人教版初中数学九年级上册17.圆中的最值问题

人教版初中数学九年级上册17.圆中的最值问题
人教版初中数学九年级上册17.圆中的最值问题

人教版初中数学

重点知识精选

掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!

拔高专题 圆中的最值问题

一、基本模型构建

常见模型

图(1) 图(2)

思考

图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。

.在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的 对称 点,对称点与另一点的连线与直线L 的交点就是所要找的点.

二、拔高精讲精练

探究点一:点与圆上的点的距离的最值问题

例1:如图,A

点是⊙O 上直径MN 所分的半圆的一个三等分点,B

点是弧AN

的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。

解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点,

∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′.

【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知

识,把两条线段的和转化为一条线段,即可计算。 探究点二:直线与圆上点的距离的最值问题

例2:如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),求切线PQ 的最小值

解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2,

∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,OA=OB=3 ,

∴OA=6,∴OP=

=3,∴. ?OA OB AB

【变式训练】如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 是一动点且P 在第一象限内,过P 作⊙O 切线与x 轴相交于点A ,与y 轴相交于点B .求线段AB 的最小值.

解:(1)线段AB 长度的最小值为4, 理由如下: 连接OP ,

∵AB 切⊙O 于P , ∴OP ⊥AB ,

取AB 的中点C , ∴AB=2OC ;

当OC=OP 时,OC 最短, 即AB 最短, 此时AB=4.

【教师总结】结合切线的性质以及辅助线的作法,利用“垂线段最短”是解决此类问题的关键。

相信自己,就能走向成功的第一步

教师不光要传授知识,还要告诉学生学会生活。数学思维

可以让他们更理性地看待人生

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷 一、单选题(共6道,每道16分) 1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( ) A.100° B.110° C.140° D.80° 答案:A 解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 2.如图,当四边形PABN的周长最小时,a的值为( ) A. B.1 C.2 D. 答案:A 解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点

P在直线l上运动,则的最大值为( ) A. B.3 C.1 D.5 答案:D 解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题. 试题难度:三颗星知识点:最值问题 4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( ) A.2 B.1 C. D.3 答案:C 解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题. 试题难度:三颗星知识点:最值问题 5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A

初中数学圆的经典测试题及解析

初中数学圆的经典测试题及解析 一、选择题 1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( ) A .3cm B .2cm C .23cm D .4cm 【答案】A 【解析】 【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可. 【详解】 解:如图所示,正六边形的边长为2cm ,OG ⊥BC , ∵六边形ABCDEF 是正六边形, ∴∠BOC=360°÷6=60°, ∵OB=OC ,OG ⊥BC , ∴∠BOG=∠COG= 12 ∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG= 12BC=12×2=1cm , ∴OB=sin 30 BG o =2cm , ∴OG=2222213OB BG -=-=, ∴圆形纸片的半径为3cm , 故选:A . 【点睛】

本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键. 2.如图,正方形ABCD内接于⊙O,AB=22,则?AB的长是() A.πB.3 2 πC.2πD. 1 2 π 【答案】A 【解析】 【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可. 【详解】连接OA、OB, ∵正方形ABCD内接于⊙O, ∴AB=BC=DC=AD, ∴???? AB BC CD DA ===, ∴∠AOB=1 4 ×360°=90°, 在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2, ∴?AB的长为902 180 π′ =π, 故选A. 【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键. 3.如图,在平面直角坐标系中,点P是以C271为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()

数学人教版九年级上册《圆》教学设计

《圆》教学设计 教学目标 经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念。 教学重点:圆及其有关的概念。 教学难点:理解圆的概念的形成过程和圆的集合性定义。 教学过程 1、导入新课 (1)学生活动(边玩边观察)。 ①球、球相碰玩具表演。②线系小球旋转玩具表演。 [教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。] (2)师生对话(学生可相互讨论后回答)。 教师:日常生活中或周围的物体上哪里有圆? 学生:在钟面、圆桌、人民币硬币上……都有圆。 教师:请同学们用手摸一摸,体会一下有什么感觉? 学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。 教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面 图形,有什么不同呢? 学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形 和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆) 这种图形是由曲线围成的图形。 教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗? 学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把 眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能 否记住它。)

