单电源低功耗运算放大器AD820AD822AD824的特点与应用

单电源低功耗运算放大器AD820AD822AD824的特点与应用
单电源低功耗运算放大器AD820AD822AD824的特点与应用

精心收集:单电源供电时的运算放大器应用大全

单电源运算放大器应用集锦 (一):基础知识 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V 也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC -引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V 也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail 的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail 的电压。虽然器件被指明是轨至轨(Rail-To-Rail)的,如果运放的输出或者输入不支持轨至轨,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是轨至轨。这样才能保证系统的功能不会退化,这是设计者的义务。

运算放大器的保护 放大器输入保护的利与弊

目前广泛应用的电压型集成运算放大器是一种高放大倍数的直接耦合放大器。在该集成电路的输入与输出之间接入不同的反馈网络,可实现不同用途的电路,例如利用集成运算放大器可非常方便的完成信号放大、信号运算(加、减、乘、除、对数、反对数、平方、开方等)、信号的处理(滤波、调制)以及波形的产生和变换。集成运算放大器的种类非常多,可适用于不同的场合。 3.2.1 集成运算放大器的分类 按照集成运算放大器的参数来分,集成运算放大器可分为如下几类。 1.通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。 2.高阻型运算放大器 这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般r id>(109~101 2)Ω,I IB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高, 输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。 3.低温漂型运算放大器

在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、 AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。 4.高速型运算放大器 在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率S R一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、μA715等,其S R=5 0~70V/μs,BW G>20MHz。 5.低功耗型运算放大器 由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μW,可采用单节电池供电。 6.高压大功率型运算放大器 运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅 助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D 41集成运放的电源电压可达±150V,μA791集成运放的输出电流可达1A。 3.2.2 正确选择集成运算放大器 集成运算放大器是模拟集成电路中应用最广泛的一种器件。在由运算放大器组成的各种系统中,由于应用要求不一样,对运算放大器的性能要求也不一样。

单电源运放运算放大器图

单电源运放图集 前言 前段时间去福州出差,看到TI的《A Single-Supply Op-Amp Circuit Collection》这篇文章,觉得不错,就把它翻译了过来,希望能对大家有点用处。这篇文章没有介绍过多的理论知识,想要深究的话还得找其他的文章,比如象这里提到过的《Op Amps for Everyone》。我的E文不好,在这里要感谢《金山词霸》。 ^_^ 水平有限(不是客气,呵呵),如果你发现什么问题请一定指出,先谢谢大家了。 E-mail:wz_carbon@https://www.360docs.net/doc/2c10921536.html, 王桢 10月29日

介绍 我们经常看到很多非常经典的运算放大器应用图集,但是他们都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1. 1电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限V om以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在V om之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明V oh和V ol。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一 通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。另外现在运放的供电电压也可以是3V也或者会更低。出于这个原因在单电源供电的电路中使用的运放基本上都是Rail-To-Rail的运放,这样就消除了丢失的动态范围。需要特别指出的是输入和输出不一定都能够承受Rail-To-Rail的电压。虽然器件被指明是Rail-To -Rail的,如果运放的输出或者输入不支持Rail-To-Rail,接近输入或者接近输出电压极限的电压可能会使运放的功能退化,所以需要仔细的参考数据手册是否输入和输出是否都是Rail-To-Rail。这样才能保证系统的功能不会退化,这是设计者的义务。1. 2虚地

运放双电源供电改为单电源供电及其之间的区别

运放双电源供电改为单电源供电及其之间的区别 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/ 2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。

图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl 十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。 思考题(1)图3是一种增益为10、输入阻抗为10kΩ、低频响应近似为30Hz、驱动负载为1kΩ的单电源反相放大器电路。该电路的不失真输入电压的峰—峰值是多少呢?(提示:一般运算放大器的典型输入、输出特性如图4 所示);(2)图5是单电源差分放大器。若输入电压为50Hz交流电压,V1=1V,V2=O.4V,它的输出电压该是多少呢?

