苏教版数学必修二新素养同步讲义:1.立体几何初步 章末复习提升课

苏教版数学必修二新素养同步讲义:1.立体几何初步 章末复习提升课
苏教版数学必修二新素养同步讲义:1.立体几何初步 章末复习提升课

章末复习提升课

1.空间几何体的结构特征

(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.

棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形.

棱台:是棱锥被平行于底面的平面所截而成的.

这三种几何体都是多面体.

(2)圆柱、圆锥、圆台、球分别是由平面图形矩形、直角三角形、直角梯形、半圆面旋转而成的,它们都称为旋转体.在研究它们的结构特征以及解决应用问题时,常需作它们的轴截面或截面.

(3)由柱、锥、台、球组成的简单组合体,研究它们的结构特征实质是将它们分解成多个基本几何体.

2.线线关系

空间两条直线的位置关系有且只有相交、平行、异面三种.两直线垂直有“相交垂直”与“异面垂直”两种情况.

(1)证明线线平行的方法

①线线平行的定义;

②公理4:平行于同一条直线的两条直线互相平行;

③线面平行的性质定理:a∥α,a?β,α∩β=b?a∥b;

④线面垂直的性质定理:a⊥α,b⊥α?a∥b;

⑤面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b?a∥b.

(2)证明线线垂直的方法

①线线垂直的定义:两条直线所成的角是直角,在研究异面直线所成的角时,要通过平移把异面直线转化为相交直线;

②线面垂直的性质:a ⊥α,b ?α?a ⊥b ; ③线面垂直的性质:a ⊥α,b ∥α?a ⊥b . 3.线面关系

直线与平面之间的位置关系有且只有线在面内、相交、平行三种. (1)证明直线与平面平行的方法 ①线面平行的定义;

②判定定理:a ?α,b ?α,a ∥b ?a ∥α; ③平面与平面平行的性质:α∥β,a ?α?a ∥β. (2)证明直线与平面垂直的方法 ①线面垂直的定义;

②判定定理:

????

?m ,n ?α,m ∩n =A l ⊥m ,l ⊥n ?l ⊥α; ③面面平行的性质:α∥β,a ⊥α?a ⊥β;

④面面垂直的性质定理:α⊥β,α∩β=l ,a ?α,a ⊥l ?a ⊥β. 4.面面关系

两个平面之间的位置关系有且只有平行、相交两种. (1)证明面面平行的方法 ①面面平行的定义; ②面面平行的判定定理:

a ?β,

b ?β,a ∩b =P ,a ∥α,b ∥α?β∥α; ③线面垂直的性质:a ⊥α,a ⊥β?α∥β; ④公理4的推广:α∥γ,β∥γ?α∥β. (2)证明面面垂直的方法

①面面垂直的定义:两个平面相交所成的二面角是直二面角; ②面面垂直的判定定理:a ⊥β,a ?α?α⊥β. 5.几何体的面积和体积的有关计算

柱体、锥体、台体和球体的面积和体积公式

1

3πr

2l2-r2

圆台S侧=π(r1+r2)l

V=

1

3(S上+S下+

S上S下)h

1

3π(r

2

1

+r22+r1r2)h 直棱

S侧=Ch V=Sh 正棱

S侧=

1

2Ch′V=

1

3Sh 正棱

S侧=

1

2(C+C′)h′

V=

1

3(S上+S下+

S上S下)h 球S球面=4πR2V=

4

3πR

3

1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.

2.直线与平面的位置关系在判断时最易忽视“线在面内”.

3.直线与平面平行的判定中易忽视“线在面内”这一关键条件.

4.证明线面垂直时,易忽视面内两条线为相交线这一条件.

5.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.

6.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.

空间中的平行问题

空间平行关系的判定方法

(1)判定线线平行的方法

①利用线线平行的定义证共面而且无公共点(结合反证法);

②利用平行公理4;

③利用线面平行的性质定理;

④利用线面垂直的性质定理(若a⊥α,b⊥α,则a∥b);

⑤利用面面平行的性质定理(若α∥β,α∩γ=a,β∩γ=b,则a∥b);

⑥利用平行四边形的性质、三角形中位线、梯形中位线、线段对应成比例等.

