定积分求面积的方法

定积分求面积的方法

定积分求面积

1 根据基本初等函数的图像确定所求面积

2 通过连立方程组,确定积分的上下限

3 根据图形形状,确定加减关系,积分求解

排列组合与概率论(一个大题一个小题)学起来比较抽象,考起来比较简单

不定积分求解方法及技巧小汇总

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一?不定积分的概念与性质 定义1如果F (x)是区间I上的可导函数,并且对任意的x I,有F'(x)=f(x)dx则称F (x)是f(x)在区间I上的一个原函数。 定理1 (原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数 F (x),使得F (x) =f(x) (x I) 简单的说就是,连续函数一定有原函数 定理2设F (x)是f(x)在区间I上的一个原函数,贝U (1) F (x) +C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2 设F (x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数 F (x) +C称 为f(x)在区间I上的不定积分,记为f(x)d(x),即f(x)d(x)=F(x)+C 其中记号称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分 变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则[f(x) g(x)]dx= f(x)dx g(x)dx. 性质2 设函数f(x)存在原函数,k为非零常数,贝U kf(x)dx=k f(x)dx. 二.换元积分法的定理 如果不定积分g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[ (x)] ( (x).做变量代换u= (x),并注意到’(x) dx=d (x),则可将变量x的积分转化成变量u的积分,于是有 g(x)dx= f[ (x)] ( (x)dx= f(u)du. 如果f(u)du 可以积出,则不定积分g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。

利用定积分求曲线围成的面积

12.9 利用定积分求曲线围成的面积 武汉外国语学校 汪家硕 一.复习回顾: 1.定积分的几何意义:当()0f x ≥时,积分()b a f x dx ?在几何上表示由()y f x =、x a =、x b =与x 轴所围成的曲边梯形的面积。 当()0f x ≤时,由()y f x =、x a =、x b =与x 轴所围成的曲边梯形位于x 轴的下方。 2.牛顿—莱布尼茨公式 定理(微积分基本定理)如果()f x 是区间[,]a b 上的连续函数,并且'()()F x f x =,则 ()()()b a f x dx F b F a =-? 二.曲线围成的面积 1.设f 和g 是区间[,]a b 上的连续函数且对任意的[,]x a b ∈有()()f x g x ≥,则直线x a =和直线x b =以及曲线间围成的面积可以表示为: ()()()()b b b a a a f x dx g x dx f x g x dx -=-? ?? 例1.求抛物线2y x =和直线2y x =所围成的区域面积。 解:先求出P 点坐标。 解方程组22y x y x ?=?=? ? 02x x =??=? ∴ P 点的坐标是(2,4)。 ?b a f (x )dx =?c a f (x )dx +?b c f (x )dx 。

所求的面积= 2 23 22 00 84 24 333 x x x dx x ?? -=-=-= ?? ?? ? 例1 例2.计算曲线 21 y x =+和2 4 y x =-,以及直线1 x=和1 x=-所围成的区域面积。 解:所求面积= 1 113 222 111 214 4(1)323 33 x x x dx x dx x --- ?? --+=-=-= ?? ?? ?? 例2 2.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结果? 考虑区间112233 [,],[,],[,],[,] a c c c c c c b ,阴影部分面积可以表示为: 123 123 ()()()()()()()() c c c b a c c c f x g x dx g x f x dx f x g x dx g x f x dx -+-+-+- ???? 例3:求 3 () f x x =和() g x x =所围成的封闭区域面积。 解:当()() f x g x =时图像的交点, 即 332 0(1)0 x x x x x x =?-=?-= 01 x ∴=± 或 例3

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

定积分求面积

找一个函数来描述要求解的曲面一侧的高度,然后描述无穷小单元的面积。其实,不管是什么样的坐标,思路都是一样的。事实上,最原始的方法可以用方格子图纸来计算面积。用定积分计算平面图形的面积、旋转体的体积和平面曲线的弧长。Mbth是一种积分,它是函数f(X)在区间[a,b]上的积分和的极限。 这里要注意定积分和不定积分的关系:如果有定积分,就是一个具体的数值,而不定积分是一个函数表达式,只有一个数学计算关系(牛顿-莱布尼兹公式)。定积分定义:设函数f(X)在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1],(x1,x2],(x2,x3],…。,(xn-1,xn],其中x0=a,xn=b。可以知道,每个区间的长度依次为x1=x1-x0,并且每个子区间(xi-1,xi]中的任意点ξi(1,2,…,n)被用作求和公式。 这个求和公式称为积分和。设λ=max{x1,x2,…,xn}(即,λ是最大间隔长度)。如果当λ→为0时存在积分和极限,则这个极限称为函数f(X)在区间[a,b]上的定积分,记为,函数f(X)在区间[1]内,其中:a称为积分下限,b称为积分上限,区间[a,b]称为积分区间,函数f(X)称为被积函数,x称为积分变量,f(X)dx称为被积函数表达式,∫称为整数。 之所以叫定积分,是因为积分后得到的值是定的,是常数,不是函数。

