填料塔的计算.doc

填料塔的计算.doc
填料塔的计算.doc

一、设计方案的确定

(一) 操作条件的确定

1.1吸收剂的选择

1.2装置流程的确定

1.3填料的类型与选择

1.4操作温度与压力的确定

45℃常压

(二)填料吸收塔的工艺尺寸的计算

2.1基础物性数据

①液相物性数据

对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据

7.熔

根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数

表面张力б=72.6dyn/cm=940896kg/h 3

②气相物性数据

混合气体的平均摩尔质量为 M vm =

y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347

混合气体的平均密度ρvm =

=??=301

314.805

.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m

3

混合气体粘度近似取空气粘度,手册28℃空气粘度为

μV =1.78×10-5Pa ·s=0.064kg/(m ?h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数:

在水中亨利系数E=2.6?105kPa

相平衡常数为m=1.25596

.101106.25

=?=

P E 溶解度系数为H=)/(1013.218

106.22.9973

45

kPa m kmol E M s

??=??=

2.2物料衡算

进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h

该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式

计算,即

2

121min /X m Y Y Y )V L

--=

对于纯溶剂吸收过程,进塔液组成为X2=0

2

121min /X m Y Y Y )V L

--==(0.153403-0.00767)/(0.1534/1.78)=1.78

取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581

①塔径计算

采用Eckert 通用关联图计算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量计算

即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为

0.011799

查埃克特通用关联图得

226.02

.0=??L L

V F F g u μρρ?φ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ s m g u L

V F L

F /552.21338.112602

.99881.9226.0226.02

.02

.0=?????=

=

μ?ρφρ

Uf=3.964272m/s

取u=0.8u F =0.8×3.352=2.6816m/s 由

=1.839191m

圆整塔径,取D=1.9m 泛点率校核 u=s m /12.26.0785.03600

/15002

=? = 4.724397m/s

100522

.212.2?=F u u ﹪=84.18%(在允许范围内) =3.352964272/ 4.724397=70.9% 填料规格校核:

82425

600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h 查塑料阶梯环特性数据表得:

型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3 U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=

min 2

51.76

.0785.02

.998/312121U 。<=? 7.375 经校核可知,塔径D=600mm 不合理 经反复校核仍得不出合理的D 值 经综合考虑,取操作液气比为

55.2677.115)(15min =?==V

L

V L 15*1.78=26.7 L=26.5×117.22=3112.2kmol/h =26.7*735.7986=19645.82262

X 1=

0004.02

.3112)

10662.10277.0(32444=?-?-。 X1=0.00204

此时气相质量流量为W V =1500×1.338=2007kg/h W V =13.74kg/s=49464kg/h

此时液相质量流量为W L =3112.2×18.02=56081.8kg/h 即W L =19645.82262×(0.7*18+0.3*54)=565799.6915kg/h

Eckert 通用关联图横坐标为

76.0)2

.998338.1(2007856081)(5

.05.0=?=。W W L V V L ρρ 0.3150

查埃克特通用关联图得

035.02

.0=??L L

V F F g u μρρ?φ 0.04 改选型号为D38的阶梯环

查表(散装填料泛点填料因子平均值)得1170-=m F φ s m g u L

V F L

F /228.11

338.111702

.99881.9035.0035.02

.02

.0=?????=

=

μ?ρφρ 1.7435m/s 取u=0.8u F =0.8×1.228=0.982m/s 1.3948m/s 由=??==

982

.014.33600

/150044u

V D S

π0.74m 2.55m

圆整塔径,取D=0.8m 2.6m 泛点率校核 u=s m /83.08

.0785.03600

/15002

=? 1.34

100982

.083.0?=F u u ﹪=84.52%(在允许范围内)96.07% 填料规格校核:

82125

800>==d D 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h 查塑料阶梯环特性数据表得: 型号为DN38的阶梯环的比表面积

a t =132.5m 2/m 3

U min =(L W )min a t =0.08×132.5=10.6m 3/m 2·h U=

min 2

8.1118

.0785.02

.998/8.56081U >=?

U=105.16

经以上校核可知,填料塔直径先用D=800mm 合理

若选择丙烯鲍尔环50*50*1.5 其比表面积为93 m2/m3 U min =(L W )min a t =0.08×93=7.44 填料因子为127m-1

Uf= 4.794993m/s

取u=0.8u F =0.8×4.794993=3.835

=2.436

取2.5m U= 113.74>Umin ②填料层高度计算

Y *1=mX 1=1.78×0.0004=0.000712 Y *2=mX 2=0 脱因系数为 S=

0254.02

.311234

.4478.1=?=L mV

气相总传质单元数

N OG =()S Y Y Y Y S S +??

????----***22211ln 11

=

0254.00106662.100277.0)0254.01(ln 0254.0114+??

