混合式步进电机工作原理

混合式步进电机工作原理
混合式步进电机工作原理

随着现代科学技术的发展,信息产业的发达,电子产品的更新换代日渐频繁,市场上步进电机的种类层出不穷。步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。目前,市场上比较常用的步进电动机包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)和单相式步进电动机等。

混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相、三相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度,步进电机随着相数(通电绕组数)的增加,步进角减小,精度提高,这种步进电机的应用最为广泛。

步电机系统解决方案

混合式步进电机工作原理:

混合式步进电机与磁阻式步进电机一样,混合式电机也由定子和

转子两部分组成。常见的定子有8个极或4个极,极面上均布一定数量的小齿,极上线圈能以两个方向通电,形成A相和A相,B相和B 相。它的转子也由圆周上均布一定数量小齿的两块齿片等组成。这两块齿片相互错开半个齿距。两块齿片中间夹有一只轴向充磁的环形永久磁钢。很明显,同一段转子片上的所有齿都具有相同极性,而两块不同段的转子片的极性相反。

混合式电机产生的转矩比磁阻式电机大;加上混合式电机的步距角常做得较小,因此,在工作空间受到限制而需要小步距角和大转矩的应用中,常常可选用混合式步进电机。

深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓

(SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、

步电机系统解决方案

减速步进电机、带刹车步进电机、直线步进电机、空心轴步进电机、防水步进电机以及步进驱动器、减振垫、制振环、电机引线、拖链线、齿轮、同步轮、手轮等专业配套产品。我们还供应德国TRINAMIC驱动芯片和日本NPM运动控制芯片。根据客户配套需要,我们还可以提供其他种类及其他品牌微电机产品的配套服务。也提供NPM的线性磁轴电机(直线电机)及技术支持和服务。

步电机系统解决方案

步进电动机的工作原理与特点

步进电动机的工作原理及特点随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 1 步进电机概述 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率围通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2国外的研究概况 步进电机是国外发明的。中国在文化大革命中已经生产和应用,例如、、、、都生产,而且都在各行业使用,驱动电路所有半导体器件都是完全国产化的,当时是全分立元器件构成的逻辑运算电路,还有电容耦合输入的计数器,触发器,环形分配器。国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济指标高。一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。国过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器部。 总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 在卫星、雷达等应用场合,中国在文化大革命后期,就生产了力矩电机,就生产了环形

步进电机工作和控制原理

步进电机工作和控制原理 一、综述 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有 0.1N·M~40N·M。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て

步进电机的工作原理其原理图

一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转:

如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C 偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C 对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。如A相通电,B,C相 不通 电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电 顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A 这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移 1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F 与(dФ/dθ)成正比 S 其磁通量Ф=Br*S Br为磁密,S为导磁面积,F与L*D*Br成正比L为铁芯有效长度,D 为转子直径Br=N·I/R N·I为励磁绕阻安匝数(电流乘匝数)R为磁阻。 力矩=力*半径

混合式步进电机和反应式步进电机的区别

步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化设备中。步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(即步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的。 不同类型的步进电机有着不同的特点和功能,下面维科特主要和大家讲解混合式步进电机和反应式步进电机的区别。 混合式步进电机是综合了永磁式和反应式的优点而设计的步进电机。它又分为两相、三相和五相,两相步进角一般为1.8度,三相步进角一般为 1.2度,而五相步进角一般为0.72度。 混合式步进电机的转子本身具有磁性,因此在同样的定子电流下产生的转矩要大于反应式步进电机,且其步距角通常也较小,因此,经济型数控机床一般需用混合式步进电机驱动。但混合转子的结构较复杂、转子惯量大,其快速性要低于反应式步进电机。 混合式步进电机特性: 1、输出转矩大,高转速。