(2)判定线面平行的方法

①线面平行的定义(无公共点);

②利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);

③利用面面平行的性质定理(α∥β,a?α?a∥β);

④利用面面平行的性质(α∥β,a?α,a?β,a∥α?a∥β).

(3)判定面面平行的方法

①平面平行的定义(无公共点);

②面面平行的判定定理(若a∥β,b∥β,a、b?α,且a∩b=A?α∥β);

③面面平行的判定定理的推论(若a∥a′,b∥b′,a?α,b?α且a∩b=A,a′?β,b′?β,且a′∩b′=A′,则α∥β);

④线面垂直的性质定理(若a⊥α,a⊥β?α∥β);

⑤平面平行的性质(传递性:α∥β,β∥γ?α∥γ).

如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、

G分别是BC、DC、SC的中点,求证:

(1)直线EG∥平面BDD1B1;

(2)平面EFG∥平面BDD1B1.

【证明】(1)如图,连结SB,因为E、G分别是BC、SC的中点,所

以EG∥SB.

又因为SB?平面BDD1B1,

EG?平面BDD1B1,

所以直线EG∥平面BDD1B1.

(2)连结SD,因为F、G分别是DC、SC的中点,

所以FG∥SD.

又因为SD?平面BDD1B1,FG?平面BDD1B1,

所以FG∥平面BDD1B1,且EG?平面EFG,

FG?平面EFG,EG∩FG=G,

所以平面EFG∥平面BDD1B1.

空间中的垂直问题

空间垂直关系的判定方法

(1)判定线线垂直的方法

①计算所成的角为90°(包括平面角和异面直线所成的角);

②利用线面垂直的性质(若a⊥α,b?α,则a⊥b);

③面面垂直的定义:若两平面垂直,则两平面相交形成的二面角的平面角为90°.

(2)判定线面垂直的方法

①线面垂直定义(一般不易验证任意性);

②线面垂直的判定定理(a⊥b,a⊥c,b?α,c?α,b∩c=M?a⊥α);

③平行线垂直平面的传递性质(a∥b,b⊥α?a⊥α);

④面面垂直的性质(α⊥β,α∩β=l,a?β,a⊥l?a⊥α);

⑤面面平行的性质(a⊥α,α∥β?a⊥β);

⑥面面垂直的性质(α∩β=l,α⊥γ,β⊥γ?l⊥γ).

(3)判定面面垂直的方法

①根据定义(作两平面构成二面角的平面角,计算其为90°);

②面面垂直的判定定理(a⊥β,a?α?α⊥β).

如图,四边形ABCD为正方形,EA⊥平面ABCD,EF∥AB,

AB=4,AE=2,EF=1.

(1)求证:BC⊥AF;

(2)试判断直线AF与平面EBC是否垂直.若垂直,请给出证明;若不垂直,请说明理由.

【解】(1)证明:因为EF∥AB,

所以EF与AB确定平面EABF,

因为EA⊥平面ABCD,所以EA⊥BC.

由已知得AB⊥BC且EA∩AB=A,

所以BC⊥平面EABF.又AF?平面EABF,所以BC⊥AF.

(2)直线AF垂直于平面EBC.

证明如下:由(1)可知,AF⊥BC.

在四边形EABF中,AB=4,AE=2,EF=1,∠BAE=∠AEF=90°,

所以tan∠EBA=tan∠F AE=1

2,则∠EBA=∠F AE.

设AF∩BE=P,因为∠P AE+∠P AB=90°,故∠PBA+∠P AB=90°.则∠APB=90°,即EB⊥AF.

又因为EB∩BC=B,所以AF⊥平面EBC.

空间几何体的表面积与体积

(1)已知三棱柱的底面是边长为4的正三角形,侧棱长为3,一条侧棱与相邻两边所成的角都是60°,求棱柱的侧面积.

(2)已知三棱锥A-BCD中,AB=CD=1,BC=BD=AC=AD=2.求三棱锥A-BCD的体积.

