件范围涵盖了小至元器件,大到系统级的设计和分析,主要包括RFIC设计软件、RF 电路板设计软件、DSP专业设计软件、通讯系统设计软件以及微波电路设计软件。

ADS软件仿真手段丰富多样,可实现包括时域和频域、数字与模拟、线性与非线性、噪声等多种仿真分析手段,并可对设计结果进行成品率分析与优化,从而大大提高了复杂电路的设计效率,是非常优秀的微波电路、系统信号链路的设计工具。不但其仿真性能优越,而且提供了功能强大的数据后处理能力。这对我们进行复杂、特殊电路的仿真、数据后处理及显示提供了可能。该软件切实考虑到工程实际中各种参数对系统的影响,对要求分析手段多样,运算量大的仿真分析,尤其适用。

ADS软件可应用于整个现代通信系统及其子系统,能对通信系统进行快速、便捷、有效的设计和仿真。这是以往任何自动设计软件都不能够的。所以,ADS已被广大电子工程技术人员接受,应用也愈加广泛。

主要应用:

ADS功能非常强大,对整个现代通信系统及其子系统的设计和仿真提供支持。主要应用有以下几个主要方面:

射频和微波电路的设计(包括RFIC、RF Board)。

DSP设计

通信系统的设计

向量仿真

每个设计本身又包括以下几个内容:

●绘制原理图

●系统仿真

●布局图

●Pspice原理图

1.1.

2. CST Microwave studio

CST MICROW AVE STUDIO是CST公司为快速、精确仿真电磁场高频问题而专门开发的EDA工具,是基于PC机Windows环境下的仿真软件。其主要应用领域有:移动通信、无线设计、信号完整性和电磁兼容(EMC)等。具体应用包括:偶合器、滤波器、平面结构电路、联结器、IC封装、各种类型天线、微波元器件、蓝牙技术和电磁兼容/干扰等。

MWS提供三个解算器,四种求解方式。它们是时域解算器、频域解算器和本征模解算器。四种求解方式分别为传输问题的频域解、时域解、模式分析解和谐振问题的本征模解。同时也提供各种有效的CAD输入选项和SPICE参数的提取。另外,CST MWS通过调用CST DESIGN STUDIO?而内含一个巨大的设计环境库,CST DESIGN STUDIO?本身也提供外部仿真器的联结。

应用:

各种天线、连接器、谐振腔、蜂窝电话、同轴连接器、偶合滤波器、共面结构、串扰问题、介质滤波器、双工器、高速数字设备、喇叭天线、IC封装、互联器、微带滤波器、带状线结构、微波加热、微波等离子源、多芯连接器、毫米波集成电路、多层结构、多路复用器、光学组件、微带天线、平面结构、功分器、偏光器、雷达/雷达截面(RCS)、SAR计算/解剖设备、传感器、屏蔽问题、开槽天线、芯片系统、时域反射计(TDR) 、波导结构、无线设备……

1.1.3. Microwave Office

Microwave Office软件为微波平面电路设计提供了最完整, 最快速和最精确的解答。它是通过两个模拟器来对微波平面电路进行模拟和仿真的。对于由集总元件构成的电路, 用电路的方法来处理较为简便。该软件设有一个叫“VoltaireXL”的模拟器来处理集总元件构成的微波平面电路问题。而对于由具体的微带几何图形构成的分布参数微波平面电路则采用场的方法较为有效, 该软件采用的是一个叫“EMSight”的模拟器来处理任何多层平面结构的三维电磁场的问题。

由于这里意在着重于电磁场分析,所以仅涉及“EMSight”模拟器。下面是它的具体功能:“EMSight”模拟器是一个完整的三维电磁场模拟程序包, 它可用于平面高频电路和天线结构的分析。模拟器分析的电路都安装在一个矩形的金属包装盒内, 对于电路的层数和端口数并没有限制。它还具有显示微波平面电路内金属上电流和空间电场力线的能力。“EMSight”模拟器可以对微波平面电路进行许多种类的计算, (在该软件中称计算为测量)。除了可以计算电路的阻抗参量,导纳参量,散射参量,传输参量, 混合参量之外, 对于线性电路,它能计算辅助稳定因子,输入电容,群延迟, 偶/奇模传输常数/阻抗/导纳, 电压驻波比, 端口输入阻抗/导纳, 增益等。具有计算各种线/圆极化微带天线的电场方向图和功率方向图的能力, 在计算天线时矩形的金属包装盒边界可以改变, 顶部和底部可以改为自由空间阻抗,而侧壁可以拉远。在“EMSight”模拟器内也设有一个元件库, 其特点是列入了大量的微带元件的资料如各种弯头, 开路线, 短截线, 耦合器, 阶梯, T形接头等。还包括了许多传输线的资料。

1.1.4. ANSYS

ANSYS是一种广泛的商业套装工程分析软件。该软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型;分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力;后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。

这里还是着重介绍电磁场方面。在该软件的电磁场部分,它主要设计以下几个方面:2D、3D及轴对称静磁场分析及轴对称时变磁场交流磁场分析。静电场、AC电场分析,电路分析:包括电阻、电容、电感等。电路、磁场耦合分析。电磁兼容分析。高频电磁场分析。计算洛伦磁力和焦耳热/力。主要应用于:螺线管、调节器、发电机、变换器、磁体、加速器、天线辐射、等离子体装置、磁悬浮装置磁成像系统、电解槽及无损检测装置等。

1.1.5. Ansoft Serenade

Ansoft Serenade 设计环境为现代的射频以及微波设计者们提供了一个强大的电路、系统和电磁仿真的工具。简易的使用环境允许使用者们在仿真器和其他的工具(如文字处理器)最大程度的产生数据资料的转移。简单的说,它主要包括Harmonica电路仿真和Symphony 系统仿真部分。

Symphony 可以在Serenade 文件夹(一种计算机标原理图获取、布局、和仿真环境)下面

运行。它是一个可以仿真有射频、微波和数字部分组成的通信系统的软件工具。Symphony 添加了针对外围环境的高效的模拟、数字混合方式(模拟和数字)和系统分析能力。使用者能够很快的构建一个系统通包括大量元件的库里的射频部分的模拟和数字信号处理。像信道编码,模拟和数字信号处理滤波器,放大器,晶体震荡器衰减信道模型。这些都能使设计者们迅速的组建有线的或者无线系统。由于系统自带了那么多模型,因此设计者只需要对元器件键入很少的关键特征。它也能够对线性或非线性系统进行彻底的操作。