根据上述定义,如果函数f(X)可以在区间[a,b]内积分,则存在n等分的特殊除法: 特别地,根据上述表达式,当区间[a,b]恰好是区间[0,1]时,区间[0,1]的积分表达式如下: 1.当a=b时, 2.当a>b时, 3.在整数前可以提到常量。 4.代数和的积分等于积分的代数和。 5.定积分的可加性:如果将积分区间[a,b]分成两个子区间[a,c]和[c,b],则有由于性质2,如果f(X)在区间d上可积,则区间d(可能不在区间[a,b]上)中的任何c都满足条件。 6.如果f(X)在区间[a,b]内≥0。 7.积分中值定理:如果f(X)在[a,b]上连续,则在[a,b]中至少有一个点ε

求定积分的四种方法

定积分的四种求法 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法 例1 用定义法求2 30x dx ?的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n . (2)近似代替:△3 2()i i i S f x x n ξ??=?=? ??? (3)求和:33111222n n n i i i i i i S x n n n ===???????≈?=? ? ? ???????∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞????????+++?? ? ? ????????? ?? =4 43332244221lim 12lim[(1)]4n n n n n n n →∞→∞??+++=?+? ? =224(21)lim n n n n →∞++==4. ∴2 30x dx ?=4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法 例2 求定积分2 21(21)x x dx ++?的值. 分析:可先求出原函数,再利用微积分基本定理求解.

解:函数y =2 21x x ++的一个原函数是y =3 23x x x ++. 所以.2 2 1(21)x x dx ++?=3221()|3x x x ++=81421133????++-++ ? ?????=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原 函数. 三、几何意义法 例3 求定积分1 1dx -?的值. 分析:利用定积分的意义是指曲边梯 形的 面积,只要作出图形就可求出. 解:1 1dx -?表示圆x 2+y 2=1在第一、 二象限的上半圆的面积. 因为2S π= 半圆,又在x 轴上方. 所以1 1)d x -?=2 π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出. 四、性质法 例4 求下列定积分: ⑴44tan xdx π π-?;⑵22sin 1 x x dx x ππ-+?. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解. 解:由被积函数tan x 及22sin 1 x x x +是奇函 数,所以在对称区间的积分值均为零.

求不定积分的方法及技巧小汇总

求不定积分的方法及技巧小汇总~ 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会 用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

积分常用公式

积分常用公式 一.基本不定积分公式: 1.C x dx +=? 2.111++= ? αα αx dx x 1(-≠α) 3.C x dx x +=?ln 1 4.C a a dx a x x +=?ln )1,0(≠>a a 5.C e dx e x x +=? 6.C x xdx +-=? cos sin 7.C x xdx +=? sin cos 8.C x dx x xdx +== ?? tan cos 1sec 22 9.C x dx x xdx +-==??cot sin 1csc 22 10.C x xdx x +=??sec tan sec 11.C x xdx x +-=?? csc cot csc 12. C x dx x +=-? arcsin 112 (或12 arccos 11C x dx x +-=-? ) 13. C x dx x +=+?arctan 112 (或12cot 11 C x arc dx x +-=+?) 14.C x xdx +=?cosh sinh 15.C x xdx +=? sinh cosh 二.常用不定积分公式和积分方法: 1.C x xdx +-=?cos ln tan 2.C x xdx +=? sin ln cot 3. C a x a x a dx +=+?arctan 122 4.C a x a x a a x dx ++-=-?ln 2122 5.C x x xdx ++=?tan sec ln sec 6.C x x xdx +-=? cot csc ln csc 7. C a x x a dx +=-? arcsin 2 2 8.C a x x a x dx +±+=±?222 2ln 9. C a x a x a x dx x a ++-=-?arcsin 2222 22 2 10. C a x x a a x x dx a x +±+ ±±= ±? 222 2 2 2 2 ln 2 2 11.第一类换元积分法(凑微分法):

定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+=++? (1)u ≠- (3)1ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)2 1 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a = +?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)2 2 11tan x dx arc C a x a a = ++?

