DCDC开关电源管理芯片的设计

DCDC开关电源管理芯片的设计
DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计

引言

电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。

目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。

从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。

1. 开关电源控制电路原理分析

DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。

PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图1即为电压型控制的原理框图。

图1 电压型控制的原理框图

电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。信号。从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电

感电流的动态变化,电压外环只负责控制输出电压。因此电流型控制模式具有比起电压型控制模式大得多的带宽。

图2 电流型控制原理框图

电流型控制模式有不少优点:线性调整率(电压调整率)非常好;整个反馈电路变成了一阶电路,由于反馈信号电路与电压型相比,减少了一阶,因此误差放大器的控制环补偿网络得以简化,稳定度得以提高并且改善了频响,具有更大的增益带宽乘积;具有瞬时峰值电流限流功能;简化了反馈控制补偿网络、负载限流、磁通平衡等电路的设计,减少了元器件的数量和成本,这对提高开关电源的功率密度,实现小型化,模块化具有重要的意义。当然了也有缺点,例如占空比大于50%时系统可能出现不稳定性,可能会产生次谐波振荡;另外,在电路拓扑结构选择上也有局限,在升压型和降压—升压型电路中,由于储能电感不在输出端,存在峰值电流与平均电流的误差。对噪声敏感,抗噪声性差等等。对于这样的缺点现在已经有了解决的方案,斜波补偿是很必要的一种方法。

2.芯片内部模块的设计

本目的是设计一个基于PWM控制的boost升压式DC-DC电源转换芯片,该芯片实现基于双环(电压环和电流环)一阶控制系统的电流模式PWM控制电路,在该集成模块内将包括控制、驱动、保护、检测电路等。最后在电路系统基本框架的基础上,结合电力电子技术与微电子技术,采用采用BiCMOS工艺,具体针对DC-DC变换电路的实现进行研究。

系统方面的设计以及系统框图和各个功能模块的设计思想

图3 系统模块原理框图

下面分别的介绍系统各个功能模块:

①误差放大电路误差是用于调整变换器的高增益差分放大器。放大器产生误差信号,他被供给PWM比较器。当输出电压样本与内部电压基准比较并放大差值时产生误差信号。误差放大器的2号脚Vref就是基准电压产生的固定基准。

② PWM比较器当来自电流取样信号,当然是电感电流和振荡器产生的补偿谐波想加后的电流信号,超过误差信号时,PWM比较器翻转,复位驱动锁存器断开电源开关,以此来控制开关管的开通与关断。

③振荡器模块振荡器电路提供一定频率的时钟信号,以设置变换器工作频率,以及用于斜率补偿的定时斜升波。时钟波形为脉冲,而定时斜升波就是用于斜波补偿的,在电感取样端相加。

④驱动器锁存器锁存器包括RS触发器与相关逻辑,它通过接通和断开驱动电路来控制电源开关的状态。来自锁存器的低输出电平把它断开。正常工作方式下,在时钟脉冲期间触发器被置为高电平,当PWM比较器输出变为高电平时锁存器复位。

⑤软启动电路模块当整个系统刚启动时,电感产生一个很大的冲击电流,软启动让系统开始时不能在全占空比下启动,使输出电压以受控的上升速率增加至额定稳压点。设计思想是利用外接电容的充放电使得占空比慢慢提高,达到输出稳定的目的。

⑥电流采样电路提供斜率补偿电流灵敏电压给PWM比较器。

⑦保护电路模块监视电源开关的电流,若该值超过额定峰值,则该电路作用,重新开始软启动周期。

3.设计中必须要考虑的几点细节问题

①关于斜波补偿

这是在上文提到过的电流控制型开关变换器中存在的根本性问题。电流控制型就是将实际的电感电流和电压外环设定的电流值分别接到PWM比较器的两端进行比较,用来控制开关管。下面分析斜波补偿的原因。如下图分别是占空比大于50%和小于50%的尖峰电流控制的电感电流波形图。