它也能输出例如增益、噪声和在时域或者频域上的误码率。针对不同的设计方法,在早期阶段的时候它就能够迅速的检查,以减少设计周期时间和避免由于射频和数字信号处理系统之间的互相干扰而造成的高成本的重新设计。一旦一个设计系统结构被确认了那么一个自上而下的设计流程就能被完成。

一个系统的误码率能够基于完整的系统分析而计算出来。对射频的描述,例如阻抗不匹配,晶体震荡器的相位噪声和群延迟,在系统中(当然包括噪声,输入功率,S参数和其他的输入信号扫描分析)把误码率的计算作为一个任何参数的函数。

1.1.6. Ansoft Ensemble

Ansoft Ensemble是一个针对射频和微波的平面电磁仿真软件。它是一个对微带线和像滤波器、功分器和天线一类的平面微波结构进行计算S参数和全波场的仿真软件包。Ensemble 软件包包括一个从底部开始的计算机辅助设计布局,一个仿真器和一个可显示数据的后处理器。该软件没有用传统的“cut-and-try”原型,减少了生成的误差。

下面是它的一些功能:

1 仿真分析包括s参数, y参数, 和z参数。远场近场辐射。表面电流等。

2 Ensemble 的应用PCB布线和路径的仿真。多层微波包装。微波整合电路。超级微波整合电路。平面天线和队列。电路元件创建。

3 天线设计分析圆极化。左旋圆极化和右旋圆极化的远场图。增益和轴向辐射。交叉极化和共极化场等。

4. 图形特征:计算控制初始设计的大小。DXF and GDS 的输入和输出。史密斯圆图,极化图和矩形图。远场图。波形计算等。

1.2 Ansoft HFSS软件简介

Ansoft HFSS软件是适用于射频、无线通信、封装及光电子设计的任意形状三维电磁场仿真的软件。ANSOFT HFSS是业界公认的三维电磁场标准仿真软件包,它必将为射频、无线通信、封装及光电子产品新功能的开发提供崭新高效的研究手段。本软件彻底摆脱了传统的设计模式,大大减少了研制费用和时间,加快产品进入市场的步伐。HFSS提供了一简洁直观的用户设计界面、精确自适应的场求解器、拥有空前电性能分析能力的功能强大后处理器,能计算任意形状三维无源结构的S参数和全波电磁场。

ANSOFT HFSS充分利用了如自动匹配网格产生及加密、切线向矢量有限元、ALPS(Adaptive Lanczos Pade Sweep)和模式-节点转换(Mode-node)等的先进技术,从而使操作人员可利用有限元法(FEM) 在自己的电脑少对任意形状的三维无源结构进行电磁场仿真。HFSS自动计算多个自适应的解决方案,直到满足用户指定的收敛要求值。其基于MAXWELL(麦克斯韦)方程的场求解方案能精确预测所有高频性能,如散射、模式转换、材料和辐射引起的损耗等。

用高效率的计算机虚拟模型的方法来取代费时费力的“cut-and-try”试验方法,可大大缩短设计周期。仿真分析诸如天线、微波转换器、发射设备、波导器件、射频滤波器和任意三维非连续性等复杂问题,已简单化成只需画结构图、定义材料性能、设置端口和边界条件。HFSS自动产生场求解方案、端口特性和S参数。其S参数结果可输出到通用的线性和非线性电路仿真器中来使用。

ANSOFT HFSS的自适应网格加密技术使FEM方法得以实用化。初始网格(将几何子分为四面体单元)的产生是以几何结构形状为基础的,利用初始网格可以快速解算并提供场解信息,以区分出高场强或大梯度的场分布区域。然后只在需要的区域将网格加密细化,其迭代法求解技术节省计算资源并获得最大精确度。必要时还可方便地使用人工网格化来引导优化加速网格细化匹配的解决方案。

HFSS采用高阶基函数、对称性和周期边界等方法,从而节省计算时间和内存,进一步加大求解问题的规模并加速求解的速度。

1.2.1 Ansoft HFSS软件功能

HFSS软件还有强大的绘图功能。它可以与AutoCAD完全兼容,完全集成ACIS固态建模器。它可以完成以下操作:

无限的undo/redo

多个物体组合、相减、相交布尔运算

动态几何旋转

点击物体选择/隐藏

二维物体沿第三维扫描得到三维物体(如圆柱体)

宏记录/宏文本

锥螺旋、圆柱和立方体的参数化宏

可选的“实表面”几何体

在线关联帮助以加快新功能的应用

它拥有先进的材料库综合的材料数据库包括了常用物质的介电常数、渗透率、电磁损耗正切。用户在仿真中可分析均匀材料、非均匀材料、各向异性材料、导电材料、阻性材料和半导体材料。对不可逆设备,标配的HFSS可直接分析具有均匀静磁偏的铁氧体问题,用户还可选用ANSOFT 3DFS选件以完成铁氧体静磁FEM的解算仿真。

ANSOFT HFSS软件含有一个庞大的库,用该库可参数化定义以下标准形状:

微带T行结

宽边耦合线

斜接弯和非斜接弯

半圆弯和非对称弯

圆螺旋和方螺旋

混合T接头

贴片天线

螺旋几何

Ansoft HFSS软件还可以以周期边界来解决相控阵。通过指定两个或多个边界间的场关系,关连边界条件(LBCs)使得包含有源等设备的新一类问题也可建模仿真。在对长的、均匀的和周期性的结构建模仿真时,LBCs可大大节省计算时间和内存。周期性的LBCs通过相位关系可确定多个主-从边界。设计师可通过分析相控阵中的一个单元来提取有源单元因子和阻抗,从而研究确定阵列盲区、极化性能和栅瓣。

Ansoft HFSS软件强大的天线设计功能,它可以计算下列问题:

计算天线参量,如增益、方向性、远场方向图剖面、远场3D图和3dB带宽。

绘制极化特性,包括球形场分量、圆极化场分量、Ludwig第三定义场分量和轴比。

二分之一、四分之一、八分之一对称模型并自动计算远场方向图。

Ansoft HFSS还拥有以下三种频率扫描技术:

①宽带快速率扫描

利用APLS快速扫频技术可有效地进行宽带仿真。APLS能产生一个在宽频带内有效的低阶

次的模型,并通过计算零极点来完成宽频带求解。APLS包含端口散射以精确确定频段内的输入功率和频带外抑制。

②超宽带插值扫频

利用插值扫频技术可有效地进行超宽带仿真。插值扫频能在超宽频带内根据频响变化斜率自动增插点数,确保精确确定频段内的所有频响特性。

③离散扫频

利用离散扫频技术可有效地进行离散频点的宽带仿真。其利用当前网格重新

求解电磁场,从而精确得到各频率点上的性能参数。

Ansoft HFSS拥有强大的场后处理器:

产生生动逼真的场型动画图,包括矢量图、等高线图、阴影等高线图。

任意表面,包括物体表面、任意剖面、3D物体表面和3D相等面的静态和动态图形。

动态矢量场、标量场或任何用场计算器推导出的量。

动态的表面动画可使图形能以旋转和移位的方式步进。新的图—3D云图上有一薄薄的彩色像素层,使你能非常清晰地观察场型特性,用户旋转几何时图形会实时更新。ANSOFTHFSS 可以设计最优化解决方案,它支持强大的具有记录和重放功能的宏语言。这使得用户可将其设计过程自动化和完成包括参数化分析、优化、设计研究等的先进仿真。参数化分析:四螺旋天线广泛应用于包括GPS接收机在内的无线通信设计中。其圆极化辐射方向图提供了很宽的半球状覆盖区域并具有极低的后瓣辐射。该模型在HFSS依据不同的螺旋比和总旋转数目进行了多次仿真,设计师利用先进的宏功能可很快地进行多次仿真,以研究关键参数是如何影响带宽、增益和后瓣电平的。

1.2.2 Ansoft HFSS软件的优势

Ansoft有自己的独特优势:由Ansoft Designer和Ansoft HFSS构成的Ansoft高频解决方案,是目前唯一以物理原型为基础的高频设计解决方案,它以Ansoft公司居于领先地位的电磁场仿真工具为基础,提供了从系统到电路直至部件级的快速而精确的设计手段,覆盖了高频设计的所有环节。其集成化的设计环境和独有的“按需求解"技术使设计工程师们在设计的各个阶段都能充分考虑结构的电磁效应对性能的影响,实现对整个设计流程的完全控制,从而进一步提高了仿真精度,完成整个高频系统的端对端设计。

最后一点,HFSS的所有问题分为两大类:“Driven Solution”和“Eigenmode Solution”,前一个用于一般的需要激励源或者有辐射产生的问题,适用于几乎所有除谐振腔以外的问题;后者为本征问题求解,主要用于分析谐振腔的谐振问题,不需要激励源,也不需要定义端口,更不会产生辐射(封闭结构)。

Ansoft Optimetrics是一个综合优化包,可以用于HFSS和Ensemble,主要用于结构参数的优化,最典型的例如双枝节匹配,可优化两个枝节的长度及间距使得反射最小。根据你给定的优化目标,可以进行模型参数的调整,例如介质片移相器,你可以以移相器的相移为目标函数,优化介质片的长度,使相移满足需要。

总之,Ansoft HFSS 软件以其强大的设计仿真功能,无论在设计手机、通信系统、宽带器件、集成电路(ICs)、印刷电路板等高频微波的方方面面都迅速赢得了设计人员的广泛认可,并且也迅速获得了广泛的应用。

电磁仿真CST入门教程

1.1 软件介绍 CST公司总部位于德国达姆施塔特市,成立于1992年。它是一家专业电磁场仿真软件的提供商。CST软件采用有限积分法(Finite Integration)。其主要软件产品有: CST微波工作室—— 三维无源高频电磁场仿真软件包(S参量和天线) CST设计工作室—— 微波网络(有源及无源)仿真软件平台(微波放大器、混频器、谐波分析等) CST电磁工作室—— 三维静场及慢变场仿真软件包(电磁铁、变压器、交流接触器等)马飞亚(MAFIA)—— 通用大型全频段、二维及三维电磁场仿真软件包(包含静电场、准静场、简谐场、本振场、瞬态场、带电粒子与电磁场的自恰相互作用、热动力学场等模块) 在此,我们主要讨论“CST微波工作室”,它是一款无源微波器件及天线仿真软件,可以仿真耦合器、滤波器、环流器、隔离器、谐振腔、平面结构、连接器、电磁兼容、IC封装及各类天线和天线阵列,能够给出S参量、天线方向图等结果。 1.2 软件的基本操作 1.2.1 软件界面 启动软件后,可以看到如下窗口:

1.2.2 用户界面介绍

1.2.3 基本操作 1).模板的选择 CST MWS内建了数种模板,每种模板对特定的器件类型都定义了合适的参数,选用适合自己情况的模板,可以节省设置时间提高效率,对新手特别适用,所有设置在仿真过程中随时都可以进行修改,熟练者亦可不使用模板 模板选取方式:1,创建新项目 File—new 2,随时选用模板 File—select template

2)设置工作平面 首先设置工作平面(E dit-working Plane Properties ) 将捕捉间距改为 1 以下步骤可遵循仿真向导(Help->QuickStart Guide )依次进行 1)设置单位(Solve->Units ) 合适的单位可以减少数据输入的工作量 模板参数 模板类型