2、电机发热小,噪音低,效率高。 3、高速停止平稳快速,无零速振荡运行平稳,振动噪声小。 4、响应速度快,适合频繁启停的场合。 反应式步进电机,是一种传统的步进电机,由磁性转子铁芯通过与由定子产生的脉冲电磁场相互作用而产生转动。 应用领域: 反应式步进电机主要应用于计算机外部设备、摄影系统、光电组合装置、阀门控制、核反应堆、银行终端、数控机床、自动绕线机、电子钟表及医疗设备等领域中。 混合式步进电机和反应式步进电机的区别 1、在结构和材料上不同,混合式电机内部具有永久磁性材料,故混合式电机有自阻(即在电机未加电的情况下有一定的自锁力),而反应式电机没有自阻。 2、在运行性能上有差别,混合式电机运行时相对较平稳,输出力矩相对较大,运行声音小。

伺服电机工作原理及和步进电机的区别

伺服电机工作原理及和步进电机的区别 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 交流伺服电机运转非常平稳膜片联轴器,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同

步进电机驱动器工作原理

步进电机驱动器工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、

B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:

图2.步进电机工作时序波形图2.基于AT89C2051的步进电机驱动器系统电路原理

步进电动机的结构与工作原理

步进电动机的结构与工作原理 步进电机是利用电磁铁原理,将脉冲信号转换成线位移或角位移的电机。每来一个电脉冲,电机转动一个角度,带动机械移动一小段距离。 步进电动机 步进机将脉冲信号转换为角位移或线位移。主要要求:动作灵敏、准确、重量轻、体积小、运行可靠、耗电少等。 步进电动机的特点: (1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变方向。 步进电动机的种类 根据励磁式方式的不同分为:反应式、永磁式和混合式(又叫感应子式)三种。反应式步进电机的应用较多。 下面以反应式步进电机为例说明步进电机的结构和工作原理。 图7-20 (a)三相反应式步进电动机工作原理图 A 相通电,A 方向的磁通经转子形成闭合回路。若转子和磁场轴线方向原有一定角度,则在磁场的作用下,转子被磁化,吸引转子,使转子的位置力图使通电相磁路的磁阻最小,使转、定子的齿对齐停止转动。

A 相通电使转子1、3齿和AA' 对齐。 图7-20 (b)三相反应式步进电动机工作原理图 同理,B相通电,转子2、4齿和B相轴线对齐,相对A相通电位置转30; 图7-20 (c)三相反应式步进电动机工作原理图 最后,C相通电,转子1、3齿和C相轴线对齐,相对B相通电比较,转子再次转动30。 步进电动机的结构 步进机主要由两部分构成:定子和转子。它们均由磁性材料构成,以三相为例其定子和转子上分别有六个、四个磁极。

步进电动机结构简图 定子的六个磁极上有控制绕组,两个相对的磁极组成一相。 注意:这里的相和交流电中的“相”的概念不同。步进机通的是直流电脉冲,这主要是指线图的联接和组数的区别。

混合式步进电机工作原理

随着现代科学技术的发展,信息产业的发达,电子产品的更新换代日渐频繁,市场上步进电机的种类层出不穷。步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。目前,市场上比较常用的步进电动机包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)和单相式步进电动机等。 混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相、三相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度,步进电机随着相数(通电绕组数)的增加,步进角减小,精度提高,这种步进电机的应用最为广泛。 步电机系统解决方案

混合式步进电机工作原理: 混合式步进电机与磁阻式步进电机一样,混合式电机也由定子和 转子两部分组成。常见的定子有8个极或4个极,极面上均布一定数量的小齿,极上线圈能以两个方向通电,形成A相和A相,B相和B 相。它的转子也由圆周上均布一定数量小齿的两块齿片等组成。这两块齿片相互错开半个齿距。两块齿片中间夹有一只轴向充磁的环形永久磁钢。很明显,同一段转子片上的所有齿都具有相同极性,而两块不同段的转子片的极性相反。 混合式电机产生的转矩比磁阻式电机大;加上混合式电机的步距角常做得较小,因此,在工作空间受到限制而需要小步距角和大转矩的应用中,常常可选用混合式步进电机。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有市场竞争力的步进电机系统解决方案。我们的主要产品有信浓 (SHINANO KENSHI)混合式步进电机、日本脉冲(NPM)永磁式步进电机、 步电机系统解决方案