(整理)运算放大器基本电路大全

运算放大器基本电路大全 运算放大器电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC -,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一

LM324四运放集成电路图文详解

LM324四运放集成电路图文详解 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图2。 图 1 图 2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用, 价格低廉等优点,因此被广泛应用在各种电路中。下面介绍其应用实例。 1.反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大 等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是 消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。

2.同相交流放大器 见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。 电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 3.交流信号三分配放大器 此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai 输入电阻高,运放 A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时 Rf=0 的情况,故各放大器电压放大倍数均为 1 ,与分立元件组成的射极跟随器作用相同 R1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出端亦为1/2V+,通过输入输出电容的隔直作用,取出交流信号,形有源带通滤波器许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同

通用集成运算放大器测试方法

运算放大器电参数测试方法通用集成运算放大器电路测试方法 作者:李雷 一、器件介绍 集成运算放大器(简称运放)是模拟集成电路中较大的一个系列,也是各种电子系统中不可缺少的基本功能电路,它广泛的应用于各种电子整机和组合电路之中。本文主 要介绍通用运算放大器的测试原理和实用测试方法。 1.运算放大器的分类 从不同的角度,运算放大器可以分为多类: 1.从单片集成规模上可分为:单运放(如:OP07A)、双运放(AD712)、四运放 (LM124)。 2.从输出幅度及功率上可分为:普通运放、大功率运放(LM12)、高压运放(OPA445)。 3.从输入形式上可分为:普通运放、高输入阻抗运放(AD515、LF353)。 4.从电参数上可分为:普通运放、高精密运放(例如:OP37A)、高速运放(AD847)等。 5.从工作原理上可分为:电压反馈型运放、电流反馈型运放(AD811)、跨倒运放(CA3180)等。 6.从应用场合上可分为:通用运放、仪表运放(INA128)、音频运放(LM386)、视频运放(AD845)、隔离运放(BB3656)等。 2.通用运放的典型测试原理图(INTERSIL公司)

李雷 第 1 页2008-9-10

运算放大器电参数测试方法 二、电参数的测试方法以及注意事项 一般来说集成运算放大器的电参数分为两类:直流参数和交流参数。直流参数主要包括:失调电压、偏置电流、失调电流、失调电压调节范围、输出幅度、大信号电压增益、电源电压抑制比、共模抑制比、共模输入范围、电源电流十项。交流参数主要包括:大信号压摆率、小信号过冲、单位增益带宽、建立时间、上升时间、下降时间六项。而其中电源电流、偏置电流、失调电流、失调电压、输出幅度、开环增益、电源电压抑制比、共模抑制比、大信号压摆率、单位增益带宽这十项参数反映了运算放大器的精度、 速度、放大能力等重要指标,故作为考核运放器件性能的关键参数。 通常运算放大器电参数的测试分为两种方法:一种是单管测试法,另一种是带辅助放大器的测试方法。尽管单管测试法外围线路较为简单,但由于不同运放各项电参数差异很大,不利于计算机测试系统实现自动测试,故在生产测试中较少采用(有兴趣的人员可参考北京市半导体器件研究所李铭章教授编写的《运算放大器电参数测试方法》)。 为了能采用统一的测量线路实现自动测试,发展了利用辅助放大器进行测试的新方法。 该测试方法具有以下优点:1)被测器件的直流状态能自动稳定,且易于建立测试条件; 2)环路具有较高的增益,有利于微小量的精确测量;3)可在闭环条件下实现开环测试; 4)易于实现不同参数测试的转换,有利于实现自动测试。鉴于运放辅助放大器测试方法所具有的优越性,该方法已被国际电工委员会(IEC)确定为运算放大器测试标准。 我测试中心基于LTX—77 测试系统开发的通用运放测试包也是参考了该标准而设计的(可参考由胡浩同志编写的《运放测试包规范》)。图 1 为运放的辅助放大器测试方法的基本原理图。 图中运放A 为辅助放大器,DUT 为被测运放。辅助放大器应满足以下要求:a.开环增益大于60Db; b.输入失调电流和输入偏值电流应很小; 李雷 第 2 页2008-9-10

运算放大器单电源供基本电路大全

运算放大器单电源供基本电路大全 我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。 在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。 1.1 电源供电和单电源供电 所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。 绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。一般是正负15V,正负12V和正负5V也是经常使用的。输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。 单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。正电源引脚接到VCC+,地或者VCC-引脚连接到GND。将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。有一些新的运放有两个不同的最高输出电压和最低输出电压。这种运放的数据手册中会特别分别指明Voh 和Vol 。需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。(参见1.3节) 图一