ANSYS电磁兼容仿真软件解析

ANSYS电磁兼容仿真设计软件 用途:用于电子系统电磁兼容分析,包括PCB信号完整性、电源完整性和电磁辐射协同仿真,数模混合电路的噪声分析和抑制,以及机箱系统屏蔽效能和电磁泄漏仿真,确保系统的电磁干扰和电磁兼容性能满足要求。 一、购置理由 1现代电子系统设计面临越来越恶劣的电磁工作环境,一方面电子系统包括了电源模块、信号处理、计算机控制、传感与机电控制、光电系统及天线与微波电路等部分,系统内部相互不发生干扰,正常工作,本身就非常困难;另一方面,在隐身、电子对抗、静放电,雷击和电磁脉冲干扰等恶劣电磁环境下,设备还需要有足够的抗干扰能力,为电路正常工作留有足够的设计裕量。为了确保xx系统的工作可靠性,设备必须通过相关的电磁兼容标准,如国军标GJB151A,GJB152A。 长期以来,设备的电磁兼容设计和仿真一直缺乏必要的仿真设计手段,只能依赖于设备后期试验测试,不仅测量成本高昂,而且,如果EMI测量超标,后续的查找问题和修正问题基本上依赖于经验和猜测。而解决电磁兼容问题,也只能靠经验进行猜想和诊断,采取的措施也只能通过不断的试验进行验证,这已经成为制约我们产品进度的重要原因。。 2目前我所数字电路设计的经验和手段已经有很大改善,我们在复杂PCB布线、高速仿真方面取得了很多的成果和经验,并且已经开

始高速通道设计的预研。在相关PCB布线工具的帮助下,将复杂的多电源系统PCB布通,确保集成电路之间的正确连接已经基本上没有问题。但是随着应用深入,也存在一些困难,特别在模拟数字转换、高速计算与传输PCB和系统的设计中,我们不仅要保证电路板的正常工作,还要提高关键性的技术指标,例如数模转换电路的有效位数、信号传输系统的速率和误码率等,此外,还要满足整个卫星电子系统的电磁兼容/电磁干扰要求,为此,我们迫切需要建立的仿真功能包括: ●高速通道中,连接器,电缆等三维全波精确和建模仿真, 这些结构的寄生效应对于信号的传输性能有至关重要的影 响; ●有效的PCB电源完整性分析工具,对PCB上的电源、地等 直流网络的信号质量进行仿真 ●为提高仿真精度,需要SPICE模型,IBIS模型和S参数模 型的混合仿真 ●需要同时进行时域和频域仿真和设计,观察时域的眼图、 误码率,调整预加重和均衡电路的频域参数,使得信号通道 的物理特性与集成电路和收/发预加重、均衡等相配合,达到 系统性能的最优 ●有效的PCB的辐射控制与仿真手段,确保系统EMI性能达 标。 现在EDA市场上已经有一些SI/PI和EMI/EMC仿真设计工具,但存在多方面的局限性。我们的PCB布线工具虽然能解决一定的问题,

电磁场仿真软件简介

电磁场仿真软件简介 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS(HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST 的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS(定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell 方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进行仿真。 虽然,Zeland公司的Fidelity和IMST GmbH公司的EMPIRE也可以仿真三维结构。

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

电磁仿真软件flux教程

电磁场仿真软件教程 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent 公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS (HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS (定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT 成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

常用的高频电磁场仿真软件

常用的高频电磁场仿真软件有下面这些: Ansoft HFSS、Designer、Emsenble。ansoft一贯使用FEM(有限元法),HFSS在中国大陆有绝对的市场份额。一直被大家认为电小不错,电大不行。一年一来一直致力于推翻大家这种印象。终端仿真里面面,我们认为网络参数相对还是比较正确的,但是场参数有时候就不是那么令人满意了。例如,建模一个dipole,在大部分关键的己方加了很多人工干预网哥划分,但是,增益和pattern的波束角宽都差挺多的。手机天线仿真经常是百分之一百零几的效率。在9.1版里results里就不得不多加了realized gain 这个选项,把gain这个选项的值打个折扣给你:) CST的Microwave Studio,一直大家一位是fdtd,其实它是时域积分法(FITD),当然其实不是原则上的不同。和FEM方法不同,FDTD或者FITD都是先在时域计算,用一个宽频谱的激励信号(方波或者高斯波都有)去激励模型,在时域计算然后去反演到频域。系统的网络参数和场参数基本上是反演后的得到的。特点是可以计算相当大的带宽结果,而不需要象用ansoft,可能要把大带宽分割后分别仿真。CST计算过程中,由于没有FEM计算过程中矩阵求逆过程,计算时间和网格数成线性增长关系,而FEM 的是指数增长关系。CST的MWS从4.3版起,开始有了大小网格嵌套技术,在曲面上细化六面体网格逼进曲面。这是其它FDTD套件所没有的。CST的MWS最大的问题是不象ansoft的那么傻瓜化,很多参数即使看了help也不是很能让人理解。如果很深入了解MWS内部细节,估计可以一次性不用收敛做出完美的仿真。我们曾经用完全相同的模型分别在ansoft和CST运行,结果双频天线CST结果低频比ansoft结果高。而高频又比ansoft结果低。但是场参数就可靠得多了,一个加上塑胶外壳参数、电池、屏蔽罩等器件的模型,天线在谐振点就是比较真实的百分之四、五十。韩国都用CST,没有什么人用ansoft。 Zeland IE3D,矩量法(MoM)。IE3D可能是最好的商业MoM套件。MoM原理相对简单,且计算速度极快。IE3D比较适合2.5维情形,例如算算PCB或者微带天线比较合适,算复杂3D结构力不从心。但是,手机PIFA的计算就比较适合用IE3D。不是用于做天线项目仿真,而是用于研究天线的基本特征,天线和PCB如何相互耦合、PCB上激发的表面电流走向等原型阶段的预研。 Zeland Fidelity,FDTD法,相比IE3D名气小,用的人也不多。没有CST大小网格嵌套。这里补充一句,所有的FDTD套件都是采用PML方法的。 XFDTD,有名的FDTD套件。经常和很多测试SAR的硬件系统联系在一起,在加载人体电磁模型后可以计算SAR值。缺点是天线Pattern没有3D显示,只有2D截面。这个缺点最好能在新版本中改进。SemCAD,也是FDTD套件。没有比XFDTD等有太多优势,也有被用来计算SAR的。好像也有用来作系统EMC计算。 IMST Empire,FDTD套件。非常优秀的高频电磁场套件,德国人的东西。获得欧洲多次仿真大赛的优胜,仿真题目是一个Vivalti天线,速度最快,又最准确。但是正如德国人的问题,好是好,但又有太过明显缺陷。建模法实在是太复杂了,我学了三次都没有真正学会。最后没有时间只好放弃。 FEKO,用Ansys接口的软件,使用混和MoM,多层快速多极子(这个我只知道名称了),几何光学和射线追踪法等,可以计算非常复杂的3D结构和环境,擅长电大尺寸。常被用做飞机电磁性能的建模和仿真。 Sonnet,MoM方法。这个就不太熟了。 SuperNEC,MoM法,要使用MatLab平台。这个会限制它的计算速度,因为MatLab是行解释型的,代码不编译。 ADF-EMS,才听说的软件套件。意大利公司的产品,以前是对中国禁运的软件。据说是因为太专业太有用了,是航天器卫星、兵器等电磁仿真的利器。现在正在逐步对中国企业开放。但是如果是研究所或者国营机构去买,也还是不卖。报价是ansoft等套件的10倍以上。 Aplac,据说Nokia公司的人用这个作电磁场仿真。只是接触过他们的一个Sales,看过一点资料,主要是电路和系统级的。电磁场模块fdtd的,建模巨复杂。其它的都不清楚。 CFDTD,全名Conformal FDTD,中国人编的商业套件。据说业界还有好评。但是看来商业做得不好,