(17)2 2 11ln | |2x a dx C x a a x a -= +-+? (18) sin x arc C a =+? (19) ln(x C =++? (20) ln |x C =++? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2 2 2 2 sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==2 1cos 2cos 2 x x += , 2 1cos 2sin 2 x x -= 。 注:由[()]'()[()]() f x x dx f x d x ????= ?? ,此步为凑微分过程,所以第一 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+ ()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan = ()3分部积分法:??-=vdu uv udv

附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.

公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分.

高考数学复习点拨:用定积分求面积的技巧

高考数学复习总结归纳点拨 1 用定积分求面积的技巧 求平面图形的面积是定积分在几何中的重要应用.把求平面图形的面积问题转化为求定积分问题,充分体现了数形结合的数学思想.求解此类题常常用到以下技巧. 一、巧选积分变量 求平面图形面积时,要注意选择积分变量,以使计算简便. 例1 求抛物线22y x =与直线4y x =-围成的平面图形的面积. 解析:如图1,解方程组224y x y x ?=?=-? ,,得两曲线的变点为(22)(84)-,,,. 方法一:选取横坐标x 为积分变量,则图中阴影部分的面积应该是两部分之和,即33282 8822022024222(24)224183032 S xdx x x dx x x x =+-+=++=??|||. 方法二:选取纵坐标y 为积分变量,则图中阴影部分的面积可据公式求得,即 24 234 22114418226y S y y dy y y --????=+-=+-= ? ??????|. 点评:从上述两种解法可以看出,对y 积分比对x 积分计算简捷.因此,应用定积分求平面图形面积时,积分变量的选取是至关重要的.但同时也要注意对y 积分时,积分函数应 是()x y ?=,本题须将条件中的曲线方程、直线方程化为2142 x y x y = =+,的形式,然后求得积分.另外还要注意的是对面积而言,不管选用哪种积分变量去积分,面积是不会变的,即定积分的值不会改变. 二、巧用对称性 在求平面图形面积时,注意利用函数的奇偶性等所对应曲线的对称性解题,也是简化计算过程的常用手段. 例2 求由三条曲线2241y x y x y ===, ,所围图形的面积. 解析:如图2,因为224y x y x ==, 是偶函数,根据对称性,只算出y 轴右边的图形的面积再两倍即可.

用定积分求面积的两个重要公式

1 / 2 用定积分求面积的两个常用公式 求平面图形围成的面积是定积分重要应用之一,下面介绍求面积的两个常用公式及其应用. 一、两个常用公式 公式一:由连续曲线y =f (x ),直线x =a ,x =b 与y =0所围成的曲边梯形的面积A 为 A = |()|b a f x dx ? . 特别地,(1)当f (x )≥0时(如图1),A =()b a f x dx ? ; (2)当f (x )≤0时(如图2),A =- ()b a f x dx ? ; ⑶当f (x )有正有负时(如图3),A = ()c a f x dx ? - ()b c f x dx ? . 公式二:由连续曲线y =f (x ),y =g (x ),f (x )≥g (x )及直线x =a ,x =b 所围成的图形(如图4)的面积A 为 A = [()()]b a f x g x dx -?. 二、应用举例 例1 由y =x 3,x =0,x =2,y =0围成的图形面积. 分析:先画出图象,利用公式1转化为定积分问题即可解决. 解:(1)如图1,由公式1,得 1 图2 图

2 / 2 S = 2 30 x dx ? = 4244 0111|204444 x =?-?=. 评注:注意定积分与利用定积分计算曲线围成图形的面积区别.定积分是一种积分和的极限,可为正,也可为负或零,而平面图形的面积在一般意义上总为正.一般情况下,借助定积分分别求出每一部分曲边梯形的面积,然后将它们加在一起. 例2 (1)由曲线y =x 2,y 2=x 所围成图形的面积. (2)由y =14x 2-1,y =12x ,y =3 4 x 在第一象限所围成图形的面积. 分析:先画图象找出范围,利用公式2,用积分表示,再求积分. 解:(1) 如图2,所求面积为阴影部分. 解方程组22 y x y x ?=??=??,得交点(0,0),(1,1),由公式2,得 S =1 2 0)x dx ?=3312 02211()|33333 x x -=-=. (2)如图3,解方程组2114 12y x y x ? =-????=??和 2114 34 y x y x ? =-??? ?=??, 得x =0,x =1 +负的舍去),x =4. 由公式2,得图形面积 S =10 31 ()42 x dx -? +4 2111 [(1)]42 x x dx -- ? 216-=. 3 图