通用集成运算放大器测试方法

通用集成运算放大器电路测试方法 作者:李雷 一、器件介绍 集成运算放大器(简称运放)是模拟集成电路中较大的一个系列,也是各种电子系统中不可缺少的基本功能电路,它广泛的应用于各种电子整机和组合电路之中。本文主 要介绍通用运算放大器的测试原理和实用测试方法。 1.运算放大器的分类 从不同的角度,运算放大器可以分为多类: 1.从单片集成规模上可分为:单运放(如:OP07A)、双运放(AD712)、四运放(LM124)。 2.从输出幅度及功率上可分为:普通运放、大功率运放(LM12)、高压运放(OPA445)。 3.从输入形式上可分为:普通运放、高输入阻抗运放(AD515、LF353)。 4.从电参数上可分为:普通运放、高精密运放(例如:OP37A)、高速运放(AD847)等。 5.从工作原理上可分为:电压反馈型运放、电流反馈型运放(AD811)、跨倒运放(CA3180)等。 6.从应用场合上可分为:通用运放、仪表运放(INA128)、音频运放(LM386)、视频运放(AD845)、隔离运放(BB3656)等。 2.通用运放的典型测试原理图(INTERSIL公司)

二、电参数的测试方法以及注意事项 一般来说集成运算放大器的电参数分为两类:直流参数和交流参数。直流参数主要包括:失调电压、偏置电流、失调电流、失调电压调节范围、输出幅度、大信号电压增益、电源电压抑制比、共模抑制比、共模输入范围、电源电流十项。交流参数主要包括:大信号压摆率、小信号过冲、单位增益带宽、建立时间、上升时间、下降时间六项。而其中电源电流、偏置电流、失调电流、失调电压、输出幅度、开环增益、电源电压抑制比、共模抑制比、大信号压摆率、单位增益带宽这十项参数反映了运算放大器的精度、 速度、放大能力等重要指标,故作为考核运放器件性能的关键参数。 通常运算放大器电参数的测试分为两种方法:一种是单管测试法,另一种是带辅助放大器的测试方法。尽管单管测试法外围线路较为简单,但由于不同运放各项电参数差异很大,不利于计算机测试系统实现自动测试,故在生产测试中较少采用(有兴趣的人员可参考北京市半导体器件研究所李铭章教授编写的《运算放大器电参数测试方法》)。 为了能采用统一的测量线路实现自动测试,发展了利用辅助放大器进行测试的新方法。 该测试方法具有以下优点:1)被测器件的直流状态能自动稳定,且易于建立测试条件; 2)环路具有较高的增益,有利于微小量的精确测量;3)可在闭环条件下实现开环测试; 4)易于实现不同参数测试的转换,有利于实现自动测试。鉴于运放辅助放大器测试方法所具有的优越性,该方法已被国际电工委员会(IEC)确定为运算放大器测试标准。 我测试中心基于LTX—77 测试系统开发的通用运放测试包也是参考了该标准而设计的(可参考由胡浩同志编写的《运放测试包规范》)。图 1 为运放的辅助放大器测试方法的基本原理图。 图中运放 A 为辅助放大器,DUT 为被测运放。辅助放大器应满足以下要求:a.开环增益大于60Db; b.输入失调电流和输入偏值电流应很小;

单电源供电的交流放大运放电路

运放作为模拟电路的主要器件之一,在供电方式上有单电源和双电源两种,而选择何种供电方式,是初学者的困惑之处,本人也因此做了详细的实验,在此对这个问题作一些总结。 首先,运放分为单电源运放和双电源运放,在运放的datasheet上,如果电源电压写的是(+3V-+30V)/(±1.5V-±15V)如324,则这个运放就是单电源运放,既能够单电源供电,也能够双电源供电;如果电源电压是(±1.5V-±15V)如741,则这个运放就是双电源运放,仅能采用双电源供电。 但是,在实际应用中,这两种运放都能采用单电源、双电源的供电模式。具体使用方式如下: 1:在放大直流信号时,如果采用双电源运放,则最好选择正负双电源供电,否则输入信号幅度较小时,可能无法正常工作;如果采用单电源运放,则单电源供电或双电源供电都可以正常工作; 2:在放大交流信号时,无论是单电源运放还是双电源运放,采用正负双电源供电都可以正常工作; 3:在放大交流信号时,无论是单电源运放还是双电源运放,简单的采用单电源供电都无法正常工作,对于单电源运放,表现为无法对信号的负半周放大,而双电源运放无法正常工作。要采用单电源,就需要所谓的“偏置”。而偏置的结果是把供电所采用的单电源相对的变成“双电源”。具体电路如图:首先,采用耦合电容将运放电路和其他电路直流隔离,防止各部分直流电位的相互影响。然后在输入点上加上Vcc/2的直流电压,分析一下各点的电位,Vcc是Vcc,in是Vcc/2,-Vcc是GND,