????

-?-?--- =5.223

气相总传质单元高度采用修正的恩田关联式计算

??

?????

?

?????

?

?????

?

?????

? ?????

?

??--=-2

.02

05

.02

1

.075

.045.1exp 1t L L L t L L t L L t L L c t w a U a a U a U a a σρσρμσσ

查常见材质的临界表面张力值表得 σc =33dyn/cm=427680kg/h 2 液体质量通量为

)/(79.1116278

.0785.08.560812

2

h m kg U L ?=?=

??

???????????? ???????? ???????? ?????? ??--=-2.0205.08221.075.05.1329408962.99879.1116271072.12.9985.13279.1116270.35.13279.11162794089642768045.1exp 1t w a a =0.502 吸收系数由下式计算

??

? ?????

? ?????

? ???=RT D a D a U K V t V V V V

t V

G 3

/17

.0237.0ρμμ

质量通量为()

h m kg U V ?=??=

2

2

/82.39948

.0785.0338.11500 ??

?

?????

?

?

?????? ????=301314.8065.05.132065.0338.1064.0064.05.13282.3994237.03

/17.0G K = 0.237×73.53×0.894×0.004

= 0.0623kmol/(m 3·h ·kPa)

吸收系数由下式计算

3

/12

/13

/20095.0???

? ?????

? ?????

? ??=-L L L L L L

W L L

g D a U K ρμρμμ

3

/18

2

/163

/22.9981027.10.310372.62.9980.30.35.132564.079.1116270095.0???

?

?

?????

?

?????

?

?

????=--L K =1.189m/h

1

.1?W G G a K a K = 查常见填料的形状系数表得 45.1=?

1

.1?W G G a K a K =

)/(973.645.15.132654.00623.031.1kPa h m kmol ??=???=

h a K a K W L L /092.10345.15.132564.0189.14.04.0=???==?

u/u F =66.17%>50﹪

a K u u a K G F G ???

????????? ??-+='

4

.15.05.91 a K u u a K L F L ???

????????? ??-+='

2

.25.06.21 得()[]

()

kPa h m kmol a K G ??=?-?+='3

4.1/141.12973.6

5.06617.05.91

得()[]

h a K L /96.107092.1035.06617.06.212

.2=?-?+=' ()

kPa h m kml a

HK K a K L G

G ??=?+

=

'+

'=

3/53.1096

.107725.01

141.1211

111

H OG =

m aP K V a K V G Y 083.08

.0785.03.10153.1034

.442

=???=Ω=Ω Z=H OG N OG =0.083×5.223=0.434m 得Z ′=1.5×0.434=0.6503m

取填料层高度为Z ′=2m 查散装填料分段高度推荐值表 对于阶梯环填料

15~8 D

h

h max ≤6m 取h/D=8 则h=8×800=6400mm 计算得填料层高度为2000mm ,故不需分段

填料塔设计说明书

填 料 塔 设 计 说 明 书 设计题目:水吸收氨填料吸收塔学院:资源环境学院 指导老师:吴根义罗惠莉 设计者:海江 学号:7 专业班级:08级环境工程1班

一、设计题目 试设计一座填料吸收塔,用于脱出混于空气中的氨气。混合气体的处理为2400m3/h,其中含氨5%,要求塔顶排放气体中含氨低于0.02%。采用清水进行吸收,吸收剂的用量为最小量的1.5倍。 二、操作条件 1、操作压力常压 2、操作温度 20℃ 三、吸收剂的选择 吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低。所以本设计选择用清水作吸收剂,氨气为吸收质。水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求。且氨气不作为产品,故采用纯溶剂。 四、流程选择及流程说明 逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作。逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高。工业生产中多用逆流操作。 五、塔填料选择 阶梯环填料。阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边。由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种 选用聚丙烯阶梯环填料,填料规格:

六、填料塔塔径的计算 1、液相物性数 对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,20℃水的有关物性数据如下: 密度为:L ρ=998.2 kg/m3 粘度为:μL=0.001004 Pa·S=3.6 kg/(m·h) 表面力为σL=72.6 dyn/cm =940896 kg/h2 2、气相物性数据: 20℃下氨在水中的溶解度系数为:H=0.725kmol/(m3·kPa)。 混合气体的平均摩尔质量为: Mvm=0.05×17.03g/mol +0.95×29g/mol=28.40g/mol , 混合气体的平均密度为:ρvm =1.183 kg/m3 混合气体的粘度可近似取为空气的粘度,查手册得20℃空气的粘度为: μv=1.81×10-5 Pa·S=0.065 kg/(m·h) 3、气相平衡数据 20℃时NH3在水中的溶解度系数为H=0.725 kmol/(m3·kPa),常压下20℃时NH3在水中的亨利系数为E=76.41kPa 。 4、物料衡算: 亨利系数 S L HM E ρ= 相平衡常数 754.03 .10102.18725.02 .998=??=== P HM P E m S L ρ E ——亨利系数 H ——溶解度系数 Ms ——相对摩尔质量