教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的圆心、直径、半径…… [这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。] 2、探索新知。 (1)探究——圆心 ①徒手画圆。 教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁 画的圆好呢?……师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。] ②用工具画圆。 教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形 物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学 生(个性)、教学民主。] ③找圆心。 学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。] 教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“O”表示。(学生在圆形纸片上点出圆心,标出字母。) ④游戏趣味题。 在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不 管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。 [教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如 学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将 来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够 遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”, 师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,

初中数学几何最值问题典型例题

初中数学几何最值问题 典型例题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =PMN 的周长的最小值为 . 【分析】作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.根据对称的性质可以证得:△COD 是等腰直角三角形,据此即可求解. 【解答】解:作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长. ∵PC 关于OA 对称, ∴∠COP =2∠AOP ,OC =OP 同理,∠DOP =2∠BOP ,OP =OD ∴∠COD =∠COP +∠DOP =2(∠AOP +∠BOP )=2∠AOB =90°,OC =OD . ∴△COD 是等腰直角三角形. 则CD OC . 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN 周长最小的条件是解题的关键. 2.如图,当四边形PABN 的周长最小时,a = .

人教版九年级数学上册圆知识点归纳及练习含答案完整版

人教版九年级数学上册圆知识点归纳及练习含 答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

圆 24.1.1圆 知识点一圆的定义 圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。固定的端点O叫作圆心,线段OA叫作半径。第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。 比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。 知识点二圆的相关概念 (1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。 (2)弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。 (3)等圆:等够重合的两个圆叫做等圆。 (4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 24.1.2垂直于弦的直径 知识点一圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 知识点二垂径定理 (1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为CD,AB是弦,且CD⊥AB, A B AM=BM 垂足为M AC=BC AD=BD D 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 如上图所示,直径CD与非直径弦AB相交于点M, CD⊥ABAM=BMAC=BC AD=BD 注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。 24.1.3弧、弦、圆心角 知识点弦、弧、圆心角的关系(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 (2)在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。 (3)注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。

(专题精选)初中数学圆的易错题汇编及答案

(专题精选)初中数学圆的易错题汇编及答案 一、选择题 1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定... 是直角的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】 解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角. 选项B 中,AO 为BC 边上的高,则AOB ∠是直角. 选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角. 故应选C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .3 B .36ππ C .312π D .48336ππ 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.

【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =×43×12=243,S 扇形= 603616,633933602OEB S ππ?==??=V ∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( ) A .6 B .8 C .10 D .12 【答案】C 【解析】 【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可. 【详解】 设P (x ,y ), ∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2, ∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2, ∵OP 2=x 2+y 2, ∴PA 2+PB 2=2OP 2+2, 当点P 处于OC 与圆的交点上时,OP 取得最值,

人教版九年级数学上册圆

初中数学试卷 金戈铁骑整理制作 圆 章节测试 时间:40分钟 满分:120分 姓名: 得分: 一、选择题(本大题共9小题,共54分) 1. 如图,圆锥的底面半径为2,母线长为6,则侧面积为( ) A. 4π B. 6π C. 12π D. 16π 2. 一个扇形的弧长是10πcm ,面积是60πcm 2,则此扇形的圆心角的度数是( ) A. 300° B. 150° C. 120° D. 75° 3. 下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形 4. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( ) A. ∠ADC B. ∠ABD C. ∠BAC D. ∠BAD 5. 如图,在⊙O 中,AB 是直径,AC 是弦,连接OC ,若∠ACO =30°,则∠BOC 的度数是( ) A. 30° B. 45° C. 55° D. 60°

6.如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12, OM:MD=5:8,则⊙O的周长为() A. 26π B. 13π C. D. 7.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的 对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是() A. B. 2- C. 2- D. 4- 8.如图,在半径为4的⊙O中,CD是直径,AB是弦,且CD⊥AB,垂足为点E,∠AOB=90°, 则阴影部分的面积是() A. 4π-4 B. 2π-4 C. 4π D. 2π