电磁场仿真作业ansoft

电磁场ansoft软件应用作业 ——静电场部分 TYP 电气0906 09291183

一、题目 单心电缆有两层绝缘体,分界面为同轴圆柱面。已知,R1=10mm,R2=20mm,R3=30mm,R4=31mm,内导体为copper,外导体为lead,中间的介质ε1=5ε0, ε2=3ε0, ,内导体U=100V,外导体为0V 求 1用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和电场能量。 2用ansfot软件计算上述物理量随半径的变化曲线,并画出电压分布图,计算出单位长度电容,和电场能量

二、解答 1、解析法: 在介质中取任意点P ,设它到电缆中心距离为r 。过P 点作同轴圆柱面,高为l 。该面加上上下两底面作为高斯面S 。 D rl S d D S )2(π=?? ε 1 1D E = ε 2 2D E = ??+=R R dr R R dr U E E 322121 将方程联立,代入数据解得: m V r E /05.731≈ ,m V r E /75 .1212≈ 所以 12 9 2 1158.8573.05 3.23/1010D C r r m E ε--???=?== 电位 r R R R dr dr l d E r r E E ln 05.7341.236232211 --=?+?=?=??? ∞ ? V r R dr l d E r r E ln 75.12192.426322 --=?=?=?? ∞ ? V 电场能量 9 7 2 11 3.23 1.181173.05221010e D r r E r ω--??=?=??=3 J m 9 7 2 22 3.23 1.9711121.752210 10e D r r E r ω--??=?=??=3 J m 单位长度电场能量 231277632 12 12 222(1.18ln 1.97ln ) 1.02101010e e e R R rdr rdr J m R R R R W R R πππωω---=+=???+??=???单位长度电容 6 1022 22 1.0210 2.0410100e W C F m U --??===?

电磁仿真软件心得

电磁仿真软件心得标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

——简单有效,如果问题的外部轮廓较为复杂 或者椭球2 轴差距太大,以采用相似形边界或圆柱边界,对于辐射问题,如果估计问题的增 益较低(比如2db),那么边界宜采用球形,此时为了得到结果准确也只好牺牲时间了;另 在hfss 8 中提供了一种新的吸收边界——pml 边界条件,对于这种边界,笔者并不是很满意, 尽管其有效距离为八分之一个中心波长——是老边界的一半,可以减少计算量,然而这种边 界由程序自己生成,为一个立方体的复杂结构,对于一些特殊的复杂问题,这种边界内部有 很多的空间是无用的,此时还不如使用老边界灵活。 2.5、关于开孔 有些问题需要在壁上开孔,此时可以采用2 种办法,其一是老老实实的在模型上挖空;其二是采用hnatrue 边界条件,通常,如果是在面上开孔,将会采用后者,简单,便于修改。 2.6、关于网格划分

当模型建立好了之后,进入计算模块,第一步是给问题划分网格。对于一般问题,让软件自动划分比较省心,但对大型问题和复杂问题,让软件自己划分可能需要很好的耐性来等 待。根据实际经验,在大型模型的结构密集区域或场敏感区域使用人工划分可以得到很好的 效果,有些问题的计算结果开始表现为收敛,但进一步提高精度,却又反弹,问题就在于开 始时场敏感区域的网格划分不够仔细,导致计算结果的偏差。 2.7、关于所需要的精度 计算问题时,一般需要给定一个收敛精度和计算次数以避免程序“陷入计算而无法自拔”,当对模型熟悉后,可以单单给定次数。在问题之初,建议的计算精度不要太高,实际 中曾见到有操作者将问题的s 参数精度设定为0.00001,其实这是完全没有必要的,一般s 参数的精度设定为0.02 左右就已经可以满足绝大部分问题的需要(此时应该注意有无收敛 反弹的情况)。如果是计算次数,对于密闭问题,建议是设定为8~12 次,对于辐射问题,

电磁仿真软件心得

电磁仿真软件心得集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

1、简介 目前,国际上主流的三维高频电磁场仿真软件有德国cst 公司的microwave studio(微波 工作室)、美国ansoft 公司的hfss(高频电磁场仿真),而诸如zeland 等软件则最多只能算作 2.5 维的。 就目前发行的版本而言, cst 的mws 的前后处理界面及操作感比hfss 好很多,然而ansoft 也意识到了自己的缺点,在将要推出的新版本hfss(定名为ansoft designer)中,界面及操 作都得到了极大的改善,完全可以和cst 相比;在性能方面,2 个软件各有所长,在业界每 隔一定时间就会有一次软件比赛,看看谁的软件算的快,算的准,在过去的时间里,cst 和ansoft 成绩相差不多;价格方面,2 个软件相差不多,大约在7~8 万美元的水平,且都有出国培训的安排。 值得注意的是,mws 采用的理论基础是fdtd(有限时域差分方法),所以mws 的计算是 由时域得到频域解,对于象滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而 hfss 采用的理论基础是有限元方法,是一种积分方法,其解是频域的,所以hfss 是由频域到时域,对于设计各种辐射器及求本征模问题很擅长。当然,并不是说2 个软件在对方的领域 就一无是处。 由于ansoft 进入中国市场较早,所以目前国内的hfss 使用者众多,特别是在各大通信