【解】(1)如图,侧棱AA1与底边AB、AC所成的角为60°,

过A1作A1O⊥底面ABC,连结AO,

过A1作A1D⊥AB于D,连结OD,

因为∠A 1AB =∠A 1AC =60°, 所以AO 为∠BAC 的平分线,

又因为△ABC 为正三角形,所以AO ⊥BC , 又因为A 1O ⊥BC ,所以BC ⊥平面AA 1O ,

所以BC ⊥AA 1,所以BC ⊥BB 1,所以四边形BCC 1B 1为矩形,得:S 三棱柱侧

=S ?ABB 1A 1

+S ?ACC 1A 1+S 矩形BCC 1B 1

=3×4×sin 60°+3×4×sin 60°+3×4=12(3+1). (2)如图所示,取AB 的中点M ,连结CM 、DM ,则平面CDM 把三棱锥分成两个小三棱锥.

因为AC =BC ,所以AB ⊥CM . 因为AD =BD ,所以AB ⊥DM .

因为CM ∩DM =M ,所以AB ⊥平面CDM . CM =DM =

BC 2-BM 2=

22-

????122

=152

. 取CD 的中点N ,连结MN ,则MN ⊥CD . 所以MN =

CM 2-CN 2=

????1522-???

?122

=142.

从而S △CDM =12CD ·MN =12×1×142=14

4

所以V A -BCD =V A -CDM +V B -CDM =13S △CDM ·AM +13S △CDM ·BM =13S △CDM ·AB =13×14

4×1

=14

12

.

1.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( )

A.E ,F ,G ,H 一定是各边的中点

B.G ,H 一定是CD ,DA 的中点

C.BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GC

D.AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC

解析:选D.由于BD ∥平面EFGH ,所以有BD ∥EH ,BD ∥FG ,则AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC .

2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,若E 是A 1C 1的中点,则与直线CE 垂直的线段有 .

解析:易证BD⊥平面CC1E,则BD⊥CE.

同理,B1D1⊥CE.

★★答案★★:BD、B1D1

3.如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:

①BC⊥PC;②OM∥平面APC;

③点B到平面P AC的距离等于线段BC的长,

其中正确的是.(填序号)

解析:对于①,因为P A⊥平面ABC,所以P A⊥BC,因为AB为⊙O的直径,所以BC⊥AC,所以BC⊥平面P AC,又PC?平面P AC,所以BC⊥PC;

对于②,因为点M为线段PB的中点,

所以OM∥P A,

因为P A?平面P AC,所以OM∥平面P AC;

对于③,由①知BC⊥平面P AC,所以线段BC的长即是点B到平面P AC的距离,故①②③都正确.

★★答案★★:①②③

4.如图,在直三棱柱ABC-A1B1C1中,已知AB=AC,M,N,P分

别是BC,CC1,BB1的中点.

求证:(1)平面AMP⊥平面BCC1B1;

(2)A1N∥平面AMP.

证明:(1)因为直三棱柱ABC-A1B1C1,

所以BB1⊥底面ABC,

因为AM?底面ABC,所以BB1⊥AM,

又因为M为BC中点,且AB=AC,所以AM⊥BC.

又BB1∩BC=B,BB1?平面BB1C1C,BC?平面BB1C1C,

所以AM⊥平面BB1C1C.

又因为AM?平面APM,

所以平面APM⊥平面BB1C1C.

(2)取C1B1中点D,连结A1D,DN,DM,B1C.

由于D,M分别为C1B1,CB的中点,

所以DM∥CC1且DM=CC1,故DM∥AA1且DM=AA1.

则四边形A1AMD为平行四边形,

所以A1D∥AM.

又A1D?平面APM,AM?平面APM,

所以A1D∥平面APM.

由于D,N分别为C1B1,CC1的中点,

所以DN∥B1C.

又P,M分别为BB1,CB的中点,

所以MP∥B1C.则DN∥MP.

又DN?平面APM,MP?平面APM,

所以DN∥平面APM.

由于A1D∩DN=D,

所以平面A1DN∥平面APM.

由于A1N?平面A1DN,所以A1N∥平面APM.

5.如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=2,

等边△ADB以AB为轴运动.

(1)当平面ADB⊥平面ABC时,求CD;

(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.

解:(1)取AB的中点E,连结DE,CE,因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,可知DE⊥CE,由已知可得DE=3,EC=1,在Rt△DEC中,CD=DE2+EC2=2.

(2)当△ADB以AB为轴转动时,总有AB⊥CD.