图4 斜坡补偿原理分析

其中Ve是电压放大器输出的电流设定值,ΔI0是扰动电流,m1,m2分别是电感电流的上升沿及下降沿斜率。由图可知,当占空比小于50%时扰动电流引起的电流误差ΔI l变小了,而占空比大于50%时扰动电流引起的电流误差ΔI l变大了。所以尖峰电流模式控制在占空比大于50%时,经过一个周期会将扰动信号扩大,从而造成工作不稳定,这时需给删比较器加坡度补偿以稳定电路,加了坡度补偿,即使占空比小于50%,电路性能也能得到改善。因此斜坡补偿能很好的增加电路稳定性,使电感电流平均值不随占空比变化,并减小峰值和平均值的误差,斜坡补偿还能抑制次谐波振荡和振铃电感电流。这里就不再详细地说明,斜波补偿方面必须要确定补偿波形的斜率的精确大小,采用的方法就是建立系统模型,导出传递函数,计算出补偿斜率的值。这是很关键的一步。

②关于软启动问题

DC/ DC开关电源在启动过程中,容易产生浪涌电流,可能对电子系统产生损伤。为避免启动时输入电流过大,输出电压过冲,在设计中必须采用软启动电路,该方法的不足之处是,当输出电压的阈值未达到时,发生浪涌电流现象可能对电子系统造成损伤,而且在输出电压达到阈值之后,也可能因为偶然的过流使得电源多次重新启动。因此应采用基于周期到周期的电流限制门限来限制上电时的浪涌电流,并防止电源多次重新启动。如图5

图5 软启动电路

4.总结

本文对开关电源工作原理进行了详细的分析,对芯片内部模块进行了设计,最后采用BiCMOS工艺对芯片进行实现。,对芯片系统方面的设计又整体的把握,详细的论

述了芯片设计的思想,这种方法对其他领域的芯片系统设计又很大帮助,因此有很大意义。

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 DC-DC 电源转换器 1. 低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2. 低功耗开关型DC-DC电源转换器ADP3000 3. 高效3A开关稳压器AP1501 4. 高效率无电感DC-DC电源转换器FAN5660 5. 小功率极性反转电源转换器ICL7660 6. 高效率DC-DC电源转换控制器IRU3037 7. 高性能降压式DC-DC电源转换器ISL6420 8. 单片降压式开关稳压器L4960 9. 大功率开关稳压器L4970A 高效率单片开关稳压器L4978 高效率升压/降压式DC-DC电源转换器L5970 14. 高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 降压单片开关 稳压器LM2576/LM2576HV 16. 可调升压开关稳压器LM2577 降压开关稳压器LM2596 18. 高效率5A 开关稳压器LM2678 19. 升压式DC-DC电源转换器LM2703/LM2704 20. 电流模式升压式电源转换器LM2733 21. 低噪声升压式电源转换器LM2750 22. 小型75V降压式稳压器LM5007 23. 低功耗升/降压式DC-DC电源转换器LT1073 24. 升压式DC-DC电源转换器LT1615 25. 隔离式开关稳压器LT1725 26. 低功耗升压电荷泵LT1751 27. 大电流高频降压式DC-DC电源转换器 LT176 5 28. 大电流升压转换器LT1935 29. 高效升压式电荷泵LT1937 30. 高压输入降压式电源转换器LT1956 32. 高压升/ 降压式电源转换器LT3433