技术研究单位、公司、高校非常普及。 2、使用心得 和大部分的大型数值分析软件相似,以有限元方法为基础的ansoft hfss 并非是傻瓜软 件,对于绝大部分的问题来说,想要得到快速而准确的结果,必须人工作一定的干预。除了必须十分明了模型细节外,建模者本身也最好具备一定的电磁理论基础。 作者假定阅读者使用过hfss,因此对一些属于基本操作方面的内容并不提及。 2.1、对称的使用 对于一个具体的高频电磁场仿真问题,首先应该看看它是否可以采用对称面。这里面的 约束主要在几何对称和激励对称要求。如果一个问题的激励并不要求是可改变的,比如全部同相馈电的阵列,此时最好采用对称,甚至可以采用2 个对称(e 和h 对称),将可以大大节约时间和设备资源。 2.2、面的使用 在实际问题中,有很多结构是可以使用2 维面来代替的,使用2 维面的好处是可以极大 的减少计算量并且结果与使用3 维实体相差无几。例如计算一个微带的分支线耦合器,印制板的微带以及地都可以指定某些面为理想电面代替,这样可以很快的获得所需要的物理尺寸及其性能。再以计算偶极子为例,如果偶极子是以理想导体为材质的圆柱,那么相同的其他条件下其计算时间大约是采用等效面为偶极子的4~5 倍,由此可见一般。

电磁仿真软件心得

1、简介 目前,国际上主流的三维高频电磁场仿真软件有德国cst 公司的microwave studio(微波 工作室)、美国ansoft 公司的hfss(高频电磁场仿真),而诸如zeland 等软件则最多只能算作 2.5 维的。 就目前发行的版本而言,cst 的mws 的前后处理界面及操作感比hfss 好很多,然而ansoft 也意识到了自己的缺点,在将要推出的新版本hfss(定名为ansoft designer)中,界面及操作都得到了极大的改善,完全可以和cst 相比;在性能方面,2 个软件各有所长,在业界每隔一定时间就会有一次软件比赛,看看谁的软件算的快,算的准,在过去的时间里,cst 和ansoft 成绩相差不多;价格方面,2 个软件相差不多,大约在7~8 万美元的水平,且都有出 国培训的安排。 值得注意的是,mws 采用的理论基础是fdtd(有限时域差分方法),所以mws 的计算是 由时域得到频域解,对于象滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而hfss 采用的理论基础是有限元方法,是一种积分方法,其解是频域的,所以hfss 是由频域到 时域,对于设计各种辐射器及求本征模问题很擅长。当然,并不是说 2 个软件在对方的领域 就一无是处。 由于ansoft 进入中国市场较早,所以目前国内的hfss 使用者众多,特别是在各大通信 技术研究单位、公司、高校非常普及。 2、使用心得 和大部分的大型数值分析软件相似,以有限元方法为基础的ansoft hfss 并非是傻瓜软 件,对于绝大部分的问题来说,想要得到快速而准确的结果,必须人工作一定的干预。除了必须十分明了模型细节外,建模者本身也最好具备一定的电磁理论基础。 作者假定阅读者使用过hfss,因此对一些属于基本操作方面的内容并不提及。 2.1、对称的使用 对于一个具体的高频电磁场仿真问题,首先应该看看它是否可以采用对称面。这里面的 约束主要在几何对称和激励对称要求。如果一个问题的激励并不要求是可改变的,比如全部同相馈电的阵列,此时最好采用对称,甚至可以采用2 个对称(e 和h 对称),将可以大大节约时间和设备资源。 2.2、面的使用 在实际问题中,有很多结构是可以使用2 维面来代替的,使用2 维面的好处是可以极大 的减少计算量并且结果与使用 3 维实体相差无几。例如计算一个微带的分支线耦合器,印制 板的微带以及地都可以指定某些面为理想电面代替,这样可以很快的获得所需要的物理尺寸及其性能。再以计算偶极子为例,如果偶极子是以理想导体为材质的圆柱,那么相同的其他条件下其计算时间大约是采用等效面为偶极子的4~5 倍,由此可见一般。 2.3、lump port(集中端口)的使用 在hfss8 里提供了一种新的激励:lump port,这种激励避免了建立一个同轴或者波导激励,从而在一定程度上减轻了模型量,也减少了计算时间。lump port 也可以使用一个面来代表,要注意的是对该port 的校准线和阻抗线的设置一定要准确,端口在空间上一定要与其他金属(或电面)相接,否则结果极易出错。 2.4、关于辐射边界的问题

计算电磁学各种方法和电磁仿真软件

计算电磁学各种方法和电磁仿真软件 计算电磁学中有众多不同的算法,如时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FE)、矩量法(MoM)、边界元法(BEM)、 谱域法(SM)、传输线法(TLM)、模式匹配法(MM)、横向谐振法(TRM)、线方法(ML)和解析法等等。 在频域,数值算法有:有限元法 ( FEM -- Finite Element Method)、矩量法( MoM -- Method of Moments),差分法( FDM -- Finite Difference Methods),边界元法( BEM --Boundary Element Method),和传输线法( TLM -- Transmission-Line-matrix Method)。 在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。 这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD)、传 输线法(TLM)、时域有限积分法(FITD)、有限元法(FEM)、矩量法(MoM)、线方法(ML)、边界元法(BEM)、谱域法(SM)、模式匹配 法(MM)、横向谐振法(TRM)、和解析法。 依照结果的准确度由高到低,分别是:解析法、半解析法、数值方法。 在数值方法中,按照结果的准确度有高到低,分别是:高阶、二阶、一阶和零阶。 时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FEM)、矩量法(MoM)、传输线法(TLM)、线方法(ML)是纯粹的数值方法; 边界元法(BEM)、谱域法(SM)、模式匹配法(MM)、横向谐振法(TRM)则均具有较高的分辨率。 模式匹配法(MM)是一个半解析法,倘若传输线的横向模式是准确可得的话。理论上,模式可以是连续谱。但由于数值求解精度的限制,通常要求横向模式是离散 谱。这就要求横向结构上是无耗的。更通俗地讲,就是无耗波导结构。换言之,MM 最适用于波导空腔、高Q且在能量传输的某一维上结构具有一定的均匀性。譬如,它适用于两个圆柱腔在高度维上的耦合的分析,但不适用