填料塔计算部分

填料吸收塔设计任务书 一、设计题目 填料吸收塔设计 二、设计任务及操作条件 1、原料气处理量:5000m3/h。 2、原料气组成:98%空气+%的氨气。 3、操作温度:20℃。 4、氢氟酸回收率:98%。 5、操作压强:常压。 6、吸收剂:清水。 7、填料选择:拉西环。 三、设计内容 1.设计方案的确定及流程说明。 2.填料吸收塔的塔径,填料层的高度,填料层的压降的计算。 3.填料吸收塔的附属机构及辅助设备的选型与设计计算。 4.吸收塔的工艺流程图。 5.填料吸收塔的工艺条件图。

目录 第一章设计方案的简介 (4) 第一节塔设备的选型 (4) 第二节填料吸收塔方案的确定 (6) 第三节吸收剂的选择 (6) 第四节操作温度与压力的确定 (7) 第二章填料的类型与选择 (7) 第一节填料的类型 (7) 第二节填料的选择 (9) 第三章填料塔工艺尺寸 (10) 第一节基础物性数据 (10) 第二节物料衡算 (11) 第三节填料塔的工艺尺寸的计算 (12) 第四节填料层压降的计算 (16) 第四章辅助设备的设计与计算 (16) 第一节液体分布器的简要设计 (16) 第二节支承板的选用 (17) 第三节管子、泵及风机的选用 (18) 第五章塔体附件设计 (20) 第一节塔的支座 (20) 第二节其他附件 (20)

第一章设计方案的简介 第一节塔设备的选型 塔设备是化工、石油化工、生物化工制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 1、板式塔 板式塔为逐级接触式气液传质设备,是最常用的气液传质设备之一。传质机理如下所述:塔内液体依靠重力作用,由上层塔板的降液管流到下层塔板的受液盘,然后横向流过塔板,从另一侧的降液管流至下一层塔板。溢流堰的作用是使塔板上保持一定厚度的液层。气体则在压力差的推动下,自下而上穿过各层塔板的气体通道(泡罩、筛孔或浮阀等),分散成小股气流,鼓泡通过各层塔板的液层。在塔板上,气液两相密切接触,进行热量和质量的交换。在板式塔中,气液两相逐级接触,两相的组成沿塔高呈阶梯式变化,在正常操作下,液相为连续相,气相为分散相。 一般而论,板式塔的空塔速度较高,因而生产能力较大,塔板效率稳定,操作弹性大,且造价低,检修、清洗方便,故工业上应用较为广泛。 2、填料塔 填料塔是最常用的气液传质设备之一,它广泛应用于蒸馏、吸收、解吸、汽提、萃取、化学交换、洗涤和热交换等过程。几年来,由于填料塔研究工作已日益深入,填料结构的形式不断更新,填料性能也得到了迅速的提高。金属鞍环,改型鲍尔环及波纹填料等大通量、低压力降、高效率填料的开发,使大型填料塔不断地出现,并已推广到大型汽—液系统操作中,尤其是孔板波纹填料,由于具有较好的综合性能,使其不仅在大规模生产中被采用,且由于其在许多方面优于各种塔盘而越来越得到人们的重视,在某些领域中,有取代板式塔的趋势。近年来,在蒸馏和吸收领域中,最突出的变化是新型填料,特别是规整填料在大直径