证明如下:①当D在平面ABC内时,因为AC=BC,AD=BD,

所以C,D都在线段AB的垂直平分线上,即AB⊥CD.

②当D不在平面ABC内时,由(1)知AB⊥DE.

又AC=BC,所以AB⊥CE.又DE,CE为相交直线,所以AB⊥平面CDE,由CD?平面

CDE,得AB⊥CD.综上所述,总有AB⊥CD.

必修 立体几何单元测试题及答案

M D' D C B A 立体几何单元测验题 一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为 A . 152 π B .10π C .15π D .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是 A .ααα??∈∈∈∈l B l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥?⊥?⊥I C .,l A l A αα?∈?? D .βαβα与不共线,,且?∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有 A .0个 B .1个 C .3个 D .0个或1个 4.下列说法正确的是 A .平面α和平面β只有一个公共点 B .两两相交的三条直线共面 C .不共面的四点中,任何三点不共线 D .有三个公共点的两平面必重合 5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为 A .异面直线 B .平行直线 C .相交直线 D .平行直线或异面直线 6.已知正方形ABCD ,沿对角线ABC AC ?将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( ) A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是 A 2S B .2S C .22S D .4S 9.直线l 在平面α外,则 A .α//l B .α与l 相交 C .α与l 至少有一个公共点 D .α与l 至多有一个公共点 10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥?===1与平面M 成030角,则 D C 、间的距离为( ) A .1 B .2 C .2 D .3 11.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系

高一数学必修一第二章知识总结

高一数学必修一第二章知识总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: )1,,,0(* >∈>= n N n m a a a n m n m , )1,,,0(1 1 * >∈>= =- n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a 〃s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a a b =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;

(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真 数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 指数 对数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log 〃=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log = . (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5 x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a .

立体几何章末检测(一)

章末检测 一、填空题 1. 下列推理错误的是________. ①A ∈l ,A ∈α,B ∈l ,B ∈α?l ?α ②A ∈α,A ∈β,B ∈α,B ∈β?α∩β=AB ③l ?α,A ∈l ?A ?α ④A ∈l ,l ?α?A ∈α 2. 长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于________. 3. 已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________. 4. 一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占 底面圆周长的14 ,则油桶直立时,油的高度与桶的高度的比值是 ________. 5. 下列命题正确的是________. ①若两条直线和同一个平面所成的角相等,则这两条直线平行; ②若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行; ③若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行; ④若两个平面都垂直于第三个平面,则这两个平面平行. 6. 在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E 、F 、G 、H 四点,如果EF , GH 交于一点P ,则下列结论正确的是________. ①P 一定在直线BD 上; ②P 一定在直线AC 上; ③P 一定在直线AC 或BD 上; ④P 既不在直线AC 上,也不在直线BD 上. 7. 平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ________. 8. 下列四个命题: ①若a ∥b ,a ∥α,则b ∥α; ②若a ∥α,b ?α,则a ∥b ; ③若a ∥α,则a 平行于α内所有的直线; ④若a ∥α,a ∥b ,b ?α,则b ∥α. 其中正确命题的序号是________.

必修一数学第二章测试卷答案

必修一基本初等函数(I)测试题姓名:_______________班级:_______________考号:_______________ 1、已知函数,若函数有四个零点,则实数的取值范围为( ?) A.?????? B.?????? ?? ??? C.?????? ? D. 2、若函数在(,)上既是奇函数又是增函数,则函数 的图象是??????????????????????????????????????? (? ???) 3、D已知定义在R上的奇函数f(x)满足f(2+x)=f(-x),当0≤x≤1时,f(x)=x2,则f(2015)= ( ??) A.-1?? ??? ??? B.1 ??? ??? ??? ??? C.0 ??? ??? ??? ??? ??? D.20152 4、已知函数为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是( ??) A.?????? B.??????? C.????? D. 5、下图可能是下列哪个函数的图象(???? ) . ?????????. . ?????????.