步进电动机的结构与工作原理

步进电动机的结构与工作原 理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

步进电动机的结构与工作原理 步进电机是利用电磁铁原理,将脉冲信号转换成线位移或角位移的电机。每来一个电脉冲,电机转动一个角度,带动机械移动一小段距离。 步进电动机 步进机将脉冲信号转换为角位移或线位移。主要要求:动作灵敏、准确、重量轻、体积小、运行可靠、耗电少等。 步进电动机的特点: (1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变方向。 步进电动机的种类 根据励磁式方式的不同分为:反应式、永磁式和混合式(又叫感应子式)三种。反应式步进电机的应用较多。 下面以反应式步进电机为例说明步进电机的结构和工作原理。 图7-20 (a)三相反应式步进电动机工作原理图 A 相通电,A 方向的磁通经转子形成闭合回路。若转子和磁场轴线方向原有一定角度,则在磁场的作用下,转子被磁化,吸引转子,使转子的位置力图使通电相磁路的磁阻最小,使转、定子的齿对齐停止转动。 A 相通电使转子1、3齿和 AA' 对齐。

图7-20 (b)三相反应式步进电动机工作原理图 同理,B相通电,转子2、4齿和B相轴线对齐,相对A相通电位置转30; 图7-20 (c)三相反应式步进电动机工作原理图 最后,C相通电,转子1、3齿和C相轴线对齐,相对B相通电比较,转子再次转动30。 步进电动机的结构 步进机主要由两部分构成:定子和转子。它们均由磁性材料构成,以三相为例其定子和转子上分别有六个、四个磁极。

步进电动机结构简图 定子的六个磁极上有控制绕组,两个相对的磁极组成一相。 注意:这里的相和交流电中的“相”的概念不同。步进机通的是直流电脉冲,这主要是指线图的联接 和组数的区别。 图7-22 三相反应式步进电动机结构原理图 步进电动机工作方式 (以三相步进电机为例)步进电机的工作方式可分为:三相单三拍、三相六拍、三相双三拍等。

步进电机的原理,分类,细分原理

步进电机原理及使用说明 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N?M~40N?M。 签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

57mm系列两相混合式步进电机

产品测评:行业标杆汉德保57mm系列两相混合式步进电机 汉德保电机十几年来,一直致力于步进电机的专业研发与制造。 每款电机采用高永磁精密组件,其尺寸精度高,高磁能积,高耐腐蚀性并以独特之磁阻制造技术及优越的机能,生产低噪音、低振动、扭力适当、平稳运转的高质量、高信赖性系列产品,以满足客户的需求。在质量的保证方面,各产品已通过多项国际性的肯定。 汉德保57mm系列两相混合式步进电机原自德国精湛技术,以本土化生产。每极同时绕有二相绕组。转子上有一个圆柱形磁钢,沿轴向充磁,两端分别放置由软磁材料制成有齿的导磁体并沿圆周方向错开半个齿距。当某相绕组通以励磁电流后,就会使一端的磁极下的磁通增强而使另一端减弱,异性磁极的情况也是同样的,一端增强而一端减弱。改变励磁绕组通电的相序,产生合成转矩可以使转子转过1/4齿距达到稳定平衡位置。57mm混合式步进电动机不仅具有磁阻式步进电动机步距小,运行频率高的特点,还具有永磁步进电动机消耗功率小的优点。汉德保57mm系列两相混合式步进电机,解决了步进电机丢步问题。成为行业内性能可靠,精度优良的一款标杆产品。 汉德保57mm系列两相混合式步进电机 通用规格: 步距角:1.8° 步距精度:5% 温度:80℃(Max) 环境温度:-20℃~50℃ 绝缘电阻:100MΩMin 500VDC 耐压:500V AC 1minute 径向跳动:最大0.02mm(450g负载) 轴向跳动:最大0.08mm(450g负载) 标准产品型号:

单极: 2301HS10AX 2301HS20AX 2302HS15AX 2302HS25AX 2303HS15AX 2303HS30AX 双极: 2301HS35AX 2302HS35AX 2303HS42AX 2304HS42AX 2305HS42AX 外形尺寸: 汉德保可以根据您的要求订制电机的电气参数、绕线规格、出轴的尺寸形状等,也可以增配断电刹车器、减速箱、编码器等。汉德保提供相应适配57mm系列两相混合式步进电机的驱动器:ASD422R,ASD545E,ASD545R,ASD860T。完美匹配的步进驱动对设置步进电机整步,半步,微步良好控制。设置调控细分值,使电机按实际要求精度及转速调整。 综述: 汉德保57mm系列两相混合式步进电机广泛应用于各种中小型自动化设备和仪器中,优良的品质和出色的表现嬴得了业界良好的口碑。

步进电机工作原理及功能运用

步进电机工作原理及功能运用 双击自动滚屏发布者:admin 发布时间:2012-02-18 03:06:33 阅读:495次【字体:大中小】步进电机的概术: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件,是目前行业设备的主要配件,如剥线机设备就需要用到此步进电机。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 单相步进电机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电机有多相方波脉冲驱动,用途很广。使用多相步进电机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电机各项绕组。每输入一个脉冲到脉冲分配器,电机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转

过一个步距角。 步进电机按旋转结构分两大类:1是圆型旋转电机如下图A 2直线型电机,结构就象一个圆型旋转电机被展开一样,如下图B 步进电机的别称 步进电机(stepping motor),步进电机(step motor),或者是脉冲电机(pulse motor),其它的如(stepper motor)等……有着各式各样的称呼方式,这些用日本话来表示的时候,就成为阶动电动机,还有,阶动就是一步一步阶段动作的意思,这各用另外一种语言来表示时,就是成为步进驱动的意思,总之,就是输入一个脉冲就会有一定的转角,分配转轴变位的电动机。 一、步进电机的特点

三相混合式步进电机驱动器的设计原理和控制详解

上海昀研自动化科技有限公司自2004年起致力于三相混合式步进电机及驱动器的开发,42系列低压三相混合式步进电机,57系列低压、高压三相混合式步进电机,86系列低压、高压三相混合式步进电机,110、130系列高压三相混合式步进电机,YK3605MA,TK3411MA,YK3822MA,YKA3722MA等多款产品已成功应用于市场。 上海昀研自动化科技有限公司生产的三相混合式步进电机采用交流伺服原理工作,转子和定子的直径比高达50%,高速时工作扭矩大,低速时运行极其平稳,几乎无共振区。其配套驱动器YK3822MA具有单相220V/50Hz输入,三相正弦输出,输出电流可设置,具有十细分和半流额定值60%功能;控制方式灵活,有“脉冲+方向控制”,也有“正转脉冲+反转脉冲”控制方式;有过热保护功能,因此使用起来十分的方便。 1.前言 步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用范围。步进电机的运行性能与它的驱动器有密切的联系,可以通过驱动技术的改进来克服步进电机的缺点。相对于其他的驱动方式,细分驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。总体来说,细分驱动的控制效果最好。因为常用低端步进电机伺服系统没有编码器反馈,所以随着电机速度的升高其内部控制电流相应减小,从而造成丢步现象。所以在速度和精度要求不高的领域,其应用非常广泛。 因为三相混合式步进电机比二相步进电机有更好的低速平稳性及输出力矩,所以三相混合式步进电机比二相步进电机有更好应用前景。传统的三相混合式步进电机控制方法都是以硬件比较器完成,本文主要讲述使用DSP及空间矢量算法SVPWM来实现三相混合式步进电机控制。 2.细分原理 步进电机的细分控制从本质上讲是通过对步进电机的定子绕组中电流的控制,使步进电机内部的合成磁场按某种要求变化,从而实现步进电机步距角的细分。最佳的细分方式是恒转矩等步距角的细分。一般情况下,合成磁场矢量的幅值决定了电机旋转力矩的大小,相邻两合成磁场矢量的之间的夹角大小决定了步距角的大小。在电机内产生接近均匀的圆形旋转磁场,各相绕组的合成磁场矢量,即各相绕组电流的合成矢量应在空间作幅值恒定的旋转运动,这就需要在各相绕相中通以正弦电流。 三相混合式步进电机的工作原理十分类似于交流永磁同步伺服电机。其转子上所用永磁磁铁同样是具有高磁密特性的稀土永磁材料,所以在转子上产生的感应电流对转子磁场的影响可忽略不计。在结构上,它相当于一种多极对数的交流永磁同步电机。由于输入是三相正弦电流,因此产生的空间磁场呈圆形分布,而且可以用永磁式同步电机的结构模型(图1)分析三相混合式步进电机的转矩特性。为便于分析,可做如下假设: a.电机定子三相绕组完全对称; b.磁饱和、涡流及铁心损耗忽略不计; c.激磁电流无动态响应过程。