常用的高频电磁场仿真软件一览

常用的高频电磁场仿真软件一览 常用的高频电磁场仿真软件有下面这些:Ansoft HFSS、Designer、Emsenble ansoft一贯使用FEM(有限元法),HFSS在中国大陆有绝对的市场份额。一直被大家认为电小不错,电大不行。一年一来一直致力于推翻大家这种印象。终端仿真里面面,我们认为网络参数相对还是比较正确的,但是场参数有时候就不是那么令人满意了。例如,建模一个dipole,在大部分关键的己方加了很多人工干预网哥划分,但是,增益和pattern的波束角宽都差挺多的。手机天线仿真经常是百分之一百零几的效率。在9.1版里results里就不得不多加了realized gain这个选项,把gain这个选项的值打个折扣给你:)CST的Microwave Studio,一直大家一位是fdtd,其实它是时域积分法(FITD),当然其实不是原则上的不同。和FEM方法不同,FDTD或者FITD都是先在时域计算,用一个宽频谱的激励信号(方波或者高斯波都有)去激励模型,在时域计算然后去反演到频域。系统的网络参数和场参数基本上是反演后的得到的。特点是可以计算相当大的带宽结果,而不需要象用ansoft,可能要把大带宽分割后分别仿真。CST计算过程中,由于没有FEM计算过程中矩阵求逆过程,计算时间和网格数成线性增长关系,而FEM的是指数增长关系。CST的MWS从4.3版起,开始有了大小网格嵌套技术,在曲面上细化六面体网格逼进曲面。这是其它FDTD套件所没有的。CST的MWS最大的问题是不象ansoft的那么傻瓜化,很多参数即使看了help也不是很能让人理解。如果很深入了解MWS内部细节,估计可以一次性不用收敛做出完美的仿真。我们曾经用完全相同的模型分别在ansoft和CST运行,结果双频天线CST结果低频比ansoft结果高。而高频又比ansoft结果低。但是场参数就可靠得多了,一个加上塑胶外壳参数、电池、屏蔽罩等器件的模型,天线在谐振点就是比较真实的百分之四、五十。韩国都用CST,没有什么人用ansoft。 Zeland IE3D,矩量法(MoM)。IE3D可能是最好的商业MoM套件。MoM原理相对简单,且计算速度极快。IE3D比较适合2.5维情形,例如算算PCB或者微带天线比较合适,算复杂3D结构力不从心。但是,手机PIFA的计算就比较适合用IE3D。不是用于做天线项目仿真,而是用于研究天线的基本特征,天线和PCB如何相互耦合、PCB上激发的表面电流走向等原型阶段的预研。 Zeland Fidelity,FDTD法,相比IE3D名气小,用的人也不多。没有CST大小网格嵌套。这里补充一句,所有的FDTD套件都是采用PML方法的。

同轴电缆电场的仿真---2D仿真器

同轴电缆电场的仿真---2D仿真器同轴电缆电场的 仿真---2D仿真器 目录 同轴电缆电场的仿真---2D仿真器同轴电缆电场的仿真---2D仿真器 (1) 1.题目概述 (2) 1.1题目:同轴电缆电场的仿真---2D仿真器 (2) 1.2 设计目的: (2) 1.3设计作用: (2) 1.4 Maxwell软件环境: (3) 2.设计与仿真 (3) 2.1绘制过程与参数设置: (4) 2.2仿真过程 (8) 2.2.1电位,电场强度,电位移分布 (8) 2.2.2计算电容 (15) 2.2.3计算电场能量 (17) 3.计算结果处理分析 (18) 4. 设计总结和体会 (19) 5.参考文献 (19)

1.题目概述 1.1题目:同轴电缆电场的仿真---2D仿真器 同轴电缆描述:单心电缆有两层绝缘体,分界面为同轴圆柱面。已知 R 1=10mm,R 2 =20mm,R 3 =30mm,R 4 =31mm,内导体为copper,外导体为lead,中间的介质ε 1 =5ε 0, ε 2 =3ε 0, , 内导体外导体的电位分别为:内导体U=380V,外导体为-380V。 求: 1用解析法计算电位,电场强度,电位移随半径的变化,计算单位长度电容和电场能量。 2用Ansoft Maxwell软件计算上述物理量随半径的变化曲线,并画出电压分布图,计算出单位长度电容,和电场能量 图1.1 同轴电缆 1.2 设计目的: 电磁场与电磁波课程理论抽象、数学计算繁杂,将Maxwell软件引入教学中,通过对典型电磁产品的仿真设计,并模拟电磁场的特性,将理论与实践有效结合,强化学生对电磁场与电磁波的理解和应用,提高教学质量。 1.3设计作用: 总体要求:熟练使用Ansoft Maxwell 仿真软件,对电场、磁场进行分析,了解所做题目的原理。利用Ansoft Maxwell软件仿真简单的电场以及磁场分布,画出电场矢量E 线图、磁感应强度B线图,并对仿真结果进行分析、总结。将所做步骤详细写出,并配有相应图片说明。