设计人员利用各种电源管理方案

减小运算放大器的功率 李德润5030209131 随着系统的变大,减小功耗在许多电子系统中变得更加重要,设计人员利用各种电源管理方案,为各子系统提供合理,必须的电源。关闭各个部分的电源很容易,而重新接通某部分的电源时,不仅应该考虑加电期间各步骤的次序,而且需要考虑系统中的设计变化,以确保加电成功。运算放大器加电需要遵循以下三步: (1)要有合适的接地; (2)加电前放大器输入引脚上无电压; (3)给放大器加电。第一步通常很容易,多数时候放大器的接地引脚直接接地。 第三步中如果加电太快或太慢可能会带来问题。困难的是第二步,确保加电之前输入引脚上没有电压。在放大器加电时,输入引脚带电会造成以下后果,即:放大器闭锁,主要是CMOS放大器的问题;EDS(静电放电)二极管通电和不稳定输出,也会影响放大器。闭锁导致过热熔化当放大器内部的晶体管和它们下面的裸片基片之间的P-N接头产生寄生SCR时,就会发生闭锁。SCR是四层(PNPN) 器件,一旦触发就会保持导通,直到电源切断。 图1所示为互连的PNP及NPN晶体管的示意图,当电流在晶体管基极中流动时,电流将会自我生成,并把该结构锁在导通状态,导致焊线熔化或该零件损坏。这主要是CMOS 器件的问题。通过给放大器的输入引脚串联高阻值的电阻器可以消除闭锁。设计者需要在各种温度、供电电压和电源接通速度下评估电路,以避免闭锁。限制输入到放大器的电流,可以使放大器免于毁坏,但无法阻止闭锁。闭锁发生后,必须先切断其供电引脚和输入引脚的电源,再重新给放大器加电接通。ESD二极管提供保护途径现代放大器的引脚上都有一对ESD二极管,保护其内部电路免受静电放电的破坏。如果静电放电是“正”进入输入引脚(如图2所示),那么高压侧二极管会把能量传导到电源的“正”电源电压轨。如果放电为“负”,那么低压侧EDS二极管会前向偏置,并把输入引脚固定到底部电源电压轨。在这种方式中,所有引脚偏离供电引脚不超过0.6 V。

TOP开关芯片资料

TOP开关电源芯片工作原理及应用电路 -------------------------------------------------------------------------------- TOP开关电源芯片工作原理及应用电路 1.什么叫TOP开关电源芯片 TOP开关电源的芯片组是三端离线式脉宽调制单片开关集成电路TOP(ThreeterminalofflinePWM)的简称,TOP将PWM控制器与功率开关MOSFET合二为一封装在一起,。采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。 2.TOP开关结构及工作原理 2.1 结构 TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO220或8脚DIP封装。少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。三个引出端分别是漏极端D、源极端S和控制端C。其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。控制端C控制输出占空比,是误差放大器和反馈电流的输入端。在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。源极端S是MOSFET的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。图1 为TOP开关电源芯片的内部结构电路图 图1TOP开关内部工作原理框图 2.2工作原理 TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。RA与CA构

成截止频率为7kHz的低通滤波器。主要特点是: (1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击; (2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断; (3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制; (4)电压型控制方式与逐周期峰值电流限制。 下面简要叙述一下: (1)控制电压源 控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流IC则能调节占空比。控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,具有延迟控制作用;另一种是并联调节,用于分离误差信号与控制电路的高压电流源。刚起动电路时由D C极之间的高压电流源提供控制端电流Ic,以便给控制电路供电并对Ct充电。 (2)带隙基准电压源 带隙基准电压源除向内部提供各种基准电压之外,还产生一个具有温度补偿并可调整的电流源,以保证精确设定振荡器频率和门极驱动电流。 (3)振荡器 内部振荡电容是在设定的上、下阈值UH、UL之间周期性地线性充放电,以产生脉宽调制器所需要的锯齿波(SA W),与此同时还产生最大占空比信号(DMAx)和时钟信号(CLOCK)。为减小电磁干扰,提高电源效率,振荡频率(即开关频率)设计为100kHz,脉冲波形的占空比设定为D。 (4)放大器 误差放大器的增益由控制端的动态阻抗Zc来设定。Zc的变化范围是10Ω~20Ω,典型值为15Ω。误差放大器将反馈电压UF与5.7V基准电压进行比较后,输出误差电流Ir,在RE 上形成误差电压UR。 (5)脉宽调制器(PWM) 脉宽调制器是一个电压反馈式控制电路,它具有两层含义。第一、改变控制端电流IC的大小,即可调节占空比D,实现脉宽调制。第二、误差电压UR经由RA、CA组成截止频率为7kHz的低通滤波器,滤掉开关噪声电压之后,加至PWM比较器的同相输入端,再与锯齿波电压UJ进行比较,产生脉宽调制信号UB。 (6)门驱动级和输出级 门驱动级(F)用于驱动功率开关管(MOSFET),使之按一定速率导通,从而将共模电磁干扰减至最小。漏 源导通电阻与产品型号和芯片结温有关。MOSFET管的漏 源击穿电压U(bo)ds≥700V。 (7)过流保护电路 过流比较器的反相输入端接阈值电压ULIMIT,同相输入端接MOSFET管的漏极。此外,芯片还具有初始输入电流限制功能。刚通电时可将整流后的直流限制在0.6A或0.75A。(8)过热保护电路 当芯片结温TJ>135℃时,过热保护电路就输出高电平,将触发器Ⅱ置位,Q=1,Q=0,关断输出级。此时进入滞后调节模式,Uc端波形也变成幅度为4.7V~5.7V的锯齿波。若要重新起动电路,需断电后再接通电源开关;或者将控制端电压降至3.3V以下,达到Uc(reset)值,再利用上电复位电路将触发器Ⅱ置零,使MOSFET恢复正常工作。 (9)关断/自起动电路 一旦调节失控,关断/自动重起动电路立即使芯片在5%占空比下工作,同时切断从外部流入

