油样铁谱分析技术

油样铁谱分析技术
油样铁谱分析技术

铁谱分析技术

铁谱分析技术是20世纪70年代发明的一种新的机械磨损测试方法,借助磁力将油液中的金属颗粒分离出来,按颗粒大小排列在谱片上,观察颗粒的相对浓度,进一步分析颗粒的物理性能。

铁谱仪分析广泛用于各行业的内燃机、齿轮箱、轴承、液压系统等大型设备、零部件有效的磨损监测,统计表明,应用铁谱技术,保证重大设备安全运行,减少故障发生,降低维修费用,已取得显著经济效益。

一、铁谱分析的内容

1、磨粒浓度和大小,可以反映磨损的严重程度;

2、磨粒形貌,可以反应磨粒产生的原因、机理;

3、磨粒成分,可以反应磨损部位;

二、铁谱分析的特点:

有较宽的尺寸检验范围、同时获得磨粒的多种信息,全面判断磨损故障部位、严重程度、发展趋势、产生原因。

三、铁谱分析的原理

铁谱分析仪的基本原理就是用铁谱仪把油品中的磨粒和碎屑分离出来,并按其尺寸大小依次沉淀到一片透明基片上(即制作谱片),在显微镜下观察,进行定性分析,也可用计算机对磨粒进行图像处理,获取磨屑的有关参数。

摩擦学的研究表明,磨粒数量、递增速度与磨损程度有直接的关系,磨粒的形态、颜色、尺寸等则与磨损类型、进程、材质有关,根

据分析结果做出状态监测或故障诊断结论,是制定设备维护措施的重要依据。

四、铁谱分析仪

生产商:维克森(科技)有限公司

根据磨粒分离、检测的不同方法,铁谱仪主要有四种类型:分析铁谱仪、旋转式铁谱仪、直读式铁谱仪和蓟管式铁谱仪。

1、分析式铁谱仪VIC-T

是最先研制出来的铁谱仪器,油样流经处于高梯度磁场中的倾斜玻璃基片,磨粒按一定规律排列沉积,借助高倍显微镜观察谱片,可看到磨损颗粒的材料、尺寸、特征和数量。分析铁谱仪对检测人员的技术经验要求较高。

产品优势:

(1)能直接观察粒度尺寸在2um至数百微米范围内的磨粒;

(2)以表面特征为依据迅速判断机械的运行和磨损状态;

(3)体积较小,操作简便,具有功能强大的分析软件;

(4)装箱、搬运要求不高,随行性较好。

2、旋转式铁谱仪VIC-XT

将油样滴到旋转磁台中心,高速旋转时受离心力作用,油样向四周流散,在环形的高梯度磁场作用下,磨粒以同心同环的形式,沉积在谱片上。避免了泵送时可能产生的碾压和抛光,保持了磨粒原始形貌。

产品优势:

(1)液晶显示,操作简单,方便直观;

(2)二路步进电机控制信号输出,分别独立工作、控制;

(3)每路电机可以有三种速度三个工作时间段;

(4)双磁头设计,使制谱效率提高一倍。

3、直读式铁谱仪VIX-ZT

用光电转换系统读谱片,光导纤维将光引至固定测定点上,由光敏探头接收穿过磨屑层的光信号,经电路放大、转换处理,直接显示出磨粒沉积的覆盖值。

产品优势:

(1)仪器采用全数字电子线路,工作稳定可靠,寿命长;

(2)7 英寸彩色液晶触摸屏,显示DL、DS测量数据,查询历史数据及曲线显示;

(3)采用存储卡形式,专用软件管理检测数据、模型显示及趋势分析;

(4)采用旋转式试管架,可同时安放两份检测样品。

4、蓟管式铁谱仪VIC-500

油品流经蓟型玻璃管制作谱片,不会产生磨粒变形。

产品优势:

(1)ASTM D7690 标准,磨粒分析范围0-800um;

(2)高效分离磨粒和污染物颗粒,操作简单, 制谱速度快;

(3)高磁场梯度,保证铁质磨粒整齐排列,避免堆积现象;

(4)所需溶剂少,无需外接压缩空气。

铁谱光谱分析

润滑剂 / 磨粒分析 Ray Dalley, PREDICT;常英杰译 摘要 磨粒分析,特别是铁谱分析是识别和确定维修需求的有效方法。目前技术的发展方向包括图像分析,在线传感器,便携式筛选工具,自动化油分析筛选工具,评价结果的电子传送,和人工智能。 磨损是机器部件间表面接触的必然结果,如轴、轴承、齿轮、和轴衬等,即使在很好润滑的系统中也是不可避免的。设备的寿命预期、安全因素、性能等级和维修推荐是基于正常发生的磨损预测的,然而,设计的复杂性、大小尺寸、复杂的装配结构、以及运行条件和环境的变化等因素使得维修或修理的需求(日常和紧急)在不停机的情况下难以评价或发觉。 由于现代设备系统的高速、集成化和自动化,任何停机都会导致生产停止和高代价,因此,非中断性诊断技术诸如油液光谱分析、振动分析、电动机电流分析,和铁谱分析(磨粒分析)越来越多地应用于动力,过程,半导体和制造业。机器的设计者和制造者越来越多地使用磨损分析作为一个现实的标准来改善诸如压缩机、齿轮、轴承和透平部件这些产品。本论文介绍磨粒分析技术,结合其他预测维修工具阐述其在工业中的作用。 磨粒分析/铁谱分析 铁谱分析是一项对从各种流体中分离出的磨损颗粒进行微观检验和分析的技术。作为一项预测维修技术起源于二十世纪七十年代中期,它最初用于用磁力沉淀润滑油中的铁磁磨损颗粒,这项技术被成功应用于监测军用飞机发动机、齿轮箱和传动系统的状态。其成功加速了其他应用的开发,包括方法的修改可用于沉淀润滑剂中的非磁性颗粒,在一个玻璃衬底上定量分析磨损颗粒(铁谱),以及精致油脂溶剂用于重型工业。用于磨粒分析的三种主要仪器是直读铁谱仪,分析式铁谱仪和铁谱显微镜。 直读(DR) 铁谱仪 直读铁谱仪是一个趋势监测仪器,通过对定期采集 油样的检查实行状态监测。DR直读铁谱仪是一个紧凑的 便携式测试仪器,容易使用甚至可以被非技术人员操作, 它定量测量铁磁磨粒在润滑或液压油中的浓度。直读铁 谱仪的工作原理是:通过一个强磁场将油样中颗粒沉淀 到一个玻璃管的底部,然后用光纤束直接照射在玻璃管 的由永久磁铁沉淀大颗粒和小颗粒的两个部位。测试开 始时,在颗粒开始沉淀之前,仪器利用微处理器芯片自 动“调零”,随着光束通过油液调整适应其不透明性。 光的亮度的减小与沉积在玻璃管中的颗粒数量有关,它 被监测和显示在仪器的LCD屏幕上。可以获得两组读 数:大颗粒 >5 微米 (DL) 和小颗粒 <5 微米 (DS) 的 读数,磨损颗粒浓度WPC通过DL + DS 除以样品容积 获得,建立一个机器磨损趋势基线。图 1: 直读铁谱仪 刚开始服役的机器进入一个磨损过程,在这个过程中大颗粒的数量迅速增加然后在正常运行状态下稳定在一个平衡浓度。铁谱分析的关键点是,异常磨损的机器将产生异常大量的磨损颗粒,直读铁谱仪用WPC读数指示过分磨损状态,如果 WPC 读数超出了正常趋势,需要制作一个流体的铁谱片以便用光学显微镜进行检查。