步进电机结构及工作原理简介

步进电机结构简介 按照励磁方式分类,步进电机可分为反应式、永磁式和感应子式。其中反应式步进电机用的比较普遍,结构也较简单。本课题采用的也是此类电机。 反应式步进电机又称为磁阻式步进电机,其典型结构如图1所示。这是一台三相电机,定子铁心由硅钢片叠成,定子上有6个磁极,每个磁极上又各有5个均匀分布的矩形小齿。三相电机共有三套定子控制绕组,绕在径向相对的两个磁极上的一套绕组为一相。转子也是由叠片铁心构成,转子上没有绕组,而是由40个矩形小齿均匀分布在圆周上,相邻两齿之间的夹角为9度。 下面简述其工作原理。 当某相绕组通电时,对应的 磁极就会产生磁场,并与转 子形成磁路。若此时定子的 小齿与转子的小齿没有对 齐,则在磁场的作用下,转 子转动一定的角度使转子齿 与定子齿对应。由此可见, 错齿是促使步进电机旋转的 根本原因。例如,在单三拍 运行方式中,当A相控制绕组通电,而B、C相都不通电时,由于磁通具有力图走磁阻最小路径的特点,所以转子齿与A相定子齿对齐。若以 此作为初始状态,设与A相磁极中心磁极的图1 步进电机剖面结构转子齿为0号齿,由于B相磁极与A相磁极相差120度,且120度/9度=13.333不为整数,所以,此时13号转子齿不能与B 相定子齿对齐,只是靠近B相磁极的中心线,与中心线相差3度。如果此时突然变为B相通电,而A、C 相都不通电,则B相磁极迫使13号小齿与之对齐,整个转子就转动3度。此时称电机走了一步。 同理,我们按照A→B→C→A顺序通电一周,则转

子转动9度。转速取决于各控制绕组通电和断电的频率(即输入脉冲频率),旋转方向取决于控制绕组轮流通电的顺序。如上述绕组通电顺序改为A →C →B →A ······则电机转向相反。 这种按A →B →C →A ······方式运行的称为三相单三拍,“三相”是指步进电机具有三相定子绕组,“单”是指每次只有一相绕组通电,“三拍”是指三次换接为一个循环。 此外,三相步进电机还可以以三相双三拍和三相六拍方式运行。三相双三拍就是按AB →BC →CA →AB ······方式供电。与单三拍运行时一样,每一循环也是换接3次,共有3种通电状态,不同的是每次换接都同时有两相绕组通电。三相六拍的供电方式是A →AB →B →BC →C →CA →A ······每一循环换接六次,共有六种通电状态,有时只有一相绕组通电,有时有两相绕组通电。 磁阻式步进电机的步距角可由下边公式求得 r McCZ Q 360 ⑴ 式中Mc 为控制绕组相数,C 为状态系数,三相单三拍或双三拍时C =1,三相六拍时C =2。Zr 为转子齿数,本课题使用的36BF003型步进电机转子齿数为40。