然后把各点的电位减去Vcc/2,便成了Vcc是Vcc/2,in是0,-Vcc是-Vcc/2,相当于是“双电源”!!在正式的双电源供电中,输入端的电位相对于输入信号电压是0,动态电压是Vcc是+Vcc,in是0+Vin,-Vcc是-VCC,而偏置后的单电源供电是Vcc是+Vcc,in是Vcc/2+Vin,-Vcc 是GND,相当于Vcc是Vcc/2,in是0+Vin,-Vcc是-Vcc/2,与双电源供电相同,只是电压范围只有双电源的一半,输出电压幅度相应会比较小。当然,这里面之所以可以相对的分析电位,是因为有了耦合电容的隔直作用,而电位本身就是一个相对的概念。 这里用的是反相放大电路,同相的原理类似,就是将输入端电位抬高到Vcc/2,同时注意隔直电容的应用。电路大家可以在网上找找,

单电源运算放大器滤波电路

单电源运算放大器电路应用图集(三):滤波电路(上) 这节非常深入地介绍了用运放组成的有源滤波器。在很多情况中,为了阻挡由于虚地引起的直流电平,在运放的输入端串入了电容。这个电容实际上是一个高通滤波器,在某种意义上说,像这样的单电源运放电路都有这样的电容。设计者必须确定这个电容的容量必须要比电路中的其他电容器的容量大100 倍以上。这样才可以保证电路的幅频特性不会受到这个输入电容的影响。如果这个滤波器同时还有放大作用,这个电容的容量最好是电路中其他电容容量的1000 倍以上。如果输入的信号早就包含了VCC/2 的直流偏置,这个电容就可以省略。 这些电路的输出都包含了VCC/2 的直流偏置,如果电路是最后一级,那么就必须串入输出电容。 这里有一个有关滤波器设计的协定,这里的滤波器均采用单电源供电的运放组成。滤波器的实现很简单,但是以下几点设计者必须注意: 1. 滤波器的拐点(中心)频率 2. 滤波器电路的增益 3. 带通滤波器和带阻滤波器的的Q值 4. 低通和高通滤波器的类型(Butterworth 、Chebyshev、Bessell) 不幸的是要得到一个完全理想的滤波器是无法用一个运放组成的。即使可能,由于各个元件之间的负杂互感而导致设计者要用非常复杂的计算才能完成滤波器的设计。通常对波形的控制要求越复杂就意味者需要更多的运放,这将根据设计者可以接受的最大畸变来决定。或者可以通过几次实验而最终确定下来。如果设计者希望用最少的元件来实现滤波器,那么就别无选择,只能使用传统的滤波器,通过计算就可以得到了。 3.1 一阶滤波器 一阶滤波器是最简单的电路,他们有20dB 每倍频的幅频特性 3.1.1 低通滤波器 典型的低通滤波器如图十三所示。

运算放大器积分电路图

运算放大器积分电路图 原理图1 积分运算电路的分析方法与加法电路差不多,反相积分运算电路如图1所 示。根据虚地有, 于是 由此可见,输出电压为输入电压对时间的积分,负号表明输出电压和输入电压在相位上是相反的。 当输入信号是阶跃直流电压U I时,电容将以近似恒流的方式进行充电,输出 电压与时间成线性关系。即 例:在图1的积分器的输入端加入图2中给定输入波形,画出在此输入波形作用下积分器的输出波形,电容器上的初始电压为0。积分器的参数R=10kW、C=0.1mF。 图2给出了在阶跃输入和方波输入下积分器的输出波形。画出积分器输出波形,应对应输入波形,分段绘制。例如对于图2(a)阶跃信号未来之前是一段,阶跃信号到来之后是一段。 对图2(a),当t<t0时,因输入为0,输出电压等于电容器上的电压,初始值为0; 当t≥t0时,u I = -U I,积分器正向积分,输出电压 要注意,当输入信号在某一个时间段等于零时,参阅图2(b)的1ms~2ms、 3ms~4ms…各段。积分器的输出是不变的,保持前一个时间段的最终数值。因为虚地的原因,当输入为零时,积分电阻 R 两端无电位差,故R中无电流,因此 C 不能放电,故输出电压保持不变。 实际应用积分电路时,由于运放的输入失调电压、输入偏置电流和失调电流的影响,会出现积分误差;此外,积分电容的漏电流也是产生积分误差的原因之一。