光谱分析仪多少钱

光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。它符合郎珀-比尔定律A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。下面就让合肥卓越分析仪器有限责任公司为您简单介绍一下光谱分析仪多少钱,希望可以帮助到您! 光谱分析仪是根据原子所发射的光谱来测定物质的化学组分的。不同物质由不同元素的原子所组成,而原子都包含着一个结构紧密的原子核,核外围绕着不断运动的电子。每个电子处于一定的能级上,具有一定的能量。在正常的情况下,原子处于稳定状态,它的能量是最低的,这种状态称为基态。但当原子受到能量(如热能、电能等)的作用时,原子由于与高速运动的气态粒子和电子相互碰撞而获得了能量,使原子中

外层的电子从基态跃迁到更高的能级上,处在这种状态的原子称激发态。 电子从基态跃迁至激发态所需的能量称为激发电位,当外加的能量足够大时,原子中的电子脱离原子核的束缚力,使原子成为离子,这种过程称为电离。原子失去一个电子成为离子时所需要的能量称为一级电离电位。离子中的外层电子也能被激发,其所需的能量即为相应离子的激发电位。处于激发态的原子是十分不稳定的,在极短的时间内便跃迁至基态或其它较低的能级上。 合肥卓越分析仪器有限责任公司是一家生产销售红外碳硫,直读光谱,智能元素分析仪,分光光度计专业化公司,公司数年来生产化学分析仪器,直读光谱分析仪,理化实验室工程,理化分析检测人员培训服务遍及全国各省市地区。 公司多年来对耐磨材料、耐热材料、球墨铸铁、球铁灰铁分析检测,分析研究投入大量人力、财力,总结丰富经验。为用户提供了可靠可行

油样铁谱分析技术

铁谱分析技术 铁谱分析技术是20世纪70年代发明的一种新的机械磨损测试方法,借助磁力将油液中的金属颗粒分离出来,按颗粒大小排列在谱片上,观察颗粒的相对浓度,进一步分析颗粒的物理性能。 铁谱仪分析广泛用于各行业的内燃机、齿轮箱、轴承、液压系统等大型设备、零部件有效的磨损监测,统计表明,应用铁谱技术,保证重大设备安全运行,减少故障发生,降低维修费用,已取得显著经济效益。 一、铁谱分析的内容 1、磨粒浓度和大小,可以反映磨损的严重程度; 2、磨粒形貌,可以反应磨粒产生的原因、机理; 3、磨粒成分,可以反应磨损部位; 二、铁谱分析的特点: 有较宽的尺寸检验范围、同时获得磨粒的多种信息,全面判断磨损故障部位、严重程度、发展趋势、产生原因。 三、铁谱分析的原理 铁谱分析仪的基本原理就是用铁谱仪把油品中的磨粒和碎屑分离出来,并按其尺寸大小依次沉淀到一片透明基片上(即制作谱片),在显微镜下观察,进行定性分析,也可用计算机对磨粒进行图像处理,获取磨屑的有关参数。 摩擦学的研究表明,磨粒数量、递增速度与磨损程度有直接的关系,磨粒的形态、颜色、尺寸等则与磨损类型、进程、材质有关,根

据分析结果做出状态监测或故障诊断结论,是制定设备维护措施的重要依据。 四、铁谱分析仪 生产商:维克森(科技)有限公司 根据磨粒分离、检测的不同方法,铁谱仪主要有四种类型:分析铁谱仪、旋转式铁谱仪、直读式铁谱仪和蓟管式铁谱仪。 1、分析式铁谱仪VIC-T 是最先研制出来的铁谱仪器,油样流经处于高梯度磁场中的倾斜玻璃基片,磨粒按一定规律排列沉积,借助高倍显微镜观察谱片,可看到磨损颗粒的材料、尺寸、特征和数量。分析铁谱仪对检测人员的技术经验要求较高。 产品优势: (1)能直接观察粒度尺寸在2um至数百微米范围内的磨粒; (2)以表面特征为依据迅速判断机械的运行和磨损状态; (3)体积较小,操作简便,具有功能强大的分析软件; (4)装箱、搬运要求不高,随行性较好。 2、旋转式铁谱仪VIC-XT 将油样滴到旋转磁台中心,高速旋转时受离心力作用,油样向四周流散,在环形的高梯度磁场作用下,磨粒以同心同环的形式,沉积在谱片上。避免了泵送时可能产生的碾压和抛光,保持了磨粒原始形貌。 产品优势:

DANIEL色谱分析仪操作培训汇总

Daniel 色谱分析仪培训讲义 一、分析系统的构成: Daniel 570在线色谱分析仪主要由以下几个重要部分组成: (1)取样系统:由取样探头、减压阀、微量液体过滤器、微量固体颗粒过滤器、不锈钢取样管及电拌热带组成。从管道中提取出具有代表性的气体样品,防止气体冷凝,并迅速将样品送入色谱仪中。 (2)分析仪:由恒温炉(在色谱分析仪内部,为色谱柱、柱切换阀、检测器提供精确稳定的温度)、色谱柱(在色谱分析仪内部,采用毛细管填充柱,提供3根分离柱、1根限流柱)、柱切换阀(在色谱分析仪内部,仪器内装有3个柱切换阀)、检测器和主要电子元件组成。 (3)载气:采用纯度为99.95%的高纯氦气(He) (4)标准气:采用具有溯源性的经过检定的已知各组分浓度的混合天然气作为标准气应用,浓度应与管线中气体相似; (5)2350A处理器,自动控制分析仪工作、对色谱峰自动进行处理、自动进行数据计算、自动打印分析报告。 二、基本原理: 色谱分析仪中载气以适当的恒定流速经进样阀、色谱柱、检测器,这些部分的温度恒定于需要的操作值(80±2℃)。用进样阀将已知体积的经过预处理的样品注入,由载气带入色谱柱进行分离。色谱柱内的固定相是一些吸附剂或吸收剂,对不同的物质有不同的吸附能力或吸收能力。因此当样品的流动相流过固定相表面时,样品中的各个组分在流动相和固定相中的比例不同,使得各组分离开色谱柱进入 1

2 检测器的时间不一样,检测器根据样品到达的先后次序测定各组分及浓度信号,得到色谱图。通常4分钟采样分析1次,重复性±0.5‰。 三、 色谱仪的组成及结构 色谱仪组成结构图 1 功能介绍 —— 载气系统用于通过毛细管运输组分; —— 样气系统用于测量和注入样气到载气中; —— 标气作为自动标定色谱分析仪的标准气; —— 色谱柱用于将样品气分离成单个组分; —— 温度控制箱内至少装有色谱柱和检测器等元件; —— 检测器用于检测载气中携带的组分; —— 控制器用于色谱仪的测量控制和数据处理。 2 符号说明 标气成分中各化学式的简写及对应的名称和含量(Mol %) CH 4 (C1):Methane 甲烷 89.57% C 2H 6 (C2):Ethane 乙烷 5% C 3H 8 (C3):Propane 丙烷 1% I-C4:Iso Butane 异丁烷 0.3% 分析仪阀门,色谱柱,探测器,加热器,上部XJT 盒(安装在箱内) 解码器 放大器 分析仪阀门驱动器及温度控制器 分析仪阀门开关 流量面板 上部XJT 盒 下部XJT 盒 下部XJT 盒 电源 终端板 采样系统阀门驱动板 固定基座

光谱仪和铁谱仪在润滑油检测中的应用

光谱仪和铁谱仪在润滑油检测中的应用 来源:油液分析网利用光谱仪和铁谱仪检测润滑油中金属元素的含量及变化趋势,可以有效地对设备状态进行监测。目前发射光谱在国内外应用都很广泛,并且取得了良好应用效果。其特点是速度快、准确性高、信息范围广,易于和计算机相联组成自动监测系统。该技术是利用不同元素的物质受到强光源激发后发出的不同波长的光线,再通过光学系统排序得到光谱。根据特征谱线可以判断某物质是否存在以及其含量。原子发射光谱仪能在很短的时间内测出润滑油中30种元素的含量。光电直读光谱仪,是利用原子发射光谱技术测定润滑油中各种金属元素含量的仪器。 电感偶合等离子体发射光谱技术等离子发射是较新的样品激发技术。将流经石英管的氩气流置于一个高频电场下形成的约8000K的等离子体中,高温等离子体使从石英管中心喷射出的样品解离、原子化并激发。电感偶合等离子体射光谱技术的再现性较好,准确度及检出率都很高,但较大的粒子会被遗漏。常用的分析仪器有:电感偶合等离子体发射光谱仪(ICP)。荧光分析技术X荧光是介质在放射源照射下所释放的特征X射线。通过检测润滑油在放射源照射下释放的X 射线可以检测磨粒的数量和成分。该方法可直接测定各种特殊形态的试样而无需破坏试样,可测量的元素种类多,测量范围宽,而且速度快,分析结果规律性强。常用的仪器有:X射线荧光分析仪2.2红外光谱技术红外光谱(FT―IR)也称振动光谱,它主要用于对有机化合物的基团结构进行分析,但它只能反映分子结构信息,对原子质点、溶解态离子和金属颗粒都不敏感。润滑油是由基添加剂的品种就更多了。当不同波长的红外辐射依次照射润滑油试样时数目以及相对强度,可以推断出润滑油样中存在的官能团,并确定其分子结构。润滑游的性能主要取决于构成它的各组分的性能。润滑油品的失效、更换取决于各组分的变化程度,这种变化主要是化学变化,是因物质的分子结构发生变化引起的,因此,仅通过理化分析是无法准确判断的,而利用红外光谱是最直接、最有效也是最迅速的一种方法。利用红外光谱技术分析润滑油试样中有机化合物的基团结构,通过比较新旧润滑油的红外吸收峰的峰位与峰高,可定性与定量检测基础润滑油与添加剂组分是否是发生了化学变化以及变化的类型与程度;利用红外光谱的润滑油分析软件可定量测试在用润滑油的氧化值、硫化值、硝化值、积碳、水分、乙二醇、稀释度等参数。通过对谱图的分析,结合各参数的数值,可获得润滑油试样品质变化方面的信息。 直读式铁谱仪主要用来直接测定润滑油试样中磨粒的含量和尺寸分布,能够方便、迅速而准确地测定润滑油样内大小磨粒的相对数量,可以很直观地反映出摩擦副的磨损程度和磨损烈度,因而能对设备状态作出初步的诊断,是目前设备监测和故障诊断的较好手段。常用的仪器有:YTF-6分析式铁谱仪;YTZ-5型直读式铁谱仪;TTL-3铁量仪。颗粒计数技术润滑油经过使用后,不可避免地会受到污染。检测这种污染程度有多种方法,有定性、半定量、定时等各种方法,应根据具体情况加以选择。对于污染较重,颜色较深的润滑液,可用斑点试验法,