用Aspen模拟板式塔与填料塔的区别

用Aspen 模拟塔单元操作分为操作模拟和设计计算。两种模拟计算方法有所不同。 1 填料塔操作模拟 模拟已知的填料操作可以用radFrace 和rateFrace模块。 模拟操作是对已有的塔进行操作模拟,塔的结构参数是已知的,通过调节某些参数来与实际生产情况吻合。填料塔操作模拟要有两个难点问题:一是平衡级数的选择,二是调节那些参数选择。 1.1 平衡级数 rateFrace 和radFrace 模块要求输入板数,和板式塔模拟操作一样,操作模拟数据应该是实际塔的参数,这里要输入实际塔的板数。对于板式塔没有问题,但对于填料塔的实际板数如何取? 作操作模拟时,和rateFrace和radFrace模块板数(平衡级数)可以任意取,只是计算精度的问题。然后,设置填料核算(Pack Rating)中的每段填料高度(Section pack height)与之对应。如:某填料塔实际填料高度15m,进行操作模拟时,塔板数(Number of stages)输入为5,则在下面的Pack Rating 页的Packed height 栏选择Section packed height 并填入3。 这里的实际级数最好不要小于理论级数,在不确定理论级数时应尽量多取。 1.2 调节参数 进行塔操作模拟时,通过调节塔板效率来与实际相吻合。 和板式塔一样,如果不输入塔板效率则系统按选择的计算方法计算塔板效率(这个效率计算方法有两种:Vaporization efficiencies和Murphree efficiencies)。作操作模拟时按计算效率得到的结果和实际值会不一致,这时通过调节塔板效率来与实际相吻合。 2 填料塔设计 填料精馏塔与填料吸收塔的设计计算有所区别,对于单进料的精馏塔,与板式塔设计计算一样,首先用简捷模块计算理论板数,然后radFrace 或rateFrace 模块进行详细计算。无论用那种模块,设计计算都要用到设计规定,通过调整填料高度来满足设计要求。 填料塔设计比板式塔复杂,原因是由于填料塔设计本身的复杂性,设计软件无法依据给定的设计参数,按照某一个不变的设计路线作出最后的设计结果,需要设计者利用各模块的功能,自己设计一个计算路线,完成给定的设计任务。 2.1 用RadFrace计算 1.吸收剂用量的初步估算(手算)

填料塔工艺尺寸的计算

第三节 填料塔工艺尺寸的计算 填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段 3.1 塔径的计算 1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =0.5~0.85 贝恩(Bain )—霍根(Hougen )关联式 ,即: 2213lg V F L L u a g ρμερ?? ?????? ? ???????=A-K 141V L V L w w ρρ???? ? ??? ?? (3-1) 即:1 124 8 0.23100 1.18363202.59 1.1836lg[ ()1]0.0942 1.759.810.917998.24734.4998.2F u ?????? =- ? ? ??????? 所以:2 F u /9.81(100/0.9173)(1.1836/998.2)= UF=m/s 其中: f u ——泛点气速,m/s; g ——重力加速度,9.81m/s 2 W L =5358.89572㎏/h W V =7056.6kg/h A=0.0942; K=1.75; 取u=0.7 F u =2.78220m/s

0.7631D = = = (3-2) 圆整塔径后 D=0.8m 1. 泛点速率校核:2 6000 3.31740.7850.83600 u = =?? m/s 则 F u u 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核: (1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。 (2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ?为。 ()32min min 0.081008/w t U L m m h α==?=? (3-3) 22 5358.8957 10.6858min 0.75998.20.7850.8 L L w U D ρ= ==>=???? (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。 3.2 填料层高度的计算及分段 *110.049850.75320.03755Y mX ==?= (3-5) *220Y mX == (3-6) 3.2.1 传质单元数的计算

填料塔设计

xxxxx 大学 化工原理课程设计任务书 专业: 班级: 组长: 成员: 设计日期: 设计题目: 空气丙酮填料塔的吸收 设计条件: 空气-丙酮体系 ●混合气:丙酮蒸气和空气 ●吸收剂:清水(25℃) ●处理量:1500m3/h(标准状态) ●相对湿度:70% ●温度:20O℃ ●含量:进塔混合气中含丙酮:1.82%(V%)

●要求:丙酮回收率:90% ●操作条件:常压操作 ●厂址地区:任选 ●设备型式:自选 设计内容:相关说明 1.设计方案的选择及流程说明 2.工艺计算 3.主要设备工艺尺寸设计 (1)塔径的确定 (2)填料层高度计算 (3)总塔高、总压降及接管尺寸的确定 4.辅助设备选型与计算 5.设计结果汇总 6.工艺流程图及换热器工艺条件 指导教师: xxxx 目录 第一节概述------------------------------------------4

1.1吸收技术概况------------------------------------------4 1.2吸收设备的发展------------------------------------------4 1.3吸收过程在工业生产中的应用------------------------------------------5 1.4丙酮的相关资料------------------------------------------6 第二节设计方案的确定-----------------------------------------7 2.1吸收剂的选择--------------------------------------------7 2.2吸收流程的选择----------------------------------------8 2.3吸收塔设备及填料的选择-------------------------------------------------9 2.4操作参数的选择------------------------------------------9 2.5设计模型图------------------------------------------10 第三节吸收塔的工艺计算----------------------------------------11 3.1基础性数据--------------------------------------------11 3.2物料计算-------------------------------11 3.3填料塔工艺尺寸的计算--------------------------------------------12 第四节设计后的感想-------------------------------------------------18 4.1对设计过程的评述和有关问题的讨论-------------------------------------------------18 4.2设计感想-------------------------------------------------------------------------------------------18 附录:参考文献-----------------------------------------------------------------------------------20