(a) 阶跃输入信号(b)方波输入信号 图2 积分器的输入和输出波形 实际的积分电路,应当采用失调电压、偏置电流和失调电流较小的运放,并在同相输入端接入可调平衡电阻;选用泄漏电流小的电容,如薄膜电容、聚苯乙烯电容,可以减少积分电容的漏电流产生的积分误差。

集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法 集成运放的性能可用一些参数来表示。 集成运放的主要参数: 1.开环特性参数 (1)开环电压放大倍数Ao。在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压 放大倍数。Ao越高越稳定,所构成运算放大电路的运算精度也越高。 (2)差分输入电阻Ri。差分输入电阻Ri是运算放大器的主要技术指标之一。它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。一般为10k~3M,高的可达1000M以上。 在大多数情况下,总希望集成运放的开环输入电阻大一些好。 (3)输出电阻Ro。在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映 了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。 (4)共模输入电阻Ric。开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。 (5)开环频率特性。开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。 2.输入失调特性 由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。通常用以下参数表示。 (1)输入失调电压Vos。在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即: Vos=Vo0/Ao 失调电压的大小反映了差动输入级元件的失配程度。当集成运放的输入端外接电阻比较小时。失调电压及其漂移是引起运算误差的主要原因之一。Vos一般在mV级,显然它越小越好。 (2)输入失调电流Ios。在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。即: Ios=Ib- — Ib+ 式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。Ios一般在零点几微安到零点零几微安数量级,其值越小越好。失调电流的大小反映了差动输入级两个晶体管B值的失配程度,当集成运放的输入端外接电阻比较大时,失调电流及其漂移将是运算误差的主要原因。(3)输入失调电流温漂dIos。温度波动对运算放大器的参数是有影响的。如温度变化时,不仅能使集成运放两输入晶体管的基极偏置电流Ib-、Ib+发生变化,而且两者的变化率也不相同。也就是输入失调电流Ios将随温度而变化,不能保持为常数。一般 常用的集成运放的dIos指标如下: ●通用I型低增益运放。在+25℃~+85℃范围约为5~20nA/℃,-40℃~+25℃范围约为 20~50nA/℃。 ●通用Ⅱ型中增益运放。dIos约为5~20nA/℃。 ●低漂移运放。dIos约为100PA/℃ (4)输入失调电压温漂dVos。在规定的工作温度范围内,Vos随温度的平均变化率,即:dVos=△Vos/△T一般为1~50uV/℃,高质量的低于0.5uV。由于该指标不像Vos可

运放单电源双电源使用方法

运放单电源双电源使用方法 运放作为模拟电路的主要器件之一,在供电方式上有单电源和双电源两种,而选择何种供电方式,是初学者的困惑之处,本人也因此做了详细的实验,在此对这个问题作一些总结。 首先,运放分为单电源运放和双电源运放,在运放的datasheet 上,如果电源电压写的是(+3V-+30V)/(±1.5V-±15V)如324,则这个运放就是单电源运放,既能够单电源供电,也能够双电源供电;如果电源电压是(±1.5V-±15V)如741,则这个运放就是双电源运放,仅能采用双电源供电。 但是,在实际应用中,这两种运放都能采用单电源、双电源的供电模式。具体使用方式如下: 1:在放大直流信号时,如果采用双电源运放,则最好选择正负双电源供电,否则输入信号幅度较小时,可能无法正常工作;如果采用单电源运放,则单电源供电或双电源供电都可以正常工作; 2:在放大交流信号时,无论是单电源运放还是双电源运放,采用正负双电源供电都可以正常工作; 3:在放大交流信号时,无论是单电源运放还是双电源运放,简单的采用单电源供电都无法正常工作,对于单电源运放,表现为无法对信号的负半周放大,而双电源运放无法正常工作。要采用单电源,就需要所谓的“偏置”。而偏置的结果是把供电所采用的单电源相对的变成“双电源”。具体电路如图:首先,采用耦合电容将运放电路和其他电路直流隔离,防止各部分直流电位的相互影响。然后在输入点上加上