6、?已知 ,, ,则的大小关系是(??) A .?????? B .?????? C .?????? D . 7、设 ,, ,则的大小关系是 A.??????? B. ?????? C.??????? D. 8、?下列函数中值域为(0,)的是(??? ) A. ????? B. ????? C. ????? D. 9、 已知函数为自然对数的底数) 与的图象上存在关于轴对称的点, 则实数的取值范围是( ??) A .?????? B .??????? C .????? D . 10、? 已知函数,若,则的取值范围是( ???) A .??????? B .?????? C .???????? D . 11 、已知函数 的最小值为(??? ) ??? A.6????????? ? ??? B.8????????????? ? C.9???????????? ?? D.12

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

立体几何1 单元测试

立体几何一 一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.从长方体一个顶点出发的三个面的面积分别为6,8,12,则其对角线的长为 (A)3 (B)5 (C) 26 (D)29 2.在空间,下列命题中正确的个数为 ①平行于同一直线的两条直线平行;②垂直于同一直线的两条直线平行; ③平行于同一平面的两条直线平行;④垂直于同一平面的两条直线平行; (A )0 (B )1 (C )2 (D )3 3.棱长为a 的正方体外接球的表面积为 22224.3.2..a D a C a B a A ππππ 4. 在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立... 是 A .BC//平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PAE ⊥平面ABC 5.已知直线m 、n 、l 与平面βα,,给出下列六个命题: ①若;,,//m n n m ⊥⊥则αα②若.,//,βαβα⊥⊥则m m ③若m l m l //,//,//,//则βαβα ④若不共面与则点m l m A A l m ,,,?=??αα ⑤若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ⑥.//,//,//,,,βαββαα则点m l A m l m l =?? 其中假命题有 A.0 B .1 C .2 D .3 6.设γβα、、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是 A . l m l ⊥=?⊥,,βαβα B . γβγαγα⊥⊥=?,,m C . αγβγα⊥⊥⊥m ,, D . αβα⊥⊥ ⊥m n n ,, 7.设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B —APQC 的体积为 A .16 V B .14 V C .13 V D .12 V 8.对于不重合的两个平面α与β,给定下列条件中,可以判定α与β平行的条件有 ①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等; ④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β,

最新高一数学必修一第二章知识点总结(1)

〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值 (1)函数的单调性 ①定义及判定方法 函数的 性质 定义图象判定方法 函数的 单调性 如果对于属于定义域I内某 个区间上的任意两个自变量 的值x1、x2,当x.1 . < x ..2.时,都 有f(x ...1.)f(x .....2.).,那么就说 f(x)在这个区间上是减函数 .... y=f(X) y x o x x 2 f(x ) f(x )2 1 1 (1)利用定义 (2)利用已知函数的 单调性 (3)利用函数图象(在 某个区间图 象下降为减) (4)利用复合函数 ②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为 增函数,减函数减去一个增函数为减函数. ③对于复合函数[()] y f g x =,令() u g x =,若() y f u =为增,() u g x =为增,则[()] y f g x =为增;若() y f u =为减,() u g x =为减,则[()] y f g x =为增;若() y f u =为增,() u g x =为减,则[()] y f g x =为减;若() y f u =为减 [()] y f g x =为减. (2)打“√”函数()(0) a f x x a x =+>的图象与性质 () f x分别在(,a -∞、,) a+∞上为增函数,分别在[,a 减函数. (3)最大(小)值定义 ①一般地,设函数() y f x =的定义域为I,如果存在实数M满足:( 对于任意的x I ∈,都有() f x M ≤;

高中数学竞赛_立体几何【讲义】

第十二章立体几何 一、基础知识 公理1 一条直线。上如果有两个不同的点在平面。内.则这条直线在这个平面内,记作:a?a. 公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。 公理3 过不在同一条直线上的三个点有且只有一个平面。即不共线的三点确定一个平面. 推论l 直线与直线外一点确定一个平面. 推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面. 公理4 在空间内,平行于同一直线的两条直线平行. 定义 1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离. 定义 2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外. 定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直. 定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直. 定理2 两条直线垂直于同一个平面,则这两条直线平行. 定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直. 定理 4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离. 定义 5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角. 结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角. 定理4 (三垂线定理)若d为平面。的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若c⊥b,则c⊥a.逆定理:若c⊥a,则c⊥b. 定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行 定理6 若直线。与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b. 结论2 若直线。与平面α和平面β都平行,且平面α与平面β相交于b,则a//b. 定理7 (等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等. 定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交. 定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β. 定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b. 定义7 (二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角. 它的取值范围是[0,π]. 特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即α⊥β. 定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直. 定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内. 定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直. 定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)