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动, 应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种PWM空制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1.开关电源控制电路原理分析 DC- DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成 另一等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间 长度来控制平均输出电压,这种方法也称为脉宽调制[PWM法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode con trol )和电流型 控制(current modecontrol )。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PW信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个—阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图即为电压型控制的原理框图。 1

智能手机电源管理模块的设计

龙源期刊网 https://www.360docs.net/doc/2c4974230.html, 智能手机电源管理模块的设计 作者:芦昱昊 来源:《电子技术与软件工程》2017年第04期 摘要随着国民生活质量的不断提高,电子产品更新换代的速度也越来越快。通讯产品中的电源动力系统一直是开发者关注的重点,也是用户选择智能手机的关键选项,因此对智能手机电源管理模块的设计分析是十分必要的。 【关键词】智能手机电源模块设计管理 手机行业的发展变化可谓是日新月异,近年来肉眼可见的黑白屏到彩色屏、仅有通话功能到目前的各种实用应用,都是智能手机功能进步的体现。然而这些复杂功能的实现都是需要稳定的电源系统作为支持的,因此开展电源模块的电压以及效率设计管理是为智能手机的良好发展前景奠定基础。 1 智能手机电源管理模块的设计原则 智能手机的设计过程是设计师明确消费者对设备要求下进行的,因此需要从体积、重量、续航时间上等多方面进行详细考虑。智能手机体积的缩小处理是针对系统集中功能和元件封装技术的体现,因此需要考虑到减小PCB板后产生的各种影响。在体积和重量都有限制的情况下,提高电池的容量和密度是最佳的创新选择,同时注重电源系统在工作状态下的转化频率,也是处理续航时间的主要方案。由此可知,电源管理模块的转化率和能耗是手机改革重点,手机厂家需要从电能转化的效率和电源的使用效率两方面提高设备的科技含量,制造出具备高性价比和满足消费者需求的优势产品。 2 智能手机电源管理模块的设计分析 2.1 PMU 市面上很多电子产品需要根据实际功能调节出不同电压的电源,也就意味着电池在供电的同时还需要根据芯片迅速转换电压,转换期间的功率损耗也应当保持在规定范围之内,同时该电源模块还需要维持电源的充电安全。这样的新型电源模块电路被称作是电源管理单元,英文缩写为PMU,是为提高电源转化效率和降低能耗的电源管理方案。PMU的构架分为集中式和分布式,但是二者共同存在的几率很小,设计者需要在系统划分之初决定好使用哪种方案。集中式是仅执行PMU附近的单一处理器进行电压调节和电源切换工作,而分布式系统则是作用于每一个电源子系统上。二者的选择重点是从智能手机应用的数量和响应速度的要求,同时还要考虑到电源模块管理过程中的间隔距离。通过比较来看,PMU分布式的方案较集中式的灵活一些,只需要在系统之间加入一根电源轨,作为所有外围的电源连接线,那么每一个外围电