积分求圆球面积和体积

积分法求圆球的表面积与体积 方法一: 如图圆O 的方程为2 2 2 R y x =+, 22x R y -= 将圆O 绕X 轴旋转一周,得到一个圆球体 从X 负半轴到X 正半轴将直径2R 等分n 份)(∞→n 每份长为x ? 球体也同时被垂直分成n 份薄片 每片的半径为22x R r -= 每片分得弧长为l d 如图:当无限等分后 (1)CE d l ≈弧 (2)CE OC ⊥ (3)x EH ?= 易证CEH OCX ?∝? CX OC EH CE =?CX EH OC CE ?= x x R R l ?-= ??2 2 弧 薄片的球面面积x x R R x R l r S ?--=?=?2 2 2 22)2(ππ x R S ?=?π2 球面面积? ? +-+-== R R R R Rx Rdx ππ22=2 4R π 方法二: 如图圆O 的方程为2 2 2 R y x =+, 22x R y -= 将圆O 绕X 轴旋转一周,得到一个圆球体 沿X 轴正方向到X 轴负方向将圆心角等分n 份 )(∞→n 每份为θ?,),0(πθ∈ 球体也同时被垂直分割成n 份薄片 每片弧长相等对应圆心角为θ? 每片对应的半径为θsin R r = 当0→?θ时

(1)θ?=∠BOC (2)CB CB 弧弦≈ (3)CB OB ⊥ 薄片周长θπsin 2R L = 薄片的(宽))sin(θ?=R h 薄片外围面积)sin(sin 2θθπ??=?R R S )sin(sin 22 θθπ?=R θθπ?=sin 22R 20 224cos 2sin 2R R R S πθπθθπππ =-=?=?? 方法三: 如图圆O 的方程为2 2 2 R y x =+, 22x R y -= 将圆O 绕Y 轴旋转一周,得到一个圆球体 沿Y 轴负方向到Y 轴正方向将圆心角等分n 份)(∞→n 每份为θ?,)2 ,2(π πθ- ∈ 球体也同时被水平分割成n 份薄片 每片弧长相等对应圆心角为θ? 每片对应的半径为θcos R r = 如图取OC oB →这一份进行研究 当0→?θ时 (1)θ?=∠BOC (2)CB CB 弧弦≈ (3)CB OC ⊥ 薄片周长θπcos 2R L = 薄片的厚(高))sin(θ?=R h 薄片外围面积)sin(cos 2θθπ??=?R R S )sin(cos 22 θθπ?=R 由极限:当0→x 时 1sin =x x ? 当 0→x 时x x =sin 故 )sin(cos 22 θθπ?=?R S θθπ?=cos 22 R 2 22 22 2 2 4sin 2cos 2R R R S πθπθθππ ππ π==?=??- -

苏教版高中数学选修(2-2)-1.5用定积分求面积的两个重要公式

用定积分求面积的两个常用公式 求平面图形围成的面积是定积分重要应用之一,下面介绍求面积的两个常用公式及其应用. 一、两个常用公式 公式一:由连续曲线y =f (x ),直线x =a ,x =b 与y =0所围成的曲边梯形的面积A 为 A = |()|b a f x dx ? . 特别地,(1)当f (x )≥0时(如图1),A =()b a f x dx ? ; (2)当f (x )≤0时(如图2),A =- ()b a f x dx ? ; (3)当f (x )有正有负时(如图3),A = ()c a f x dx ? - ()b c f x dx ? . 公式二:由连续曲线y =f (x ),y =g (x ),f (x )≥g (x )及直线x =a ,x =b 所围成的图形(如图4)的面积A 为 A = [()()]b a f x g x dx -?. 二、应用举例 例1 由y =x 3 ,x =0,x =2,y =0围成的图形面积. 分析:先画出图象,利用公式1转化为定积分问题即可解决. 解:(1)如图1,由公式1,得 1 图2 图