高中数学立体几何讲义

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) A a A a ∈ 点A 在直线a 上。 A a A a ? 点A 不在直线a 上。 A α A α∈ 点A 在平面α内。 A α A α? 点A 不在平面α内。 b a A a b A =I 直线a 、b 交于A 点。 a α a α? 直线a 在平面α内。 a α a α=?I 直线a 与平面α无公共点。 a A α a A α=I 直线a 与平面α交于点A 。 l αβ=I 平面α、β相交于直线l 。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈? ??∈? ?。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 B A α

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式: A l A ααββ∈? ?=?∈? I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB I α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且αI β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB I CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈αI β. 又∵αI β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , α D C B A E F H G α D C B A l 例2 β M

空间向量与立体几何单元测试试卷

五河二中高二数学测试卷(理科) 一、选择题: 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( ) A .0 B .1 C . 2 D .3 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 3.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =u u u r ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角>

高中数学必修一第二章公式全总结

指数运算公式 一、根式 1、 () ()02 ≥=a a a 2、???????<-=>==0 ,0,00,2 a a a a a a a 3、 () ()0≥=a n a a n n 为偶数时要求当 4、???? ?=为偶数 为奇数 n a n a a n n ,,二、指数幂 1、()010 ≠=a a 2、() a a a a a n n 101 1 =≠=--特别: 3、n n a a =1 4、n m n m a a = 5、n m n m n m a a a 1 1= = - 6、n m n m a a a +=? 7、n m n m a a a -=÷ 8、() n m n m a a = 9、()n n n b a b a ?=?注:① 0的0次幂没有意义,0没有负指数幂. ②负数没有偶次方根.(即负数不能开偶次方) 对数运算公式 对数的底数大于0且不等于1,真数大于0 1、指对互换: ()10log ≠>=?=a a y x a y a x 且 2、01log =a 3、1log =a a 4、()对数恒等式N a N a =log 5、()N M N M a a a log log log +=? 6、N M N M a a a log log log -= 7、b m n b a n a m log log = 公式7是如下两个公式的结合: () ()b m b b n b a a a n a m l o g 1l o g 2l o g l o g 1== 8、换底公式:

a b b c c a l o g l o g l o g = 换底公式的常用变形: ()() 1 l o g l o g 2l o g 1 l o g 1=?= a b a b b a b a 常用的代数恒等式 1、平方差公式:()()b a b a b a -+=-22 2、完全平方公式:()()?????+-=-++=+2 222 2222b ab a b a b ab a b a 3、十字相乘法公式(不用背,要求会方法): ()()()ab x b a x b x a x +++=++2 4、立方和(差)公式: ()( )()() ?????++-=-+-+=+2 2332 233b ab a b a b a b ab a b a b a 5、完全立方公式: ()()?????-+-=-+++=+3 22333 22333333b ab b a a b a b ab b a a b a 6、三元完全平方公式: ()ca bc ab c b a c b a 2222 222 +++++=++

立体几何讲义(线面平行,垂直,面面垂直)

D C B 1 A 1 C 1 立体几何讲义------线面平行,垂直,面面垂直 立体几何高考考点: 选择题:三视图 选择填空:球类题型 大题 (1)线面平行、面面平行 线面垂直、面面垂直 【运用基本定理】 (2)异面直线的夹角 线面角 面面角(二面角) 【几何法、直角坐标系法】 (3)锥体体积 【找到一个好算的高,运用公式】 点面距离 【等体积法】 线面平行 1、如图所示,边长为4的正方形 与正三角形 所在平面互相垂直,M 、Q 分别是PC ,AD 的中点.求证:PA ∥面BDM 2、如图,在直三棱柱ABC-A 1B 1C 1中, D 为AC 的中点,求证:;平面D BC AB 11// 3、如图,正三棱柱111C B A ABC 的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1. A B C A 1 B 1 C 1 D