填料塔计算部分

二 基础物性参数的确定 1 液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,2 气相物性参数 设计压力:101.3kPa ,温度:20C ? 氨气在水中的扩散系数:92621.7610/ 6.33610/L D cm s m h --=?=? 氨气在空气中的扩散系数: 查表得,氨气在0°C ,101.3kPa 在空气中的扩散系数为0.17 2/cm s , 根据关系式换算出20C ?时的空气中的扩散系数: 33 2 2 0002 2 293.150.171273.150.189/0.06804/V P T D D P T cm s m h ??????==?? ? ? ??????? == 混合气体的平均摩尔质量为 m i 0.05170.982929.27V i M y M ==?+?=∑ 混合气体的平均密度为 3 m 101.329.27 1.2178.314293.15 V V m P M kg m R T ρ?= = =? 混合气体的粘度可近似取空气的粘度,查手册得20C ?空气粘度为

51.81100.065()V Pa s kg m h μ-=??=? 3 气液相平衡数据 由手册查得,常压下20C ?时,氨气在水中的亨利系数 76.3a E kP = 相平衡常数 76.30.7532 101.3 E m P = == 溶解度系数 3 s 998.20.726076.318.02 L H km ol kPa m EM ρ= = =?? 4 物料衡算 进塔气相摩尔比 1= 11 0.050.05263110.05 y Y y = =-- 出塔气相摩尔比 3 21(1)0.05263(10.98) 1.05310 A Y Y ?-=-=-=? 混合气体流量 33 0.1013(273.1520) 16.10100.1013273.15V N Q Q m h ? ?+==?? 惰性气体摩尔流量 273.15(10.05)636.1622.4 273.1520 V Q V km ol h = ? -=+ 该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算: 1212 L Y Y V Y m X -??= ? -?? 对于纯溶剂吸收过程,进塔液相组成 20X = m in 0.052630.0010530.73810.052630.7532L V -?? == ? ?? 取操作液气比为 m in 1.4L L V V ?? = ??? 1.40.7381 1.0333L V =?= 1.0333636.16657.34L kmol h =?=

填料塔的计算.doc

一、设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 1.2装置流程的确定 1.3填料的类型与选择 1.4操作温度与压力的确定 45℃常压 (二)填料吸收塔的工艺尺寸的计算 2.1基础物性数据 ①液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据

7.熔 根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数 表面张力б=72.6dyn/cm=940896kg/h 3 ②气相物性数据 混合气体的平均摩尔质量为 M vm = y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347 混合气体的平均密度ρvm = =??=301 314.805 .333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3 混合气体粘度近似取空气粘度,手册28℃空气粘度为

μV =1.78×10-5Pa ·s=0.064kg/(m ?h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数: 在水中亨利系数E=2.6?105kPa 相平衡常数为m=1.25596 .101106.25 =?= P E 溶解度系数为H=)/(1013.218 106.22.9973 45 kPa m kmol E M s ??=??= -ρ 2.2物料衡算 进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式 计算,即 2 121min /X m Y Y Y )V L ( --= 对于纯溶剂吸收过程,进塔液组成为X2=0 2 121min /X m Y Y Y )V L ( --==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581

填料塔计算部分 (2)

二基础物性参数的确定 由手册查得,常压下20C ?时,氨气在水中的亨利系数 相平衡常数 溶解度系数 4物料衡算 进塔气相摩尔比 出塔气相摩尔比 混合气体流量 惰性气体摩尔流量 该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算: 对于纯溶剂吸收过程,进塔液相组成

取操作液气比为 Eckert 通用关联图: 气体质量流量为 液体质量流量可近似按纯水的流量计算: Eckert 通用关联图的横坐标为 根据关联图对应坐标可得 由表2-4-1可知 F φ=2601m - 取0.80.8 2.360 1.888/F u u m s ==?=

由 1.737 D===m 圆整塔径(常用的标准塔径有400mm、500mm、600mm、800mm、1000mm、1200mm、1400mm、1600mm、 2000mm、2200mm等)本设计方案取D=2000mm。 泛点率校核: 因为填料塔的适宜空塔气速一般取泛点气速的50%-80%,泛点率值在允许范围内。 填料塔规格校核: 2000 808 25 D d ==>(在允许范围之内) 液体喷淋密度校核: max D 取8 h D =,则 计算得填料层高度为4000mm,故不需分段 5.3填料层压降计算 采用Eckert通用关联图计算 横坐标为 由表2-4-1得,1 176 P m φ- = 纵坐标为 查Eckert通用关联图,P ?/Z位于40g~50gPa/m范围内,取 P ?/Z=45g=441.45Pa/m