两相步进电机驱动器工作原理

两相步进电机驱动器工作原理 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 图3 步进电机驱动器系统电路原理图 A T89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。图中L1为步进电机的一相绕组。A T89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。 图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。 在50Ω外接电阻上并联一个200μF电容,可以改善注入步进电机绕组的电流脉冲前沿,提高了步进电机的高频性能。与续流二极管串联的200Ω电阻可减小回路的放电时间常数,使绕组中电流脉冲的后沿变陡,电流下降时间变小,也起到提高高频工作性能的作用。 3.软件设计 该驱动器根据拨码开关KX、KY的不同组合有三种工作方式供选择: 方式1为中断方式:P3.5(INT1)为步进脉冲输入端,P3.7为正反转脉冲输入端。上位机(PC机或单片机)与驱动器仅以2条线相连。 方式2为串行通讯方式:上位机(PC机或单片机)将控制命令发送给驱动器,驱动器根据控制命令自行完成有关控制过程。

(完整word版)步进电机控制工作原理

步进电机控制工作原理 步进电机的名称 步进电机(stepping motor),步进电机(step motor),或者是脉冲电机(pulse motor),其它的如(stepper motor)等……有着各式各样的称呼方式,这些用日本话来表示的时候,就成为阶动电动机,还有,阶动就是一步一步阶段动作的意思,这各用另外一种语言来表示时,就是成为步进驱动的意思,总之,就是输入一个脉冲就会有一定的转角,分配转轴变位的电动机。 步进电机简介: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件。 在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 单相步进电机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电机有多相方波脉冲驱动,用途很广。使用多相步进电机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电机各项绕组。每输入一个脉冲到脉冲分配器,电机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。 步进电机按旋转结构分两大类:1是圆型旋转电机如下图A 2直线型电机,结构就象一个圆型旋转电机被展开一样,如下图B 一,步进电机的种类 现在,在市场上所出现的步进电机有很多种类,依照性能及使用目的等有各自不同的区分使用。

步进电机驱动器的工作原理

步进电机驱动器的工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图

开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产 生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极 产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向 转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 图3 步进电机驱动器系统电路原理图

步进电机基本工作原理

步进电机基本原理 电机将电能转换成机械能,步进电机将电脉冲转换成特定的旋转运动。每个脉冲所产生的运动是精确的,并可重复,这就是步进电机为什么在定位应用中如此有效的原因。 永磁步进电机包括一个永磁转子、线圈绕组和导磁定子。激励一个线圈绕组将产生一个电磁场,分为北极和南极,见图1所示。定子产生的磁场使转子转动到与定子磁场对直。通过改变定子线圈的通电顺序可使电机转子产生连续的旋转运动。 图2显示了一个两相电机的典型的步进顺序。在第1步中,两相定子的A相通电,因异性相吸,其磁场将转子固定在图示位置。当A相关闭、B相通电时,转子顺时针旋转90°。在第3步中,B相关闭、A相通电,但极性与第1步相反,这促使转子再次旋转90°。在第4步中,A相关闭、B相通电,极性与第2步相反。重复该顺序促使转子按90°的步距角顺时针旋转。

图2中显示的步进顺序称为“单相激励”步进。更常用的步进方法是“双相激励”,其中电机的两相一直通电。但是,一次只能转换一相的极性,见图3所示。两相步进时,转子与定子两相之间的轴线处对直。由于两相一直通电,本方法比“单相通电”步进多提供了41.1%的力

矩,但输入功率却为2倍。 半步步进 电机也可在转换相位之间插入一个关闭状态而走“半步”。这将步进电机的整个步距角一分为二。例如,一个90°的步进电机将每半步移动45°,见图4。但是,与“两相通电”相比,半步进通常导致15%~30%的力矩损失(取决于步进速率)。在每交换半步的过程中,由于其中一个绕组没有通电,所以作用在转子上的电磁力要小,造成了力矩的

净损失。 双极性绕组 双相激励介绍了利用一种“双极性线圈绕组”的方法。每相用一个绕组,通过将绕组中电流反向,电磁极性被反向。典型的两相双极驱动的输出步骤在电气原理图和图5中的步进顺序中进一步阐述。按图所

相关文档
最新文档