铁谱仪在油液监测技术分析中关键作用

铁谱仪在油液监测技术分析中关键作用 -------准确把脉一锤定音 机械设备故障诊断油样铁谱分析技术是20世纪70年代开始发展起来的新的监测分析技术。由于该技术具有独特作用,目前已被愈来愈多的部门所采用。 在目前的机械故障诊断领域中,油样分析方法的概念实际上已在无形中转变为油样磨损残余物的分析了。磨损、疲劳和腐蚀是机械零件失效的三种主要形式和原因,其中磨损失效约占80%左右,由于油样分析方法对磨损监测的灵敏性和有效性,因此这种方法在机械故障中日以显示其重要地位。通过油液分析对特定摩擦学系统的润滑和磨损状态进行合理评估,是油液监测活动的核心内容。机器设备在使用过程中磨损状况一般可以分为三个阶段(如图所示), 在整个过程中铁谱分析技术在油液监测的过程中起到定量、定性、定位的不可替代积极作用。铁谱技术在磨损状态监测中的作用,其实,对于油液中污染颗粒及油品变质产物的分析,分析铁谱也可发挥重要作用;而铁谱技术在摩擦磨损研究方面独特的应用价值更是早已得到广泛重视。 随着机械工业等技术的不断发展,现代设备关键部件的结构日益复杂,在追求高性能低成本的同时,在润滑油系统中各摩擦副零组件更趋于高载荷、高温、高速及轻质量,因此容易发生各种磨损故障,从而严重影响设备的安全性、可靠性。据统计,海湾战争中,美国动用了两千多架飞机,数万只舰艇,成千辆坦克、装甲车等,美国军方在战地安排了60余台MOA油料光谱仪,累计测定飞机油样20566个,地面装备油样12474个,油样分析技术在关键设备(发动机)状态检测中显示了特别有效的作用。由此可见,对现代化重要武器装备军用飞机的关键部件航空发动机的磨损状态监测与故障诊断具有极其重要的意义和价值。 油样分析技术的内容非常广泛,包括油品理化性能指标化验、油样污染度评定(以颗粒计数为代表)、以及油样铁谱和光谱分析技术等。在机械故障诊断这个特定的技术领域中,油样分析技术通常是指油样的铁谱分析技术和油样光谱分析技术,有时也包含磁塞技术。 1铁谱分析

波谱分析技术

第四节波谱分析技术 一、专家评议 波谱包括核磁共振 (NMR),顺磁共振 (ESR),磁共振成像 (MRI),核电四级矩共振 (NQR),光磁共振 (LMR) 等几种. 其中核磁共振 NMR 是化学研究上鉴定化合物结构的利器,在波谱仪器中最主要与最常见,将继续是本次评议的重点。 本次对于核磁共振 NMR 的评议介绍有以下两个主题: 如何选购合适的核磁共振谱仪,谱仪探头的评议介绍。 核磁共振谱仪在市场供应方面,和色谱光谱等其它常见的仪器存在明显的不同。核磁共振谱仪由于价格比较昂贵(近百万到千万元人民币, 200-1000 兆超导谱仪),使用的单位少(几百),生产的厂家数目少(三家左右)。 目前生产检测化合物结构用的核磁共振谱仪的厂家有: 1.美国的 Varian 公司 (2009 年下半年为安捷伦公司收购,本评议仍以 Varian 公司 称呼); 2.德国在瑞士设厂的 Bruker 公司 (Bruker-Biospin): 3.日本电子公司 (JEOL,Ltd.) 在中国境内的核磁共振谱仪已将近 800 台,这些年来每年以近 80 台的速度增加之中。中国国产核磁共振谱仪正开展中。 中国自主研发核磁共振谱仪的进展是国人非常关注的事情。几年前列入国家"十一五科技支撑计划”,由中科院武汉物理与数学研究所领军,结合厦门大学等单位组成课题组,研发组装了两台 500 兆超导核磁共振谱仪,在2009 年底完成组装工作,2010 年初进行课题验收。我们展望下一次能进行国产核磁共振谱仪的评议介绍,期望国产谱仪能早日进入国内外市场。 二、应用报告及仪器介绍 1如何选购合适的核磁共振谱仪 波谱评议的专家组成员经常参与单位内外的核磁共振谱仪采购评鉴或认证工作。在评议会议上,专家们都很感慨购买单位普遍存在不知道如何正确选购核磁共振谱仪,有许多选错谱仪型号或部件,或由于经费充裕而选购了不必要的部件,觉得有必要借此次核磁共振谱仪的评议机会向大家阐明注意要点。 采购核磁共振谱仪,有以下事项需要进行评估与考虑:

光谱分析方法

光谱分析方法

第一章绪论 一、填空题 1仪器分析方法分为()、()、色谱法、质谱法、电泳法、热分析法和放射化学分析法。 2 光学分析法一般可分为()、()。 3仪器分析的分离分析法主要包括()、()、()。 4仪器分析较化学分析的优点()、()、操作简便分析速度快。 答案 1光学分析法、电化学分析法 2光谱法、非光谱法 3色谱法、质谱法、电泳法 4灵敏度高检出限低、选择性好 第二章光学分析法导论 一、选择题 1 电磁辐射的粒子性主要表现在哪些方面()A能量B频率C波长D波数

2 当辐射从一种介质传播到另一种介质时,下列哪种参量不变() A波长B速度C频率D方向 3 电磁辐射的二象性是指: A.电磁辐射是由电矢量和磁矢量组成;B.电磁辐射具有波动性和电磁性; C.电磁辐射具有微粒性和光电效应;D.电磁辐射具有波动性和粒子性 4 可见区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为:A.紫外区和无线电波区;B.可见光区和无线电波区; C.紫外区和红外区;D.波数越大。 5 有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的 A.能量越大;B.频率越高;C.波长越长;D.波数越大。 6 波长为0.0100nm的电磁辐射的能量是多少eV? A.0.124;B.12.4eV;C.124eV;D.1240 eV。 7 受激物质从高能态回到低能态时,如果以光辐

射形式辐射多余的能量,这种现象称为()A光的吸收B光的发射C光的散射D 光的衍射 8 利用光栅的()作用,可以进行色散分光A散射B衍射和干涉C折射D发射9 棱镜是利用其()来分光的 A散射作用B衍射作用C折射作用D 旋光作用 10 光谱分析仪通常由以下()四个基本部分组成 A光源、样品池、检测器、计算机 B信息发生系统、色散系统、检测系统、信息处理系统 C激发源、样品池、光电二级管、显示系统 D光源、棱镜、光栅、光电池 二、填空题 1. 不同波长的光具有不同的能量,波长越长,频率、波数越(),能量越(),反之,波长越短,能量越()。 2. 在光谱分析中,常常采用色散元件获得()来作为分析手段。 3. 物质对光的折射率随着光的频率变化而变