4、如图,在四棱锥P ﹣ABCD 中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面PAD . 5、如图,PA 垂直于矩形ABCD 所在的平面,AD=PA=2,CD=2,E 、F 分别是AB 、PD 的中点.求证:AF ∥平 面PCE ; 6、(2012·辽宁)如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =2,AA ′=1,点M 、N 分别为A ′B 和B ′C ′的中点. 证明:MN ∥平面A ′ACC ′; 7、【2015高考山东】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点. (Ⅰ)求证://BD 平面FGH ;

高中数学必修一第二章测试题正式

秀全中学2012——2013学年第一学期高一数学 第二章单元检测(满分120分) 一、选择题(本大题共10小题,每小题4分,共40分。在每小题只有一项是符合要求的) 1.函数32+=-x a y (a >0且a ≠1)的图象必经过点 (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2.函数lg y x = A.是偶函数,在区间(,0)-∞ 上单调递增 B.是偶函数,在区间(,0)-∞上单调递减 C.是奇函数,在区间(0,)+∞ 上单调递增 D .是奇函数,在区间(0,)+∞上单调递减 3.三个数6 0.70.70.76log 6, ,的大小关系为 A . 60.70.70.7log 66<< B . 60.7 0.7log 60.76<< C .0.7 60.7log 660.7<< D . 60.70.70.76log 6<< 4.函数12 log (32)y x = - A .[1,)+∞ B .2(,)3+∞ C .2(,1]3 D .2[,1]3 5、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是 (A )y =(0.9576) 100 x (B )y =(0.9576)100x (C )y =( )x (D )y =1-(0.0424) 100 x 6、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a = (A ) (B ) 2 (C ) 3 (D ) 7、下列函数中,在区间(0,2)上不是增函数的是 (A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22= 8、函数 与 ( )在同一坐标系中的图像只可能是 1009576.02131x a y =x y a log -=1,0≠>a a 且

高中数学立体几何之面面平行的判定与性质讲义及练习电子教案

高中数学立体几何之面面平行的判定与性质讲义及练习

面面平行的判定与性质 一、基本内容 1.面面平行的判定 文字 图形 几何符号 简称 判定定理1 判定定理2 2.面面平行的性质 文字 图形 几何符号 简称 性质定理1 性质定理2 二、例题 1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面. 2.在正方体1111ABCD A B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点. 求证:平面1D EF ∥平面BDG . A 1 A B 1 C 1 C D 1 D G E F

F E D B A P C 3.如图,在四棱锥ABCD P -中,底面ABCD 是正方形, PA ⊥平面ABCD , E 是PC 中点,F 为线段AC 上一点. (Ⅰ)求证:EF BD ⊥; (Ⅱ)试确定点F 在线段AC 上的位置,使EF //平面PBD . 4. 在四棱锥P ABCD 中,AB //CD ,AB AD ,4,22,2AB AD CD ,PA 平面 ABCD ,4PA . (Ⅰ)设平面PAB 平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ; (Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC 所 成角的正弦值为33,求PQ PB 的值. 5. 在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠?, EB ⊥平面ABCD , EF//AB ,2AB=,=1EF ,=13BC ,且M 是BD 的中点. (Ⅰ)求证://EM 平面ADF ; (Ⅱ)在EB 上是否存在一点P ,使得CPD ∠最大? 若存在,请求出CPD ∠的正切值;若不存在, 请说明理由. P D C B A C A F E B M D