20年苏教版初中数学《圆有关的最值问题》专题

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x (2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

人教版九年级数学上册圆单元测试题及答案

九年级数学第二十四章圆测试题(A) 时间:45分钟分数:100分 一、选择题(每小题3分,共33分) 1 .若O O所在平面内一点P到O O上的点的最大距离为10, A . 14 B . 6 C . 14 或6 D. 7 或3 2. 如图24—A —1 , O O的直径为10,圆心O到弦AB的距离 A . 4 B . 6 C . 7 I 3. 已知点O ABC的外心,若/ A=80 A . 40 4. 如图 A . 20° B . 80 24—A — 2, B . C. 160° △ ABC内接于O 最小距离为 OM的长为 4则此圆的半径为( 3,则弦AB 的长是 D . 8 ,则/ BOC的度数为( D. 120° 若/ A=40 °,则/ OBC的度数为( O 图24—A — 4 图24—A — 3 小明同学设计了一个测量圆直径的工具, 垂直,在测直径时,把O点靠在圆周上, A . 12个单位 B . 10个单位 6. 如图 A . 80° 7. 如图 PB于点 A . 5 24—A —4, AB为O O的直径,点 B. 50° C. 40 ° 24—A —5, P 为O O 外一点, 5 .如图24—A —3, 标有刻度的尺子OA、OB在O点钉在一起, 读得刻度OE=8个单位,OF=6个单位,则圆的直径为( D . 15个单位 ,则/ A等于() 并使它们保持 ) PA 、 C、D,若PA=5,则△ PCD的周长为( B . 7 C . 8 D . 10 C . 1个单位 C 在O O 上,若/ B=60 ° D . 30° PB分别切O O于A、B, ) CD切O O于点E,分别交PA、 &若粮仓顶部是圆锥形,且这个圆锥的底面直径为 毡,则这块油毡的面积是() 4m,母线长为3m,为防雨需在粮仓顶部铺上油 A . 6m2 C . 12m22 D . 12二 m 9.如图24—A —6,两个同心圆,大圆的弦AB 点P,且 CD=13 , PC=4,则两圆组成的圆环的面积是( A. 16 n B . 36 n 10 .已知在△ ABC中, 10 A . 3 11.如图 C、D E、 C. 52 n AB=AC=13 , 与小圆相切于点P,大圆的弦CD经过) D. 81 n BC=10,那么△ ABC的内切圆的半径为( 12 B . 5 24—A —7,两个半径都是4cm的圆外切于点C, 一只蚂蚁由点A开始依A、B、 F、C、G A的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这 C. 2 径上不断爬行,直到行走2006 n cm后才停下来, A . D 点 B . E 点 C . F 点D 二、填空题(每小题3分,共30分) 12 .如图24—A —8,在O O中,弦AB等于O 则蚂蚁停的那一个点为( .G点 O的半径,0C丄AB交O O于点C,则 8段路 )

人教版初中数学九年级上册17.圆中的最值问题

人教版初中数学 重点知识精选 掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!

拔高专题 圆中的最值问题 一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的 对称 点,对称点与另一点的连线与直线L 的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。 解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点, ∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′. 【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知

识,把两条线段的和转化为一条线段,即可计算。 探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),求切线PQ 的最小值 解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2, ∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,OA=OB=3 , ∴OA=6,∴OP= =3,∴. ?OA OB AB 【变式训练】如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 是一动点且P 在第一象限内,过P 作⊙O 切线与x 轴相交于点A ,与y 轴相交于点B .求线段AB 的最小值. 解:(1)线段AB 长度的最小值为4, 理由如下: 连接OP , ∵AB 切⊙O 于P , ∴OP ⊥AB , 取AB 的中点C , ∴AB=2OC ; 当OC=OP 时,OC 最短, 即AB 最短, 此时AB=4.