能谱分析仪

能谱分析仪(EDS) 能谱分析仪(EDS)是微区成份分析的主要手段之一。通常EDS检测限为0.1%-0.5%(元素含量)。EDS的能量分辨率:~130eV。 图1 EDS 1、主要有以下特点: 1)、能快速、同时对各种试样的微区内Be-U的所有元素,元素定性、定量分析,几分钟即可完成。 2)、对试样与探测器的几何位置要求低,可以在低倍率下获得X射线扫描、面分布结果。 3)、能谱所需探针电流小:对电子束照射后易损伤的试样,例如生物试样、快离子导体试样、玻璃等损伤小。 4)、检测限一般为0.1%-0.5%,中等原子序数的无重叠峰主元素的定量相误差约为2%。 2、EDS分析方法----点分析法 电子束(探针)固定在试样感兴趣的点上,进行定性或定量分析。该方法准确度高,用于显微结构的成份分析,对低含量元素定量的试样,只能用点分析。

图2 某试样EDS点分析 3、EDS的分析方法-线扫描分析 电子束沿一条分析线进行扫描时,能获得元素含量变化的线分布曲线。结果和试样形貌像对照分析,能直观地获得元素在不同相或区域内的分布。 图3 某试样线扫表分析 4、EDS的分析方法-面分布 电子束在试样表面扫描时,元素在试样表面的分布能在屏幕上以亮度(或彩色)分布显示出来(定性分析),亮度越亮,说明元素含量越高。研究材料中杂质、相的分布和元素偏析常用此方法。面分布常常与形貌对照分析。

图5-a 某试样EDS检测(未镀膜)

图5-b 某试样EDS检测(镀膜)5、定量分析对试样的要求 1)样品在真空和电子束轰击下要稳定; 2)高准确度的分析时,要求试样分析面平、垂直于入射电子束; 图6 不同入射角度对比图

铁谱仪的结构与工作原理

铁谱仪的结构与工作原理 目前,国内外已开发出的铁谱仪种类很多,人们也从不同角度提出了不同的分类方法。由于磁铁装置是铁谱仪的核心部件,若按磁铁的工作原理来分,可分为永磁式铁谱仪和电磁式铁谱仪。根据机器状态监测方式来分,又可分为离线铁谱仪和在线铁谱仪。若按实现铁谱定量与定性分析功能需要来分,又可分为分析式铁谱仪、直读式铁谱仪、双联式铁谱仪等,上述三种铁谱仪都属于离线铁谱仪。此外,若根据铁谱片的制作原理不同分类,又可分为旋转式铁谱仪和固定式铁谱仪。具体分类如下: 下面介绍几种常用的铁谱仪的结构与工作原理。 分析式铁谱仪是最早开发出来的铁谱仪,它包含了铁谱技术的全部基本原理。分析式铁谱仪的用途是用来分离机器润滑油样中的磨粒,并能使磨粒依照尺寸大小有序地沉积在一显微镜玻璃基片上,从而制成铁谱片,然后利用铁谱显微镜等观测和分析仪器,实现对磨粒的定性、定量铁谱分析。 分析式铁谱仪的结构与工作原理简图如图1所示。它将从润滑系统中取得的分析油样经稀释处理后取样到玻璃管中,经微量泵将分析油样输送到安放在磁场装置上方的玻璃基片的上端,玻璃基片的安装与水平面成一定倾斜角,以便在沿油流方向形成一逐步增强的高强度磁场,同时又便于油液沿倾斜的基片向下流动,从玻璃基片下端经导流管排入废油杯中。分析油样中的可磁化金属磨粒在流经高梯度强磁场时,在高梯度磁力、液体黏性阻力和重力联合作用下,按磨粒尺寸大小有序地沉积在玻璃基片上,并沿垂直于油样流动方向形成链状排列。在分析油样从基片上流过之后,经用四氯乙烯溶液洗涤基片,清除残余油液,使磨粒固定在基片上便制成了可供观察和检测的铁谱片。 文章来源:https://www.360docs.net/doc/2c5805784.html,/newsdetail-2004.htm

(工作分析)谱分析仪工作原理

(工作分析)谱分析仪工作 原理

频谱分析仪工作原理 频谱分析仪的工作原理 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍壹下频谱分析仪的工作原理。 科学发展到今天,我们能够用许多方法测量壹个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复壹个非正弦波信号F,从理论上来说,它是由频率F1、电压V1和频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就能够见到于不同频率点上功率幅度的分布,就能够了解这俩个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这壹点是非常重要的。 对于壹个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。于卫星监测上,能收到多个信道,每个信道均占有壹定的频谱成份,每个频率点上均占有壹定的带宽。这些信号均要从频谱分析的角度来得到所需要的参数。 从技术实现来说,目前有俩种方法对信号频率进行分析。

其壹是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是俩个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是于10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。 这种分析方法壹般用于低频信号的分析,如声音,振动等。 另壹方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。 于工作中通常所用的HP-859X系列频谱仪均是此类的分析仪。其优点是扫描调谐分析法受器件的影响,只要我们把器件频率做得很高,其分析能力就会很强。目前的工艺水平,器件可达到100GHz,最高甚至可做到325GHz。其频率范围要比前壹种分析方法大很多。只是于达到较高分辨率时,其分析测量的时间会有所增加。 于实际工作中,无线信号卫星信号的监督,由于其频率很高,均是采用扫描调谐的方式。它所能给我们的信息没有相位参数,只有幅度、频率。它是壹种标量的分析方法。另外,这种方法有很高的灵敏度,它受到前端扫描调谐器件的控制,仍有很高的动态范围。 下面我们着重介绍壹下扫描调谐分析仪的基本原理,从图2中,我们不难见出,它是用超外差接收机的方式来实现频谱分析的。