填料层压降为 ?=441.45?4.0=1765.80Pa P 6液体分布器的简要设计 6.1液体分布器的选型 本设计的吸收塔气液相负荷相差不大,无固体悬浮物和液体粘度不大,加上设计建议是优先选用槽 盘式分布器,所以本设计选用槽盘式分布器。 6.2分布点密度计算 按Eckert建议值,1200 m,由于该塔喷淋密度较小,设计区分喷淋D≥时,喷淋点密度为42点/2 点密度为90点/2 m。 槽宽度为

CaesarII应力分析模型设计要点

第一部分支架形式模拟 (2) 1.0 普通支架的模拟 (2) 1.1 U-band (2) 1.2 承重支架 (3) 1.3 导向支架 (3) 1.4 限位支架 (7) 1.5 固定支架 (7) 1.6 吊架 (8) 1.7 水平拉杆 (8) 1.8 弹簧支架模拟 (9) 2.0 附塔管道支架的模拟 (11) 3.0弯头上支架 (13) 4.0 液压阻尼器 (14) 5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15) 第二部分管件的模拟 (15) 1.0 法兰和阀门的模拟 (15) 2.0 大小头模拟 (17) 3.0 安全阀的模拟 (18) 4.0 弯头的模拟 (19) 5.0 支管连接形式 (20) 6.0 膨胀节的模拟 (21) 6.1 大拉杆横向型膨胀节 (22) 6.2 铰链型膨胀节 (34) 第三部分设备模拟 (42) 1.0 塔 (42) 1.1 板式塔的模拟 (42) 1.2 填料塔的模拟 (44) 1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47) 2.0 换热器,再沸器 (48) 2.1 换热器模拟也分两种情况 (48)

3.0 板式换热器 (51) 4.0 空冷器 (52) 4.1 空冷器进口管道和出口管道不在同一侧 (52) 4.2 空冷器进口管道和出口管道在同一侧 (54) 5.0 泵 (56) 6.0 压缩机,透平 (58) 第四部分管口校核 (59) 1.0 WRC107 (59) 2.0 Nema 23 (62) 3.0 API617 (64) 4.0 API610 (65) 第五部分工况组合 (68) 1.0 地震 (69) 2.0 风载 (70) 3.0 安全阀起跳工况 (72) 4.0 沉降 (74) 第一部分支架形式模拟 1.0 普通支架的模拟 1.1 U-band

填料塔设计

化工原理课程设计 -填料塔的设计说明书 院(系)别:化学与化工学院 专业:应用化学 年级班: 09级3班 姓名: 学号: 指导老师:

前言: 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。同时,通过课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度责任感的工作作风。课程设计是增强工程观念,培养提高学生独立工作能力的有益实践。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 经过学习,我知道,填料塔吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。这次课程设计我把聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。

目录 一、设计任务 (5) 二、设计条件 (5) 三、设计方案 (5) 1、吸收剂的选择 (5) 2、吸收过程的选择 (5) 3、流程图及流程说明 (5) 4、塔填料选择 (6) 四、工艺计算 (6) 1、物料衡算,确定塔顶、塔底的气液流量和组成 (7) 2、塔径计算 (8) 3、填料层高度计算 (9) 4.填料层压降计算 (11) 五、液体分布装置 (12) 1、液体分布器的选型 (12) 2、分布点密度计算 (12) 六、吸收塔塔体材料的选择 (13) 1、吸收塔塔体材料:Q235-B (13) 2、吸收塔的内径 (13) 3、壁厚的计算 (13) 4、强度校核 (14) 七、封头的选型依据,材料及尺寸规格 (14) 1、封头的选型:标准的椭圆封头 (14) 2、封头材料的选择 (14) 3、封头的高 (14) 4、封头的壁厚 (15) 八、液体再分布装置 (15) 九、气体分布装置 (16) 十、填料支撑装置 (16) 十一、液体分布装置 (16) 十二、除沫装置 (17) 1、设计气速的计算 (17) 2、丝网盘的直径 (17) 3、丝网层厚度H的确定 (18) 十三、管结构 (18) 1、气体和液体的进出的装置 (18) 2、填料卸出口 (19) 3、塔体各开孔补强设计 (19) 十四、填料塔高度的确定(除去支座) (20) 1吸收高度 (20) 2、支持圈高度 (20) 3、栅板高度 (20) 4、支持板高度 (20)

填料塔工艺尺寸的计算

填料塔工艺尺寸的计算 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第三节 填料塔工艺尺寸的计算 填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段 塔径的计算 1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~ 贝恩(Bain )—霍根(Hougen )关联式 ,即: 2213lg V F L L u a g ρμερ?? ?????? ? ???????=A-K 14 18 V L V L w w ρρ???? ? ??? ?? (3-1) 即:1124 8 0.23100 1.18363202.59 1.1836lg[ ()1]0.0942 1.759.810.917998.24734.4998.2F u ?????? =- ? ? ??????? 所以:2 F u /(100/3)()= UF=3.974574742m/s 其中: f u ——泛点气速,m/s; g ——重力加速度,9.81m/s 2 W L =㎏/h W V =7056.6kg/h A=; K=; 取u= F u =2.78220m/s 0.7631D = = = (3-2) 圆整塔径后 D=0.8m 1. 泛点速率校核:2 6000 3.31740.7850.83600 u = =?? m/s 则 F u u 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核: (1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。