S = 2 30 x dx ? = 4244 0111|204444 x =?-?=. 评注:注意定积分与利用定积分计算曲线围成图形的面积区别.定积分是一种积分和的极限,可为正,也可为负或零,而平面图形的面积在一般意义上总为正.一般情况下,借助定积分分别求出每一部分曲边梯形的面积,然后将它们加在一起. 例2 (1)由曲线y =x 2,y 2 =x 所围成图形的面积. (2)由y =14x 2-1,y =12x ,y =3 4 x 在第一象限所围成图形的面积. 分析:先画图象找出范围,利用公式2,用积分表示,再求积分. 解:(1) 如图2,所求面积为阴影部分. 解方程组22 y x y x ?=??=??,得交点(0,0),(1,1),由公式2,得 S =1 2 0)x dx ?=3312 02211()|33333 x x -=-=. (2)如图3,解方程组2114 12y x y x ? =-????=??和 2114 34 y x y x ? =-??? ?=??, 得x =0,x =1 +负的舍去),x =4. 由公式2,得图形面积 S =10 31 ()42 x dx -? +4 2111 [(1)]42 x x dx -- ? 216-=. 3 图

求积分的几种常规方法

合肥学院论文 求积分的若干方法 姓名:陈涛 学号:1506011005 学院:合肥学院 专业:机械设计制造及其自动化 老师:左功武 完成时间:2015年12月29日 求积分的几种常规方法 陈涛 摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。一般地,求不定积分要比求导数难很多,运用积分法则

和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。 1 积分的概念 设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。 记作∫f(x)dx。其中∫叫做积分号(integral sign),f(x)叫做被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。 1.1 不定积分 积分还可以分为两部分。第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。 用公式表示是:f'(x)=g(x)->∫g(x)dx=f(x)+c 不定积分是为解决求导和微分的逆运算而提出的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)= f(x)。函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。如果F(x)是f(x)的一个原函数,则,其中C为任意常数。 1.2 定积分 相对于不定积分,还有定积分。所谓定积分,其形式为∫[a:b]f(x)dx 。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。 微积分的最初发展中,定积分即黎曼积分。用自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线和x轴把其分割成无数个矩形,然后把某个区间[a,b]上的矩形的面积累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a、b。而实变函数中,可以利用测度论将黎曼积分推广到更加一般的情况,如勒贝格积分. 用公式表示是:∫[a,b]f(x)dx=lim(n->∞)∑(0-n)a+f(ti)*(b-a)/n 定积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n等分:a=x0

用定积分求面积的技巧

用定积分求面积的技巧 求平面图形的面积是定积分在几何中的重要应用.把求平面图形的面积问题转化为求定积分问题,充分体现了数形结合的数学思想.求解此类题常常用到以下技巧. 一、巧选积分变量 求平面图形面积时,要注意选择积分变量,以使计算简便. 例1 求抛物线22y x =与直线4y x =-围成的平面图形的面积. 解析:如图1,解方程组224y x y x ?=?=-? ,,得两曲线的变点为(22)(84)-,,,. 方法一:选取横坐标x 为积分变量,则图中阴影部分的面积应该是两部分之和,即 3328 28822022024222(24)224183032 S xdx x x dx x x x =+-+=++=??|||. 方法二:选取纵坐标y 为积分变量,则图中阴影部分的面积可据公式求得,即24 234 22114418226y S y y dy y y --????=+-=+-= ? ??????|. 点评:从上述两种解法可以看出,对y 积分比对x 积分计算简捷.因此,应用定积分求平面图形面积时,积分变量的选取是至关重要的.但同时也要注意对y 积分时,积分函数应 是()x y ?=,本题须将条件中的曲线方程、直线方程化为2142 x y x y = =+,的形式,然后求得积分.另外还要注意的是对面积而言,不管选用哪种积分变量去积分,面积是不会变的,即定积分的值不会改变. 二、巧用对称性 在求平面图形面积时,注意利用函数的奇偶性等所对应曲线的对称性解题,也是简化计算过程的常用手段. 例2 求由三条曲线2241y x y x y ===, ,所围图形的面积. 解析:如图2,因为224y x y x ==, 是偶函数,根据对称性,只算出y 轴右边的图形的面积再两倍即可.