铁谱仪定量分析的依据和相关参数

铁谱仪定量分析的依据和相关参数 铁谱技术的定量分析是用一个或几个参数值来描述设备磨损特征和磨损状态的方法。由于铁谱分析技术影响因素较多,所以至今尚无一套完整、统一的论述,下面介绍下铁谱仪定量分析的依据和相关参数。 1.定量铁谱的理论依据 磨损颗粒的最大尺寸与磨损方式有关,如果测量出或计算出铁谱片上大颗粒的尺寸以及它们在颗粒总数中所占的比例,就可以推断抽取油样时机器所处的磨损方式和程度,这是定量铁谱的第一个理论依据。 第二,机械的磨损率是磨损工况的重要指标,机械磨损率的改变,必然导致润滑油中磨屑生成和沉积的平衡浓度改变,因此可以把铁谱片上磨屑的总数作为定量铁谱分析的另一个指标。 铁谱定量的可靠性主要与铁谱仪的线性响应、颗粒的沉淀效率和铁谱仪的重复性这三个参数有关。 (1)铁谱仪读数的线性响应 影响定量读数与磨损颗粒间线性响应的原因是摩擦颗粒的重叠。颗粒如果发生重叠,则沉淀的磨损颗粒数量与它的遮光量之间不呈线性关系。实验表明,直读式铁谱仪的最佳线性关系区在0~50,YTF分析式铁谱仪的最佳线性关系区在 0~70。因此,当油样的定量铁谱值超过最佳线性范围时,应将高磨损颗粒浓度的油样稀释至适当的浓度。 (2)颗粒的沉淀效率 颗粒的沉淀效率是指油样通过铁谱仪时能沉淀下来的颗粒与全部颗粒之比。 铁谱仪对大颗粒有较高的沉淀效率。例如油样第一次通过谱片时,大于2μm 的颗粒能沉淀80%,而0.1μm的颗粒只能沉淀50%。而大颗粒正是设备磨损状态的灵敏反映,这为铁谱仪技术准确地监测设备磨损状态提供了基础。 (3)仪器的重复性 铁谱定量数据重复性较差,这与磨损颗粒沉淀过程的随机性有很大关系。对分析式铁谱仪,AL的误差系数可达38%,As的误差系数在0.1-0.18之间波动;直读式铁谱仪DL的误差系数在0.1~0.15之间,Ds不超过0.06。铁谱定量重复性差的主要原因有两个方面:一是仪器(如分析式铁谱仪)中液体流动速度不恒定,进入谱片的位置不确定等;二是沉淀粒子对磁场的影响。铁谱仪操作者的熟练与经验可以减少测试中的一些随机误差,在实际监测中,有实际经验的人员只测取一次基本上就可以满足监测要求。 来源:油液分析网

自谱分析

信号分析原理测试信号的频域分析是把信号的幅值、相位或能量变换以频率坐标轴表示,进而分析其频率特性的一种分析方法又称为频谱分析。对信号进行频谱分析可以获得更多有用信息,如求得动态信号中的各个频率成分和频率分布范围,求出各个频率成分的幅值分布和能量分布,从而得到主要幅度和能量分布的频率值。 自谱分析 对于一个振动信号或其它类型的随机信号,有时为了研究其内在规律,需要分析随机信号的周期性,这就需要将信号从时域变换到频域,得到的频谱中每个频率都对应信号的一个周期谐波分量。 频谱分析使信号处理中最基本的分析方法之一,广泛应用于各种工程技术领域。 自谱分析就是对一个信号进行频谱分析,包括幅值谱(PEAK)、幅值谱(RMS)、功率谱和功率谱密度等。其中幅值谱(PEAK)反映了频域中各谐波分量的单峰幅值,幅值谱(RMS)反映了各谐波分量的有效值幅值,功率谱反映了各谐波分量的能量(或称功率),功率谱密度反映了各谐波分量的能量分布情况。 频谱分析通常使用一定长度(例如1024点)FFT分析方法,当信号数据长度大于2倍的1024点时,可以对信号数据采用两种不同的分析方式:全程平均方式和瞬时分析方式,使用全程平均方式时,将整个信号分成若干段数据,分别进行FFT 分析,得到各自的频谱之后,再进行平均,最后的结果较全面反映全程数据的频谱特性;当使用瞬时分析时,可以随意选择一段数据,随即进行FFT分析,得到的频谱就是最后结果,它不能反映全部数据的频谱特性,但反映了当前选择的数据段的频谱特性。 FFT为快速傅立叶变换,傅立叶变换的定义为: 傅立叶变换本身是连续的,无法使用计算机计算,而离散傅立叶变换的运算量又太大,为提高运算速度,通常使用快速傅立叶变换方法(FFT),但此时所得到的频谱不是连续的曲线了,具有一定的频率分辨率Δf,且Δf = SF / N,SF为信号采样频率,N为FFT分析点数(常为1024点)。由于频率分辨率的存在,以及时域信号为有限长度等原因,使FFT分析结果具有泄露的可能,为此常常使用一些措施来消除,如平滑、加窗、能量修正、细化分析等等。

铁谱分析技术在大机油液监测中的应用毕业论文

铁谱分析技术在大机油液监测中的应用毕业论文 目录 第1章绪论 (1) 1.1油液分析技术概述 (1) 1.2铁谱分析的发展 (2) 1.2.1铁谱分析的由来 (2) 1.2.2铁谱分析技术的发展过程 (3) 1.2.3铁谱分析技术的发展趋势 (4) 1.2.4铁谱分析技术的应用领域 (4) 1.3论文研究容、方法及意义 (5) 1.3.1论文研究的容和方法 (5) 1.3.2论文研究的意义 (6) 第2章铁谱分析技术 (7) 2.1铁谱分析技术的基本原理和方法 (7) 2.1.1铁谱分析技术的原理 (7) 2.1.2铁谱分析技术的基本方法 (7) 2.2铁谱分析技术的特点 (8) 2.3铁谱仪的分类 (9) 2.3.1直读式铁谱仪 (10) 2.3.2分析式铁谱仪 (12) 第3章铁谱取样及制作技术 (14) 3.1铁谱取样技术 (14) 3.1.1铁谱分析油样取样位置 (15) 3.1.2铁谱分析油样取样工具 (16) 3.1.3铁谱分析油样取样周期 (16) 3.1.4取样方法及要求 (17) 3.1.5大机的取样种类、取样部位及取样周期 (17)

3.2铁谱油样处理 (20) 3.2.1油样的加热与搅拌 (20) 3.2.2油样的稀释 (20) 3.2.3直读铁谱仪操作 (21) 3.2.4分析式铁谱仪操作 (22) 3.2.5 铁谱显微镜的运用 (23) 第4章铁谱分析技术的分析方法 (25) 4.1 定量分析 (25) 4.1.1 铁谱定量分析的定量指标 (25) 4.1.2 定量分析方法 (25) 4.2定性分析 (26) 4.2.1光学显微分析 (26) 4.2.2铁谱片加热分析 (27) 4.2.3定性分析方法的运用步骤 (27) 第5章大型养路机械简介 (28) 5.1养路机械的特点和分类 (28) 5.1.1 养路机械的特点 (28) 5.1.2养路机械的分类 (28) 5.2常见大型养路机械 (28) 5.2.1 MDZ机组 (28) 5.2.2 大型道床清筛机械 (29) 5.2.3 钢轨打磨列车 (30) 5.3大机磨损故障主要发生位置 (33) 第6章大型养路机械油液铁谱分析判定 (31) 6.1 正常磨损期的磨粒 (31) 6.2 异常磨损期的磨粒 (32) 6.2.1疲劳剥落磨粒 (32) 6.2.2 层状磨粒 (33) 6.2.3球形磨粒 (33) 6.2.4严重滑动磨粒 (34) 6.2.5切削磨粒 (35) 6.2.6腐蚀磨粒 (36) 6.3 铁的氧化物 (36) 6.3.1红色氧化铁多晶体团粒 (36)