Vcc/2的直流电压,分析一下各点的电位,Vcc是Vcc,in是Vcc/2,-Vcc 是GND,然后把各点的电位减去Vcc/2,便成了Vcc是Vcc/2,in是0,-Vcc是-Vcc/2,相当于是“双电源”!!在正式的双电源供电中,输入端的电位相对于输入信号电压是0,动态电压是Vcc是+Vcc,in是0+Vin,-Vcc是-VCC,而偏置后的单电源供电是Vcc是+Vcc,in是 Vcc/2+Vin,-Vcc是GND,相当于Vcc是Vcc/2,in是0+Vin,-Vcc是-Vcc/2,与双电源供电相同,只是电压范围只有双电源的一半,输出电压幅度相应会比较小。当然,这里面之所以可以相对的分析电位,是因为有了耦合电容的隔直作用,而电位本身就是一个相对的概念。 这里用的是反相放大电路,同相的原理类似,就是将输入端电位抬高到Vcc/2,同时注意隔直电容的应用。

单电源运算放大器的设计考虑

单电源运算放大器的设计考虑 2007-07-10 11:10:37 来源:Maxim Integrated Products 关键字:Maxim Integrated Products 运算放大器MAX4122 通常,单电源工作与低压工作相同,将电源由±15V或±5V变为单5V或3V,缩小了可用信号范围。因此,其共模输入范围、输出电压摆幅、CMRR、噪声及其它运算放大器的限制变得非常重要。在所有工程设计中,常常需要牺牲系统在某方面的性能,以改善另一方面的性能。下面关于单电源运算放大器指标的折中讨论也说明了这些低压放大器与传统高压产品的不同。 输入级考虑 输入共模电压范围是设计人员在确定单电源运算放大器时应该考虑的首要问题,需要强调的是满摆幅输入能力可以解决这一问题,然而,真正的满摆幅工作又会付出其它代价。 Maxim公司的大多数低压运算放大器能够允许的共模电压输入范围包含负电源电压(表1),但也只有一部分器件允许扩展到正电源电压。一般情况下,所允许的输入电压只能达到正电源电压的1V或2V以内。允许信号达到负电源电压的运算放大器称为地感应放大器,允许信号达到正、负电源电压的运算放大器称作满摆幅输入放大器。 表1. Maxim的低压运算放大器

V OS和I B的考虑 很多应用中,放大器能够为以地为参考的信号提供+2V/V或更高的增益。这些情况下,地感应放大器足以处理信号的共模范围,对于这种应用,可以获得比满摆幅输入运算放大器更好的性能。典型的满摆幅输入级使用两个差分对输入,而不是一个(图1)。

图1. (a)满摆幅输入级有两个差分对,(b)标准的地感应输入级只有一个差分对。 随着输入信号从一个电源摆幅移向另一个电源摆幅,放大器也从一个输入差分对移向另一个输入差分对。在交越点,这样的移动会引起输入偏置电流和失调电压的改变,影响这些参数的幅值和极性。失调电压的变化通常会降低满摆幅放大器(与地感应放大器相比)的失真性能和精度指标。为了将失调电压的变化减至最小,实现从一个输入差分对到另一个输入差分对的平稳转换,Maxim在其满摆幅放大器共模输入范围的高端和低端都对失调进行了调理。 为减小输入偏置电流引起的失调电压,设计人员应保持运算放大器同相端和反相端的阻抗匹配。因为输入偏置电流通常比输入失调电流大,所以,不仅对于满摆幅输入放大器,对其它所有放大器来说,阻抗匹配都是一个好的解决办法。 为减小输入偏置电流引起的失调电压,设计人员应保持运算放大器同相端和反相端的阻抗匹配。因为输入偏置电流通常比输入失调电流大,所以,不仅对于满摆幅输入放大器,对其它所有放大器来说,阻抗匹配都是一个好的解决办法。 为说明这一点,图2给出了MAX4122-MAX4129系列运算放大器(输入、输出均可达到满摆幅)的输入偏置电流随共模电压变化的曲线。随着共模输入电压从0V缓慢上升至5V,输入偏置电流绝对变化量为85nA (从-45nA至+40nA)。而技术指标中的输入失调电流仅为±1nA。因此,尽管偏置电流的大小、极性变化很大,但反相和同相输入的曲线图彼此很靠近(输入失调电流)。通过保持同相端和反相端的阻抗匹配,可以将输入偏置电流变化所引起的失调电压降至最小。