电磁仿真技术报告

电磁仿真技术调研报告 引言 微波系统的设计越来越复杂,对电路的指标要求越来越高,电路的功能越来越多,电路的尺寸要求越做越小,而设计周期却越来越短。传统的设计方法已经不能满足系统设计的需要,使用微波EDA软件工具进行微波元器件与微波系统的设计已经成为微波电路设计的必然趋势。随着单片集成电路技术的不断发展,GaAs、硅为基础的微波、毫米波单片集成电路(MIMIC)和超高速单片集成电路(VHSIC)都面临着一个崭新的发展阶段,电路的设计与工艺研制日益复杂化,如何进一步提高电路性能、降低成本,缩短电路的研制周期,已经这些EDA仿真软件与电磁场的数值解法密切相关的,不同的仿真软件是根据不同的数值分析方法来进行仿真的。通常,数值解法分为显示和隐示算法,隐示算法(包括所有的频域方法)随着问题的增加,表现出强烈的非线性。显示算法(例如FDTD、FIT方法在处理问题时表现出合理的存储容量和时间。 1. 电磁仿真的数值计算方法 在求解电磁场问题时,通常只有一些经典问题有解析解,解析解对理解问题的物理本质具有重要的指导性意义。但是,由于实际环境的复杂性,往往需要通过数值分析才能得到具体环境下的电磁特性。随着计算机技术的发展,计算电磁学受到了广泛的重视。计算电磁学自20世纪60年代兴起,发展至今,拥有众多的数值计算方法。 1966年,Yee首次提出了时域有限差分法( FDTD ),1967年,R·F·Harrington提出了矩量法(MoM),有限元的概念更是早在几个世纪前就已产生并得到了应用,1969年结构力学计算有限元概念被首次提出以后,有限元法(FEM)便拓展应用到电磁学领域。除了这3种主要的方法外,数值计算方法还有边界元法(BEM)、传输线法(TLM)、格林函数法(矩形腔)、线方法(ML)等。频域方法有:有限元法、矩量法(MoM),差分法(FDM),边界元法和线方法(ML)等。时域方法有:时域有限差分法,传输线法,有限积分法(FIT)等。依照解析程度由低到高排列,依次是:时域有限差分法、传输线法、时域有限积分法(FITD)、有限元法、矩量法、线方法、边界元法。 2. 软件综述 2.1软件的计算方法 商用电磁仿真软件的计算方法主要有以下几种:有限元法、矩量法、时域有限差分法、

电器中电磁机械仿真常用软件与方法

电器中电磁机械仿真常用软件与方法 摘要:介绍了电器中电磁机械仿真技术的发展现状和常用软件,探讨了几种常见电磁机械仿真方法的基本原理、功能和优缺点,主要分析了基于有限元方法的电磁场仿真、运动学和动力学仿真的基本过程,仿真技术大大简化了电磁机械设计的工作量,计算手段和精度也不断完善。 关键词:电磁机械;电磁场仿真;动力学仿真 引言 随着高、低压电器的技术发展,依靠电磁力产生运动相关的机械在电器领域中应用越来越广泛,从传统最常见的电磁铁到近年来进入市场的永磁机构、磁力机构、斥力机构等。由于产品的结构越来越复杂,形状越来越不具有规则性,采用传统的磁路分析等理论计算方法来指导产品设计逐渐具有一定的局限性。随着数值计算法的发展,特别是各种大型商业软件的不断推广和应用,利用仿真技术对电磁机械进行仿真分析已经成为工程领域中常用的手段。电磁机械仿真技术是指基于相关基础理论,借助于计算机技术和专业的分析软件,实现对电磁机构电磁场、力、运动等方面的静态和动态特性的仿真,为产品的设计和优化提供理论支持和方向指导。仿真技术的应用改变了长期以来人们用传统的工程计算方法进行特性分析所造成的精度差的缺点,可以在样机制作和实验分析前,掌握电器产品的性能,减少重复样机的制作,降低实验费用,同时缩短新产品的开发周期,提高产品性能[1]。 在电磁数值计算方法中,有限元法以其通用性强,适用于对复杂结构和场域等优点,成为应用最广发的方法,基于有限元的商业仿真软件也较多的进入市场。常用的软件有ANSYS,Ansoft,Quick field,Infolytica等。这类软件通常是具有三维有限元剖分的有限元计算通

作业:Maxwell电磁仿真软件的应用

Ansoft Maxwell 仿真软件的应用 Ansoft Maxwell 是低频电磁场有限元仿真软件,在工程电磁领域有广泛的应用。它基于麦克斯韦微分方程,采用有限元离散形式,将工程中的电磁场计算转变为庞大的矩阵求解,使用领域遍及电器、机械、石油化工、汽车、冶金、水利水电、航空航天、船舶、电子、核工业、兵器等众多行业,为各领域的科学研究和工程应用作出了巨大的贡献。 总体要求:熟练使用Ansoft Maxwell 仿真软件对电场、磁场进行分析,了解所做题目的原理。将所做步骤详细写出,并配有相应图片说明。 三人一组,可以选择下面的题目,也可自主命题。 题目一: 研究静电场的的电场分布 要求:建立静电场模型,求解电压分布图、电场矢量分布图、电位移矢量图、能量分布图,并对仿真结果进行分析、总结。 例如:建立如下模型进行分析 题目二: 尖端放电现象以及尖端尺寸对放电的影响 要求:通过查阅资料,解释尖端放电现象。建立不同尖端放电模型,研究电场分布及能量分布图,进行比较,得出结论。 例如:建立如下模型仿真其放电情况

题目三: 静电除尘器电磁场分析 要求:掌握静电除尘的工作原理,建立静电除尘器模型,观测内部电场及能量的分布情况,并对结果进行分析。 例如:由静电除尘器的原理图建立的仿真模型 题目四: 研究镜像法求解静电场 要求:掌握镜像法去接静电场的原理。建立模型,分用镜像法及普通模型求解其电场分布图,并进行比较,总结。 例如:建立如下两种模型进行仿真,观察其电场分布。可求解导线与理想地面之间的电容,及两根导线间的电容值进行对比。

题目五: 通有相反方向电流的导电线圈产生的磁场 要求:利用Maxwell 3D Design 建立两个通有相反方向电流的导线圈模型(中间可插入铁芯增强磁场),仿真线圈周围空间及铁芯内部磁感线分布、磁场强度分布,并进行理论分析。 例如:建立如下模型进行分析 题目六: 叠片钢涡流损耗分析 要求:分别从理论计算、计算机仿真两个方面进行磁感应强度分析,再进行涡流损耗分析,对比得出结论。 例如:叠片钢的模型为四片钢片叠加而成,每一片界面的长和宽分别为12.7mm 和0.356mm ,两片之间的距离为m μ12.8,叠片钢的电导率为2.08e6S/m ,相对磁导率为2000,作用在磁钢表面的外磁场m A H Z /77.397=,即T B Z 1=。建立相应几何模型,并指定材料属性,指定边界条件。分析不同频率下的涡流损耗。 题目七: 螺线管电磁阀静磁场分析 要求:掌握螺线管电磁阀工作原理。建立螺线管电磁阀模型,并画出磁力线分布图及磁场强度分布图。进行理论分析,与仿真结果比较,总结。 例如:建立如下模型进行仿真分析

相关文档
最新文档