(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ?为。 ()32min min 0.081008/w t U L m m h α==?=? (3-3) 22 5358.8957 10.6858min 0.75998.20.7850.8L L w U D ρ= ==>=???? (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。 填料层高度的计算及分段 *110.049850.75320.03755Y mX ==?= (3-5) *220Y mX == (3-6) 3.2.1 传质单元数的计算 用对数平均推动力法求传质单元数 12 OG M Y Y N Y -= ? (3-7) ()* *1 1 22*11*22 () ln M Y Y Y Y Y Y Y Y Y ---?= -- (3-8) = 0.063830.00063830.03755 0.02627ln 0.0006383 -- = 3.2.2 质单元高度的计算 气相总传质单元高度采用修正的恩田关联式计算: () 0.75 0.10.05 2 0.2 2 21exp 1.45/t c l L t L L V t w l t l L U U U g ασαρσαασαμρ-????????? ? =--?? ? ? ??? ????? ?? ? (3-9) 即:αw/αt =0. 液体质量通量为:L u =WL/××=10666.5918kg/(㎡?h ) 气体质量通量为: V u =60000×=14045.78025kg/(㎡?h)

aspen吸收、精馏塔模拟设计(转载)

aspen模拟塔设计(转载) 一、板式塔工艺设计 首先要知道工艺计算要算什么?要得到那些结果?如何算?然后再进行下面的计算步骤。(参考) 其次要知道你用的软件(或软件模块)能做什么,不能做什么?你如何借助它完成给定的设计任务。 记住:你是工艺设计者,没有 aspen 你必须知道计算过程及方法,能将塔设计出来,这是你经过课程学习应该具有的能力,理论上讲也是进入毕业设计的前提。只是设计过程中将复杂的计算过程交给 aspen 完成, aspen 只替你计算,不能替你完成你的设计。做不到这一点说明工艺设计部份还不合格,毕业答辩就可能要出问题,实际的这是开题时要做的事的一部份,开题答辩就是要考察这个方面的问题。 设计方案,包括设计方法、路线、分析优化方案等,应该是设计开题报告中的一部份。没有很好的设计方案,具体作时就会思路不清晰,足见开题的重要性。下面给出工艺设计计算方案参考,希望借此对今后的结构和强度设计作一个详细的设计方案,明确的一下接下来所有工作详细步骤和方法,以便以后设计工作顺利进行。 板式塔工艺计算步骤 1.物料衡算(手算) 目的:求解 aspen 简捷设计模拟的输入条件。 内容:(1) 组份分割,确定是否为清晰分割; (2)估计塔顶与塔底的组成。 得出结果:塔顶馏出液的中关键轻组份与关键重组份的回收率 参考:《化工原理》有关精馏多组份物料平衡的内容。 2.用简捷模块(DSTWU)进行设计计算 目的:结合后面的灵敏度分析,确定合适的回流比和塔板数。 方法:选择设计计算,确定一个最小回流比倍数。 得出结果:理论塔板数、实际板数、加料板位置、回流比,蒸发率等等RadFarce 所需要的所有数据。

填料塔课程设计

目录 1.前言 (4) 2.设计任务 (6) 3.设计方案说明 (6) 4.基础物性数据 (6) 5.物料衡算 (6) 6.填料塔的工艺尺寸计算 (8) 7.附属设备的选型及设备 (14) 8.参考文献 (19) 9.后记及其他 (20)

1.前言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能。 1.1填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 1.2 填料的类型 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

填料塔计算和设计

填料塔计算和设计

填料塔计算和设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;

3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要;

填料塔计算部分

填料塔计算部分 This manuscript was revised by the office on December 10, 2020.