电池电源管理系统设计

电源招聘专家 我国是一个煤矿事故多发的国家,为进一步提高煤矿安全防护能力和应急救援水平,借鉴美国、澳大利亚、南非等国家成功的经验和做法,2010年,国家把建设煤矿井下避难硐室应用试点列入了煤矿安全改造项目重点支持方向。 为了满足井下复杂的运行环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,研发了基于MAX17830的矿用电池电源管理系统。 1 总体技术方案 根据煤矿井下的环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,结合磷酸铁锂电池的特性,采用MAX17830作为矿用电池管理系统的采集与保护芯片。 本矿用电池电源管理系统由五部分组成,分别为显示模块、管理模块、执行机构、电池组、防爆壳。整个电池电源管理系统共设有4对接线口:24 V直流输出端口、24 V直流充电端口、485通信端口和CAN通信端口[1-2]。 本矿用电池电源管理系统的工作流程如图1所示。 2 电池电源管理系统硬件设计 2.1 器件选择及布局 本矿用电池电源管理系统设计所采用的主要器件如表1所示。 按照器件的功能及电池管理系统的特点,对器件进行布局设计,器件布局情况如图2所示。 2.2 核心电路解析 2.2.1 MAX17830介绍 MAX17830芯片由美国的美信半导体公司生产,包含12路电压检测通道、12路平衡电路控制引脚及2路NTC温度传感器。在本电池电源管理系统中使用了8路电压检测通道、8路平衡电路控制引脚和2路NTC温度传感器。MAX17830采集8个单体电池的电压并使用IIC通信协议与CPU通信,将采集的数据发送给CPU,接受CPU的控制[3-4]。 2.2.2 电池电压采集与过充保护电路 此电路围绕着MAX17830而设计,负责整个电池组单体电池的电压采集、过充保护、平衡管理等,其电路设计的原理图如3所示。 3 电池电源管理系统软件设计 3.1 软件基本功能 为了保证电池电源系统的稳定,设计电池电源管理系统软件的基本功能如下[5]: (1)动态信息的采样,对单体电压、单体温度、电池组电流、电池组电压进行采样;(2)电管理,根据系统动态参数对充电过程、放电过程、短路情况进行报警、主动保护多级管理措施; (3)热管理,电池单体高于或低于指定界限时电池电源管理系统将采取保护措施并报警;(4)均衡管理,充、放电过程中可对单体电池持续有效地提供高达70 mA的均衡电流,每块单体电池设有一路均衡电路; (5)数据管理,使用CAN/485通信协议可实时读取、调用系统存储的数据及管理系统工作状态。详实记录过流、过压、过温等报警信息,作为系统诊断的依据; (6)电量评估,长时间精准剩余电量估计,实验室SoC估计精度在97%以上(-40 ℃~