光谱分析技术及应用

光谱分析技术及应用 一、光谱分析的分类 1、原子吸收光谱法——也叫湿法分析。它是以待测元素的特征光波,通过样品的蒸发,被蒸发中的待测元素的基态原子所吸收,由辐射强度的减弱程度,来测定该元素的存在与否和含量多少;通常是采用火焰或无火焰(也叫等离子)方法,把被测元素转化为基态原子。根据吸收光波能量的多少测定元素的含量。 通常原子吸收光谱法是进行仪器定量分析的湿法分析。 2、原子发射光谱法——利用外部能量激发光子发光产生光谱。 看谱分析法就是原始的、也是最经典的利用原子发射光谱的分析方法。看谱分析法在我国工业生产上的使用是在上世纪50年代,58年北京永定机械厂制造了第一台仿苏联技术的看谱仪,随后天津光学仪器厂成为我国大量生产棱镜分光的看谱镜基地。 上世纪80年代起,德国、英国、美国等国家,开始研制采用CCD (Charge Coupled Device电荷耦合器件)技术作为光谱接收器件的直读式定量光谱仪,德国以实验室用大型直读定量光谱仪为主;英国阿朗公司、美国尼通公司以便携式金属分析仪为主打市场。近年来,德国、芬兰等国家研制生产便携式、直读定量光谱仪,分析精度在一定条件下可以替代实验室直读式定量光谱仪。 二、看谱分析的特点 1、操作简便,分析速度快。 2、适合现场操作。

3、无损检测(现场操作情况下无须破坏样品)。 4、检测成本低。是便携式金属分析仪的1/30左右,是便携式直读定量光谱仪的1/40。 5、有一定的灵敏度和准确度。 三、看谱分析的方法: 定性分析方法,所谓定性就是判定分析的元素是否存在的分析。严格的讲定性分析是根据某元素的特征灵敏线的出现与否,来确定该元素是否存在的分析方法。 那么,什么叫灵敏线呢? 某元素在某几个区域出现的几条与其它元素不同的特征线;或称“在较低含量情况下出现的谱线”,或者说是在某一范围内出现的谱线,叫做灵敏线。 半定量方法就是近似的估计元素含量的方法。 利用谱线进行比较,即通过 亮度比较含量,就是与铁基线进 行比较,含量与亮度的对数成正 比关系。(用来进行比较的铁基线 的亮度应不变。)lgI(谱线强度) 四、看谱分析的一般步骤 1、分析前的准备

光谱分析导则

火力发电厂金属光谱分析导则 1 总则 1.0.1光谱分析是目前火力发电厂在安装、检修和制作过程中严格把好金属质量关,确保火力发电厂金属监督范围内各类管道和部件及其焊接接头的安全运行的重要手段之一,为了使这一工作更标准化,规范化,特制定《火力发电厂金属光谱分析导则》(以下简称导则)。 1.0.2本导则适用于电力系统火力发电厂设备的高温高压管道和各类合金钢部件,以及它们的焊接接头,焊接材料(焊丝、焊条)的光谱分析工作。 1.0.3高温管道和部件,承压管道和部件等的光谱分析工作,必须遵守《火力发电厂金属技术监督规程》DL438-91的有关规定。 1.0.4光谱分析工作必须遵守《电力建设施工及验收技术规范(火力发电厂焊接篇)》DL5007-92的有关规定。 1.0.5光谱分析工作必须遵守《电力工业锅炉监察规程》SD167-92的有关规定。 1.0.6光谱分析工作必须遵守《电力建设施工及验收技术规范(热机安装篇)》的有关规定。 2 对光谱分析人员的要求 2.0.1 凡从事光谱分析的工作人员必须经专业培训,并经光谱分析人员资格监定考核委员会考试合格,取得资格证书方能从事光谱分析工作。 2.1对光谱高级分析人员的要求: 2.1.1应全面了解光谱工作项目和工作量,协助技术人员制定工作计划及拟定技术措施。 2.1.2参加并指导光谱分析工作,解答复核疑难问题,并作出准确结果。 2.1.3掌握常用合金钢的性能用途及燃弧时间对分析结果的影响。 2.1.4能分析仪器所能分析的合金元素,对主要的合金元素作必要的半定量分析,并对其检验结果负责。 2.2对光谱检验人员的要求: 2.2.1熟练操作仪器,具有一定的仪器维护和一般的故障排除技能。 2.2.2掌握电厂常用合金钢及所含合金元素的定性与半定量分析技能,并对其检验结果负责。 2.2.3作好分析记录和分析标记,对被检出的不符合技术资料要求的项目必须进行复核,并及时签发检验报告,通知有关部门(使用及检验部门) 。 2.2.4具有排除被分析试样中影响分析结果准确性的各种因素的能力。对违反安全规程不符合工作要求的试件,应拒绝接受分析检验。 2.2.5了解安全防护的知识,及时排除不安全因素。 2.2.6光谱分析人员的视力应在1.0以上,色盲者不能担任光谱分析工作。 2.2.7光谱分析是在高频下进行工作的。对人体有一定的影响,必须加强注意劳动保护管理。

光谱分析方法

第一章绪论 一、填空题 1仪器分析方法分为()、()、色谱法、质谱法、电泳法、热分析法和放射化学分析法。 2 光学分析法一般可分为()、()。 3仪器分析的分离分析法主要包括()、()、()。 4仪器分析较化学分析的优点()、()、操作简便分析速度快。 答案 1光学分析法、电化学分析法 2光谱法、非光谱法 3色谱法、质谱法、电泳法 4灵敏度高检出限低、选择性好 第二章光学分析法导论 一、选择题 1 电磁辐射的粒子性主要表现在哪些方面() A能量B频率C波长D波数 2 当辐射从一种介质传播到另一种介质时,下列哪种参量不变() A波长B速度C频率D方向 3 电磁辐射的二象性是指: A.电磁辐射是由电矢量和磁矢量组成;B.电磁辐射具有波动性和电磁性; C.电磁辐射具有微粒性和光电效应;D.电磁辐射具有波动性和粒子性 4 可见区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为:A.紫外区和无线电波区;B.可见光区和无线电波区; C.紫外区和红外区;D.波数越大。 5 有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的