运算放大器电路及版图设计报告

目录 摘要 (2) 第一章引言 (3) 第二章基础知识介绍 (4) 2.1 集成电路简介 (4) 2.2 CMOS运算放大器 (4) 2.2.1理想运放的模型 (4) 2.2.2非理想运算放大器 (5) 2.2.3运放的性能指标 (5) 2.3 CMOS运算放大器的常见结构 (6) 2.3.1单级运算放大器 (6) 2.3.2简单差分放大器 (6) 2.3.3折叠式共源共栅(Folded-cascode)放大器 (7) 2.4版图的相关知识 (8) 2.4.1版图介绍 (8) 2.4.2硅栅CMOS工艺版图和工艺的关系 (8) 2.4.3 Tanner介绍 (9) 第三章电路设计 (10) 3.1总体方案 (10) 3.2各级电路设计 (10) 3.2.1第三级电路设计 (10) 3.2.2第二级电路设计 (11) 3.2.3第一级电路设计 (12) 3.2.4三级运放整体电路图及仿真结果分析 (14) 第四章版图设计 (15) 4.1版图设计的流程 (15) 4.1.1参照所设计的电路图的宽长比,画出各MOS管 (15) 4.1.2 布局 (17) 4.1.3画保护环 (17) 4.1.4画电容 (17) 4.1.5画压焊点 (18) 4.2 整个版图 (19) 第五章 T-Spice仿真 (21) 5.1提取T-Spice文件 (21) 5.2用T-Spice仿真 (24) 5.3仿真结果分析 (26) 第六章总结 (27) 参考文献 (28)

摘要 本次专业综合课程设计的主要内容是设计一个CMOS三级运算跨导放大器,该放大器可根据不同的使用要求,通过开关的开和闭,选择单级、两级、三级组成放大器,以获得不同的增益和带宽。用ORCAD画电路图,设计、计算宽长比,仿真,达到要求的技术指标,逐级进行设计仿真。然后用L-Edit软件根据设计的宽长比画版图,最后通过T-Spice仿真,得到达到性能指标的仿真结果。 设计的主要结果归纳如下: (1)运算放大器的基本工作原理 (2)电路分析 (3)设计宽长比 (4)画版图 (5)仿真 (6)结果分析 关键词:CMOS运算跨导放大器;差分运放;宽长比;版图设计;T-Spice仿真

MOS运放性能参数仿真规范

CMOS运放性能参数仿真规范 (保密文件,内部使用) 芯海科技有限公司 版权所有侵权必究

目 录 22 4其它..................................................................223.3.4其它性能的仿真测试.. (22) 3.3.3最坏情况仿真测试 (21) 3.3.2极限参数仿真测试 (21) 3.3.1工艺容差及温度特性的测试 (21) 3.3运放其它特性参数仿真规范 (21) 3.2.3瞬态参数仿真 (21) 3.2.2交流参数仿真 (20) 3.2.1直流参数仿真 (20) 3.2跨导运放(OTA)性能参数仿真规范 (19) 3.1.4瞬态参数仿真 (18) 3.1.3交流参数仿真 (17) 3.1.2共模输入范围的仿真 (16) 3.1.1直流参数仿真 (16) 3.1全差分运放性能参数仿真规范 (13) 3.2.3瞬态参数仿真 (8) 3.2.2交流参数仿真 (5) 3.2.1直流参数仿真 (5) 3.2双端输入、单端输出运放性能参数仿真规范 (5) 3.1MOS 运算放大器技术指标总表 (5) 3CMOS 运放仿真规范.......................................................42概述...................................................................41前言...................................................................4MOS 运放性能参数仿真规范..................................................表目录 5 表1 MOS 运算放大器技术指标总表.............................................图目录 10图10 共模抑制比仿真电路...................................................10图9 闭环频响曲线.........................................................9图8 幅频、相频曲线图......................................................9图7 开环增益仿真电路......................................................8图6 输出摆幅与负载电阻的关系曲线............................................8图5 输出动态范围的仿真电路.................................................7图4 共模输入范围输出结果参考图..............................................7图3 共模电压输入范围的仿真电路..............................................6图2 Vos 温度特性参考图.....................................................6图1 输入失调电压仿真电路...................................................

相关文档
最新文档