1203P60 PWM开关电源芯片

NCP1203 PWM Current?Mode Controller for Universal Off?Line Supplies Featuring Standby and Short Circuit Protection Housed in SOIC?8 or PDIP?8 package, the NCP1203 represents a major leap toward ultra?compact Switchmode Power Supplies and represents an excellent candidate to replace the UC384X devices. Due to its proprietary SMARTMOS t Very High V oltage Technology, the circuit allows the implementation of complete off?line AC?DC adapters, battery charger and a high?power SMPS with few external components. With an internal structure operating at a fixed 40 kHz, 60 kHz or 100 kHz switching frequency, the controller features a high?voltage startup FET which ensures a clean and loss?less startup sequence. Its current?mode control naturally provides good audio?susceptibility and inherent pulse?by?pulse control. When the current setpoint falls below a given value, e.g. the output power demand diminishes, the IC automatically enters the so?called skip cycle mode and provides improved efficiency at light loads while offering excellent performance in standby conditions. Because this occurs at a user adjustable low peak current, no acoustic noise takes place. The NCP1203 also includes an efficient protective circuitry which, in presence of an output over load condition, disables the output pulses while the device enters a safe burst mode, trying to restart. Once the default has gone, the device auto?recovers. Finally, a temperature shutdown with hysteresis helps building safe and robust power supplies. Features ?Pb?Free Packages are Available ?High?V oltage Startup Current Source ?Auto?Recovery Internal Output Short?Circuit Protection ?Extremely Low No?Load Standby Power ?Current?Mode with Adjustable Skip?Cycle Capability ?Internal Leading Edge Blanking ?250 mA Peak Current Capability ?Internally Fixed Frequency at 40 kHz, 60 kHz and 100 kHz ?Direct Optocoupler Connection ?Undervoltage Lockout at 7.8 V Typical ?SPICE Models Available for TRANsient and AC Analysis ?Pin to Pin Compatible with NCP1200 Applications ?AC?DC Adapters for Notebooks, etc. ?Offline Battery Chargers ?Auxiliary Power Supplies (USB, Appliances, TVs, etc.) SOIC?8 D1, D2 SUFFIX CASE 751 1 MARKING DIAGRAMS PIN CONNECTIONS PDIP?8 N SUFFIX CASE 626 8 xx= Specific Device Code A= Assembly Location WL, L= Wafer Lot Y, YY= Year W, WW= Work Week Adj HV FB CS GND NC V CC Drv (Top View) xxxxxxxxx AWL YYWW 1 8 See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. ORDERING INFORMATION https://www.360docs.net/doc/2c4974230.html, 查询1203P60供应商

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

Power Management-电源管理IC

Yuming电子知识系列 Power Management Power Management 电源管理 IC Yuming Sun Jul, 2011 Jul2011 yuming924@https://www.360docs.net/doc/2c4974230.html,

CONTENTS 础知识 ?基础知识 ?LDO Regulator ?Switching Regulator (DC-DC) ?Charge Pump(电荷泵) Ch P ?W-LED Driver ?Voltage Reference (电压参考/基准源) Voltage Reference( ?Reset IC (Voltage Detector) ?MOSFET Driver ?PWM Controller

基础知识

Portable Device

便携电子产品常用电源

电力资源-电源管理IC-用电设备 IC :5、3.3、2.5、1.8、1.2、0.9V 等;电力用电电 源管马达:3、6、12V ;LED 灯背光;资源 设备理 IC LCD 屏:12、-5V ;AC Rectifier/PWM IC )AC :110、220V DC C t 升降压DC DC Ch P 等整流:PWM IC (3843或VIPER12)、开关电源DC 或电池 DC Converter :LDO 、升降压DC-DC 、Charge Pump 等。Reset IC 或电压检测:如808、809。电池管理:保护IC 、充电管理(4054Fuel Gauge 等。电池管理保护、充电管理)、g 等DC 或电池AC Inverter/逆变:for CCFL …… (比喻:电荷-水、电流-水流、电容-水桶、电压-水压。)

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

开关电源常用芯片

FSGM0765RWDTUFSL106HR 、FSL106MR 、FSL116LR 、 开关电源常用芯片 FSCQ1265RTYDTU 、 FSCQ1565RTYDTUFSDL321 FSDH321 、FSDL0165RN 、FSDM0265RNB 、FSDH0265RN 、 FSDM0365RNB 、 FSDL0365RN 、 FSDM0465REWDTU FSDM0565REWDTU 、FSDM07652REWDTU FSDM311A 、FSEZ1016AMY 、 FSEZ1317NY 、 Fairchild 仙童(飞兆)系列开关电源驱动芯片 FAN100MY 、 FAN102MY 、FAN103MY 、 FAN6208 、 FAN6300AMY 、 FAN6754AMRMY 、FAN6862TY 、 FAN6921MRMY 、FAN6961SZ 、FAN7346MX 、FAN7384MX 、 FAN7319MX 、FAN7527BMX 、FAN7527BN 、FAN7554N 、 FAN7554DFAN7621 、FAN7621SSJ 、FAN7621B 、FAN7631 、 FAN7930CMX ;FAN6204MYFL103 、FL6300A 即 FAN6300 、 FL6961 、FL7701 、FL7730 、FL7732 、FL7930B 、 FLS0116 、FLS3217 、FLS3247 、FLS1600XS 、 FLS1800XS 、 FLS2100XSFSFR1600 、 FSFR1600XSL 、 FSFR1700 、FSFR1700XS 、FSFR1700XSL 、FSFR1800 、 FSFR1800XS 、 FSFR1800XSL 、FSFR2100XSL 、 FSFR2100FSCQ0565RTYDTU 、FSCQ0765RTYDTU 、FSDM311 、