二 基础物性参数的确定 1 液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,2 气相物性参数 设计压力: ,温度:20C ? 氨气在水中的扩散系数:92621.7610/ 6.33610/L D cm s m h --=?=? 氨气在空气中的扩散系数: 查表得,氨气在0°C ,在空气中的扩散系数为 2/cm s , 根据关系式换算出20C ?时的空气中的扩散系数: 3 32 2 00022293.150.171273.150.189/0.06804/V P T D D P T cm s m h ?????? ==?? ? ? ??????? == 混合气体的平均摩尔质量为 m i 0.05170.982929.27V i M y M ==?+?=∑ 混合气体的平均密度为 3m 101.329.27 1.2178.314293.15 V Vm PM kg m RT ρ?===? 混合气体的粘度可近似取空气的粘度,查手册得20C ?空气粘度为 51.81100.065()V Pa s kg m h μ-=??=? 3 气液相平衡数据

由手册查得,常压下20C ?时,氨气在水中的亨利系数 76.3a E kP = 相平衡常数 76.30.7532101.3 E m P === 溶解度系数 3s 998.2 0.726076.318.02 L H kmol kPa m EM ρ= = =?? 4 物料衡算 进塔气相摩尔比 1= 110.05 0.05263110.05 y Y y ==-- 出塔气相摩尔比 321(1)0.05263(10.98) 1.05310A Y Y ?-=-=-=? 混合气体流量 330.1013(273.1520) 16.10100.1013273.15 V N Q Q m h ? ?+==?? 惰性气体摩尔流量 273.15(10.05)636.1622.4273.1520 V Q V kmol h =?-=+ 该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算: 1212 L Y Y V Y m X -??= ? -?? 对于纯溶剂吸收过程,进塔液相组成 20X = min 0.052630.0010530.73810.052630.7532L V -??== ??? 取操作液气比为 min 1.4L L V V ?? = ??? 1.40.7381 1.0333L V =?= 1.0333636.16657.34L kmol h =?= 1212()636.16(0.052630.001053) 0.0499657.34 V Y Y X X L -?-=+==

填料塔的设计完整版

填料塔的设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

目录 前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书

1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH 3,气体处理量为1500m 3/h ,其中含氨%(体积分数),要求吸收率达到99%,相平衡常数m=。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、零部件等编号,并附明细表,即按工程制图要求。图纸幅面、图线等应符合国家标准;图面布置均匀;符合制图规范要求。 6)对设计过程的评述和有关问题的讨论。 二.设计资料 1.工艺流程 采用填料塔设计,填料塔是塔设备的一种。塔内填充适当高度的填料,以增加两种流体间的接触表面。例如应用于气体吸收时,液体由塔的上部通过分布器进入,沿填料表面下降。气体则由塔的下部通过填料孔隙逆流而上,与液体密切接触而相互作用。结构较简单,检修较方便。广泛应用于气体吸收、蒸馏、萃取等操作。 2.进气参数 进气流量: 1500m 3/h 进气主要成分:NH 3 空气粘度系数:h m kg s pa V ?=??=-/065.01081.15μ 298K,下,氨气在空气中的扩散系数D V =s; 298K,下,氨气在水中的扩散系数D L =*10-9m 2/s 25℃时,氨在水中的溶解度为H=m 3kpa

填料塔的设计.doc

目录 一.设计任务书 (3) 1.设计目的 (3) 2.设计任务 (3) 3.设计内容和要求 (3) 二.设计资料 (4) 1.工艺流程 (4) 2.进气参数 (4) 3.吸收液参数 (4) 4.操作条件 (5) 5.填料性能 (5) 三.设计计算书 (6) 1.填料塔主体的计算 (6) 1.1吸收剂用量的计算 (6) 1.2塔径的计算 (7) 1.3填料层高度的计算 (10) 1.4.填料塔压降的计算 (14) 2.填料塔附属结构的类型与设计 (15) 2.1支承板 (16) 2.2填料压紧装置 (16) 2.3液体分布器装置 (16) 2.4除雾装置 (17) 2.5气体分布装置 (17) 2.6排液装置 (18)

2.7防腐蚀设计 (18) 2.8气体进料管 (18) 2.9液体进料管: (19) 2.10封头的选择 (19) 2.11总塔高计算 (20) 3.填料塔设计参数汇总 (21) 四.填料塔装配图(见附录) (22) 五.总结 (22) 六.参考文献 (23) 附录 (23)

前言 世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。 一.设计任务书 1.设计目的 通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。 2.设计任务 试设计一个填料塔,常压,逆流操作,操作温度为25℃,以清水为吸收剂,吸收脱除混合气体中的NH ,气体处理量为1500m3/h,其中含氨1.9%(体积分数), 3 要求吸收率达到99%,相平衡常数m=0.95。 3.设计内容和要求 1)研究分析资料。 2)净化设备的计算,包括计算吸收塔的物料衡算、吸收塔的工艺尺寸计算、填料层压降的计算及校核计算。 3)附属设备的设计等。 4)编写设计计算书。设计计算书的内容应按要求编写,即包括与设计有关的阐述、说明及计算。要求内容完整,叙述简明,层次清楚,计算过程详细、准确,书写工整,装订成册。设计计算书应包括目录、前言、正文及参考文献等,格式参照学校要求。 5)设计图纸。包括填料塔剖面结构图、工艺流程图。应按比例绘制,标出设备、

相关文档
最新文档