A.能量越大;B.频率越高;C.波长越长;D.波数越大。 6 波长为0.0100nm的电磁辐射的能量是多少eV? A.0.124;B.12.4eV;C.124eV;D.1240 eV。 7 受激物质从高能态回到低能态时,如果以光辐射形式辐射多余的能量,这种现象称为()A光的吸收B光的发射C光的散射D光的衍射 8 利用光栅的()作用,可以进行色散分光 A散射B衍射和干涉C折射D发射 9 棱镜是利用其()来分光的 A散射作用B衍射作用C折射作用D旋光作用 10 光谱分析仪通常由以下()四个基本部分组成 A光源、样品池、检测器、计算机 B信息发生系统、色散系统、检测系统、信息处理系统 C激发源、样品池、光电二级管、显示系统 D光源、棱镜、光栅、光电池 二、填空题 1. 不同波长的光具有不同的能量,波长越长,频率、波数越(),能量越(),反之,波长越短,能量越()。 2. 在光谱分析中,常常采用色散元件获得()来作为分析手段。 3. 物质对光的折射率随着光的频率变化而变化,这中现象称为() 4. 吸收光谱按其产生的本质分为()、()、()等。 5. 由于原子没有振动和转动能级,因此原子光谱的产生主要是()所致。 6. 当光与物质作用时,某些频率的光被物质选择性的吸收并使其强度减弱的现象,称为(),此时,物质中的分子或原子由()状态跃迁到()的状态。 7. 原子内层电子跃迁的能量相当于()光,原子外层电子跃迁的能量相当于()和()。三.简答题: 1. 什么是光学分析法? 2. 何谓光谱分析法和非光谱分析法?

铁谱分析技术

机械设备的油液监测技术 周文新 (北京泰迪迈润滑科技有限公司 100073) 摘要:简要介绍了油液监测的基本方法,并用案例说明油液监测所获得的状态参数能很好反映设备的润滑磨损状态,实现设备的预知性维修和主动性维修。 关键词:机械设备油液监测维修 前言 随着机械设备日益向高速、大型、自动化与多功能化方向发展,对设备的可靠性提出了更高的要求。设备运行后,对其进行合理的维修保养至关重要。为满足现代大型机械设备的维修需求,工业界提出了视情维修的概念。为实现设备的视情维修,必须依托设备的状态监测技术。根据国外相关统计数据,机械设备70%以上的故障与磨损有关,而油液分析所获得状态参数能很好地判断设备的润滑磨损状态,因而在国外被广泛采用。 油液监测技术能有效判断机械设备产生磨损故障的原因及部位,从而使设备劣化趋势及时得到矫正,避免恶性事故的发生和发展,实现设备的预知性维修。另一方面,油液监测能及时发现油质劣变原因和污染状态,及时采取对应措施,使设备长期处于良好的润滑状态,减少故障发生概率,延长其使用寿命,实现设备的主动性维护[1]。 1 油液分析三个方面的内容 机械设备的磨损总是不可避免的。磨损过程一般分为三个阶段,即磨合磨损、稳定磨损和剧烈磨损。如果过快或过早出现异常磨损,则应查明原因,及时消除。引发设备出现异常磨损的主要原因[2]如下: (1) 零部件材料加工及装配质量(如不平衡、不对中); (2) 用油不当(如牌号不对、添加了与在用油不相溶的油液); (3) 油液劣变导致品质下降,不能满足设备润滑要求; (4) 环境应力(如温度、湿度等)或机械应力过大; (5) 设备维护不当(如空气滤效率下降导致进入粉尘增加)。 油液监测的目的是控制设备的磨损速率,因此应能涵盖引发异常磨损的所有因素,油液监测技术主要包括三方面的内容: ● 磨损颗粒分析(简称WDA) ● 污染监测与控制 ● 润滑油品质监测 磨损颗粒分析目的是了解设备的磨损状态及原因,属于预知性维修范畴,其它两方面监测的目

质谱分析仪

元素分析是化学分析的一个重要组成部分,传统的元素分析方法包括分光光度法、原子吸收法(火焰与石墨炉)、原子荧光光谱法、ICP发射光谱法等。这些方法都各有其优点,但也有其局限性,例如:或是样品前处理复杂,需萃取、浓缩富集或抑制干扰;或是不能进行多组分或多元素同时测定,耗时费力;或是仪器的检测限或灵敏度达不到指标要求等。电感耦合等离子体质谱—ICP-MS(Inductively Coupled Plasma Mass Spectrometry)技术是几乎克服了传统方法的大多数缺点,并在此基础上发展起来的更加完善的元素分析法,因而被称为当代分析技术的重大发展。 ICP-MS的工作原理及其分析特性: 在ICP-MS中,ICP作为质谱的高温离子源(7000K),样品在通道中进行蒸发、解离、原子化、电离等过程。离子通过样品锥接口和离子传输系统进入高真空的MS部分,MS部分为四极快速扫描质谱仪,通过高速顺序扫描分离测定所有离子,扫描元素质量数范围从6到260,并通过高速双通道分离后的离子进行检测,浓度线性动态范围达9个数量级从ppq到1000ppm直接测定。因此,与传统无机分析技术相比,ICP-MS技术提供了最低的检出限、最宽的动态线性范围、干扰最少、分析精密度高、分析速度快、可进行多元素同时测定以及可提供精确的同位素信息等分析特性。ICP-MS的谱线简单,检测模式

灵活多样:(1)通过谱线的质荷之比进行定性分析;(2)通过谱线全扫描测定所有元素的大致浓度范围,即半定量分析,不需要标准溶液,多数元素测定误差小于20%;(3)用标准溶液校正而进行定量分析,这是在日常分析工作中应用最为广泛的功能;(4)同位素比测定是ICP-MS的一个重要功能,可用于地质学、生物学及中医药学研究上的追踪来源的研究及同位素示踪。 HCl 含量: 工业级36%。 Ppq: part(s) per quadrillion 千万亿分率,千万亿分之…… 红外光谱仪 红外光谱仪简介 一、基本原理 傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。 二、使用范围

相关文档
最新文档