DCDC电源设计方案

DCDC电源设计方案 1、DC/DC电源电路简介 DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V等,后者使用的电源电压一般在24V以下。不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等。结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。 2、DC/DC转换电路分类 DC/DC转换电路主要分为以下三大类: (1)稳压管稳压电路。 (2)线性(模拟)稳压电路。 (3)开关型稳压电路 3、稳压管稳压电路设计方案 稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。比较常用的是并联型稳压电路,其电路简图如图(1)所示, 选择稳压管时一般可按下述式子估算: (1) Uz=V out; (2)Izmax=(1.5-3)I Lmax (3)Vin=(2-3)V out 这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。 有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。这里主要介绍TL431、REF02的应用方案。 3.1 TL431常用电路设计方案 TL431是一个有良好的热稳定性能的三端可调分流基准电压源。它的输出

常用开关电源芯片

--------------------------------------------------------------------------- 常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725

MAX1647电源管理电路设计详解

MAX1647电源管理电路设计详解 随着二极管泵浦全固态激光器相关技术的不断发展,它在工业、国防 科研、生物医学工程等领域的应用越来越广泛,对其输出功率、可靠性要求也 不断提高。作为二极管泵浦全固态激光器的重要组成部分的电源,其可靠性、 稳定性也就显得格外重要。二极管泵浦全固态激光器的电源功率较大,输出为 大电流、低电压,工作脉冲频率较高(可达1kHz),输出电流、电压的稳定性要求很高。微小的电流扰动将影响激光器的出光质量,不当的保护可能引起巨 大的损失。针对这些特点,我们选择功能强大的电源管理芯片MAX1647作为 整个系统控制的核心部分,设计出完全满足要求的大功率激光器电源。 MAX1647电源管理芯片介绍 MAX1647是MAXIM公司的新型电源管理芯片,其内部结构如 在MAX1647的电压调整环中,通过SMBUS总线,经内部10位DAC 设置预置电压,负载电压与预置电压通过GMV误差放大器进行比较放大后的 误差信号输出到CCV端口,然后送到一个由二选一电路组成的恒流/恒压自动 转换电路的一个端子上,其中由CCV端口输出的误差信号由内部钳位电路限 制在1/4到3/4参考电压之间的;与电压调整环工作原理相类似,被钳位的电 流误差信号由CCI端口送到自动转换电路的另一个端子上;利用PWM控制器,把电压/电流误差信号转换为脉宽调制信号,用以驱动两个N沟道MOSFET管,经同步整流、滤波器滤波后,得到所需的输出信号。 MAX1647的输出特性曲线如整体电路设计 整体电路设计框 MAX1647电源管理芯片是整个系统的控制核心部分,它完成恒流、恒 压及相互之间自动转换的功能。但MAX1647的最大输出4A,不足以达到设计