有关定积分问题的常见题型解析(全题型)

有关定积分问题的常见题型解析 题型一 利用微积分基本定理求积分 例1、求下列定积分: (1)()1 3 031x x dx -+? (2)() 94 1x x dx +? (3)? --2 2 24x 分析:根据求导数与求原函数互为逆运算,找到被积函数得一个原函数,利用微积分基本公式代入求值。 评注:利用微积分基本定理求定积分 dx x f a b )(?的关键是找出)()(/ x f x F =的函数)(x F 。 如果原函数不好找,则可以尝试找出画出函数的图像, 图像为圆或者三角形则直接求 其面积。 题型二 利用定积分求平面图形的面积 例2 如图 ,求直线y=2x+3与抛物线y=x 2所围成的图形面积。 分析:从图形可以看出,所求图形的面积可以转化为一个梯形与一个曲边梯形面积的差,进而可以用定积分求出面积。为了确定出被积函数和积分和上、下限,我们需要求出两条曲线的交点的横坐标。 评注:求平面图形的面积的一般步骤:⑴画图,并将图形分割成若干曲边梯形;⑵对每个曲边梯形确定其存在的范围,从而确定积分上、下限;⑶确定被积函数;⑷求出各曲边梯形的面积和,即各积分的绝对值之和。 关键环节:①认定曲边梯形,选定积分变量;②确定被积函数和积分上下限。 知识小结:几种典型的曲边梯形面积的计算方法: (1)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≥0)围成的曲边梯形的面积: S = ()?b a dx x f ,如图1。 (2)由三条直线x=a 、x=b (a <b )、x 轴,一条曲线y=()x f (()x f ≤0)围成的曲边梯形的面积: S = ()()?? -=b a b a dx x f dx x f ,如图2。 (3)由两条直线x=a 、x=b (a <b )、两条曲线y=()x f 、y=()x g (()()x g x f ≥)围成的平面图形的面积:S = ()()?-b a dx x g x f ][,如图3。

几种定积分的数值计算方法

几种定积分的数值计算方法 摘要:本文归纳了定积分近似计算中的几种常用方法,并着重分析了各种数值方法的计算思想,结合实例,对其优劣性作了简要说明. 关键词:数值方法;矩形法;梯形法;抛物线法;类矩形;类梯形 Several Numerical Methods for Solving Definite Integrals Abstract:Several common methods for solving definite integrals are summarized in this paper. Meantime, the idea for each method is emphatically analyzed. Afterwards, a numerical example is illustrated to show that the advantages and disadvantages of these methods. Keywords:Numerical methods, Rectangle method, Trapezoidal method, Parabolic method, Class rectangle, Class trapezoid

1. 引言 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数 )(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用. 在科学研究和实际生产中,经常遇到求积分的计算问题,由积分学知识可知,若函数)(x f 在区间],[b a 连续且原函数为)(x F ,则可用牛顿-莱布尼茨公式 求得积分.这个公式不论在理论上还是在解决实际问题中都起到了很大的作用.另外,对于求导数也有一系列的求导公式和求导法则.但是,在实际问题中遇到求积分的计算,经常会有这样的情况: (1)函数)(x f 的原函数无法用初等函数给出.例如积分 dx e x ?-1 02 , ? 1 0sin dx x x 等,从而无法用牛顿-莱布尼茨公式计算出积分。 (2)函数)(x f 使用表格形式或图形给出,因而无法直接用积分公式或导数公式。 (3)函数)(x f 的原函数或导数值虽然能够求出,但形式过于复杂,不便使用. 由此可见,利用原函数求积分或利用求导法则求导数有它的局限性,所以就有了求解数值积分的很多方法,目前有牛顿—柯特斯公式法,矩形法,梯形法,抛物线法,随机投点法,平均值法,高斯型求积法,龙贝格积分法,李查逊外推算法等等,本文对其中部分方法作一个比较. 2.几何意义上的数值算法 s 在几何上表示以],[b a 为底,以曲线)(x f y =为曲边的曲边梯形的面积A ,因此,计 算s 的近似值也就是A 的近似值,如图1所示.沿着积分区间],[b a ,可以把大的曲边梯形分割成许多小的曲边梯形面积之和.常采用均匀分割,假设],[b a 上等分n 的小区间 ,x 1-i h x i +=b x a x n ==,0,其中n a b h -= 表示小区间的长度. 2.1矩形法 矩形法就是用小矩形面积近似代替各个小曲边梯形面积,从面积得到S 的近似值.若 取小区间左端点的函数值为小矩形的高,如图1中所示,则∑=-=n i i x f n a b A 1 ).(

相关文档
最新文档