立体几何单元测试题

立体几何单元测试题 一.填空题: 1、若一个球的体积为π34,则它的表面积为________________. 2、若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为 。 3、若三棱锥的三个侧圆两两垂直,且侧棱长均为3,则其外接球的表面积是 . 4、设,αβ为两个不重合的平面,,m n 为两条不重合的直线,给出下列四个命题: ①若,,m n m n αα⊥⊥?则n ∥α;②若,,,,m n n m αβαβα⊥?=?⊥则n β⊥; ③若,m n ⊥m ∥α,n ∥β,则αβ⊥;④若,,n m αβα??与β相交且不垂直,则n 与m 不垂直.,其中,所有真命题的序号是 ___________ 5、设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列命题: ①若m β?,αβ⊥,则m α⊥;②若m//α,m β⊥,则αβ⊥; ③若αβ⊥,αγ⊥,则βγ⊥;④若m αγ=I ,n βγ=I ,m//n ,则//αβ. 上面命题中,真命题的序号是 ________ (写出所有真命题的序号). 6、设b a ,是两条直线,βα,是两个平面,则下列4组条件中所有能推得b a ⊥的条件是 ________ 。(填序号) ①,α?a b ∥β,βα⊥;②βαβα⊥⊥⊥,,b a ; ③,α?a β⊥b ,α∥β;④α⊥a ,b ∥β,α∥β。 7、如图,已知正三棱柱 111 ABC A B C -的底面边长为2cm , 高位5cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周 到达 1 A 点的最短路线的长为 ________ cm . 8、已知平面,,αβγ,直线,l m 满足:,,,αγγαγβ⊥==⊥I I m l l m ,那么 ①m β⊥; ②l α⊥; ③βγ⊥; ④αβ⊥.可由上述条件可推出的结论有________ (请将你认为正确的结论的序号都填上). 9、在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别为棱111,AA D C 上的动点,点G 为正方形11B BCC 的中心,则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为 . 1 C A B C 1 A 1 B (第7题图)

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 棱柱的分类 棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成图1-2 长方体

的角分别是α、β、γ,那么: cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S直棱柱侧面 = c·h (c为底面周长,h为棱柱的高) S直棱柱全 = c·h+ 2S底 V棱柱 = S底·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 图1-3 圆柱 2-2 圆柱的性质 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4 圆柱的面积和体积公式 S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高) S圆柱全= 2π r h + 2π r2 V圆柱 = S底h = πr2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴棱锥:有一个面是多边形,其余各面是 有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。

高一讲义立体几何

立体几何 学习目标 1、认识由柱、锥、台、球组成的几何组合体的结构特征; 2、理解掌握立体图形的平行平面投影三视图; 3、能运用公式求解柱体、锥体和台体的体积,了解球的表面积和体积公式; 4、会用柱、锥、台体和球的表面积和体积公式求简单几何体的表面积和体积. 教学内容 1、如下图中所示几何体中是棱柱有( ) A .1 B .2个 C .3个 D .4个 2、如下图所示,正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AA 1、C 1D 1的中点,G 是正方形BCC 1B 1的中心,则四边形AGFE 在该正方体的各个面上的射影可能是下图中的________. 3、已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A . 323 π B .4π C .2π D .43π 4、如右图是某几何体的三视图,则该几何体的体积为( ) A .9122π+ B .9 182 π+ C .942π+ D .3618π+

空间几何体的结构 【知识梳理】 1、棱柱的结构特征 定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面. 2、棱锥的结构特征 定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱; 棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥……;

高中数学 第二章 空间向量与立体几何章末检测(A)北师大版选修2-1

第二章 空间向量与立体几何(A) (时间:120分钟 满分:150分) 一、选择题(本大题共10小题,每小题5分,共50分) 1.以下命题中,不正确的个数为( ) ①|a |-|b |=|a +b |是a ,b 共线的充要条件;②若a∥b ,则存在唯一的实数λ,使a =λb ;③若a·b =0,b·c =0,则a =c ;④若a ,b ,c 为空间的一个基底,则a +b ,b +c ,c +a 构成空间的另一个基底; ⑤|(a·b )·c |=|a |·|b |·|c |. A .2 B .3 C .4 D .5 2.直三棱柱ABC —A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → 等于( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 3.已知a =(2,4,5),b =(3,x ,y ),若a∥b ,则( ) A .x =6,y =15 B .x =3,y =15 2 C .x =3,y =15 D .x =6,y =15 2 4.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a |=3,且a 分别与AB →,AC → 垂直,则向量a 为( ) A .(1,1,1) B .(-1,-1,-1) C .(1,1,1)或(-1,-1,-1) D .(1,-1,1)或(-1,1,-1) 5.已知A (-1,0,1),B (0,0,1),C (2,2,2),D (0,0,3),则sin 〈AB →,CD → 〉等于( ) A .-23 B.23 C.53 D .-53 6.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成角的大小为( ) A .60° B .90° C .105° D .75° 7.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥β C .α,β相交但不垂直 D .以上均不正确 8.若两点A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB → |取最小值时,x 的值等于( ) A .19 B .-87 C.87 D.19 14 9.

相关文档
最新文档