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC—DC电源转换器/基准电压源 1。1DC-DC电源转换器 1.低噪声电荷泵DC—DC电源转换器AAT3113/AAT3114 2。低功耗开关型DC-DC电源转换器ADP3000 3、高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5、小功率极性反转电源转换器ICL7660 6、高效率DC—DC电源转换控制器IRU3037 7。高性能降压式DC—DC电源转换器ISL6420 8、单片降压式开关稳压器L4960 9、大功率开关稳压器L4970A 10。1.5A降压式开关稳压器L4971 11。2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13、1。5A降压式DC-DC电源转换器LM1572 14。高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV15。3A降压单片开关稳压器LM2576/LM2576HV 16、可调升压开关稳压器LM2577 17、3A降压开关稳压器LM2596 18。高效率5A开关稳压器LM2678 19、升压式DC—DC电源转换器LM2703/LM2704 20、电流模式升压式电源转换器LM2733 21、低噪声升压式电源转换器LM2750 22。小型75V降压式稳压器LM5007 23、低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25、隔离式开关稳压器LT1725 26。低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29、高效升压式电荷泵LT1937 30。高压输入降压式电源转换器LT1956 31.1。5A升压式电源转换器LT1961 32。高压升/降压式电源转换器LT3433 33、单片3A升压式DC—DC电源转换器LT3436 34。通用升压式DC-DC电源转换器LT3460 35、高效率低功耗升压式电源转换器LT3464 36、1。1A升压式DC-DC电源转换器LT3467 37、大电流高效率升压式DC-DC电源转换器LT3782 38、微型低功耗电源转换器LTC1754 39、1。5A单片同步降压式稳压器LTC1875 40。低噪声高效率降压式电荷泵LTC1911 41、低噪声电荷泵LTC3200/LTC3200-5 42。无电感得降压式DC-DC电源转换器LTC3251 43。双输出/低噪声/降压式电荷泵LTC3252 44。同步整流/升压式DC-DC电源转换器LTC3401 45、低功耗同步整流升压式DC-DC电源转换器LTC3402 46、同步整流降压式DC-DC电源转换器LTC3405 47。双路同步降压式DC-DC电源转换器LTC3407 48。高效率同步降压式DC—DC电源转换器LTC341649、微型2A升压式DC-DC电源转换器LTC3426 50。2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52。大电流升/降压式DC—DC电源转换器LTC3442 53、1。4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55、双输出降压式同步DC-DC电源转换控制器LTC3736 56。降压式同步DC-DC电源转换控制器LTC3770

为电源管理而设计的LTC3105

为电源管理而设计的LTC3105 超低功率解决方案可用于众多的无线系统,包括交通运输基础设施、医疗设备、轮胎压力检测、工业检测、楼宇自动化和贵重物品追踪。此类系统通常在其服役生涯的大部分时间里都处于待机睡眠模式,仅需极低的W级功率。当被唤醒时,传感器将测量诸如压力、温度或机械偏转等参数并以无线的方式把这些数据传送至一个远程控制系统。整个测量、处理和传送时间通常只有几十ms,但在此短暂期间内有可能需要几百mW 的功率。由于这些应用的占空比很低,因此必须收集的平均功率也会相对较低。电源可能就是一节电池而已。然而,电池将不得不以某种方式进行再充电,最终还得更换。在许多此类应用中,实际更换电池的成本之高使其缺乏可行性。这使得环境能量源成为了一种更具吸引力的替代方案。 新兴的毫微功率无线传感器应用就楼宇自动化而言,诸如占有传感器、温度自动调节器和光控开关等系统能够免除通常所需的电源或控制线路,而代之以一个机械或能量收集系统。除了可以免除首先进行线路安装(或在无线应用中定期更换电池)的需要之外,这种替代方法还能减低有线系统往往存在的例行维护成本。 类似地,运用能量收集技术的无线网络能够将一幢建筑物内任何数目的传感器链接到一起,以通过在建筑物内无人居住时关断非紧要区域的供电来降低采暖、通风和空调(HV AC)以及照明成本。 典型的能量收集配置或无线传感器节点由4个模块组成(见图1)。它们是:1、一个环境能量源,比如:太阳能电池;2、一个用于给节点的其余部分供电的功率转换组件;3、一个将节点链接到现实世界的感测组件以及一个计算组件(由微处理器或微控制器组成,负责处理测量数据并将这些数据存贮到存储器中);4、一个由短程无线单元组成的通信组件,用于实现与相邻节点及外部世界的无线通信。 环境能量源的实例包括连接到某个发热源(例如:HV AC管道)的热电发生器(TEG)或热电堆,抑或是连接至某个机械振动源(如:窗玻璃)及太阳能电池的压电换能器。在存

常用开关电源芯片大全

常用开关电源芯片大全 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 高效率单片开关稳压器L4978 高效率升压/降压式DC-DC电源转换器L5970 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937

相关文档
最新文档