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

精选初中数学常见8种最值问题

初中数学最值问题常见的8种解题方法一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则的最大值为________。 解:设,易知 由,得

从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为() A. 3 B. C. D. 6 解:设,则 从而可知,当时,取得最小值。故选(B)。

三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法

例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。设,记为m的最小值,y为m的最大值。则__________。 解:由得 解得 由是非负实数,得 从而,解得。 又, 故

于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。 解:设矩形B的边长为x和y,由题设可得。从而x和y可以看作是关于t的一元二次方程 的两个实数根,则 因为, 所以, 解得

所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为 _________。 解:由得,代入得。 而由和可知的整数。 所以,当时,取得最大值,为。 七. 借助几何图形法 例8. (2004年四川省初中数学联赛)函数 的最小值是________。 解:显然,若,则。因而,当取最小值时,必然有。

人教版九年级数学上册圆单元测试题

第7题 A B O · C 初中数学试卷 第二十四章 单元测试题 姓名:__________ 班级:________ 等级: 一、选择题: 1、半径等于12的圆中,垂直平分半径的弦长为:( ) A .63 B 、312 C 、36 D 、318 2.如图,AB 是⊙O 的直径,∠ABC=30°,则∠BAC =( ) A .90° B .60° C .45° D .30° 3.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( ) A .50° B .80° C .90° D .100 4.如图,AB 是⊙O 的直径,∠ABC=30°,则∠BAC =( ) A .90° B .60° C .45° D .30° 5.圆内接四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D 可以是( ) A.1∶2∶3∶4 B.1∶3∶2∶4 C.4∶2∶3∶1 D.4∶2∶1∶3 6.下列命题错误.. 的是( ) A .经过三个点一定可以作圆 B .三角形的外心到三角形各顶点的距离相等 C .同圆或等圆中,相等的圆心角所对的弧相等 D .经过切点且垂直于切线的直线必经过圆心 7. 如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C A B O C 第2题图 第4题图 第3题图

则AB =( ) A .4cm B .5cm C .6cm D .8cm 8.以半径为1的圆内接正三角形、正方形、正六边形的边心距为三边作三角形, 则:( ) A.这个三角形是直角三角形 B.这个是钝角三角形 C .这个是等腰三角形 D.不能构成三角形、 9.如图P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B , CD 切⊙O 点E ,分别交PA 、PB 于点C 、D ,若PA=5, 则△PCD 的周长为( ) A .5 B .7 C .8 D .10 10.如图,一块含有30°角的直角三角板ABC ,在水平 桌面上绕点C 接顺时针方向旋转到A ′B ′C ′的位置.若BC=15cm ,则顶点A 从开始到结束所经过的路径长为 . 二、填空题: 11.平面上一点P 到⊙O 上一点距离最长为6cm ,最短为2cm ,则⊙O 半径 12.如图,AB 是⊙O 的直径,点D 在⊙O 上,∠AOD=130°,BC ∥OD 交⊙O 于C , 则∠A= . 13.⊙O 的弦AB 长等于半径,则弦AB 所对的圆周角等于 14.在△ABC 中,∠A =50°,若O 为△ABC 的外心,则∠BOC= ; 若O 为△ABC 的内心,则∠BOC= . 15.已知正三角形的边长为23,则它的半径为 ;面积为 . 三、解答题: 16.如图AB 是⊙O 的直径,BC 是⊙O 的切线,OC 与⊙O 相交于点D ,连接AD 并 延长与BC 相交于点E 。 (1)取BE 的中点F ,连接DF ,请证明DF 为⊙O 的切线; 第12题 O C B D A

人教版数学九年级上册圆知识点总结

人教版数学九年级上册圆知识点总结 人教版数学九年级上册圆知识点总结 24.1 圆 定义:(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。 (2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。 圆心:(1)如定义(1)中,该定点为圆心 (2)如定义(2)中,绕的那一端的端点为圆心。 (3)圆任意两条对称轴的交点为圆心。 (4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。

注:圆心一般用字母O表示 直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。 半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。 圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。 圆的半径或直径决定圆的大小,圆心决定圆的位置。 圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。 圆的周长与直径的比值叫做圆周率。 圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。90°的圆周角所对的弦是直径。 圆的面积公式:圆所占平面的大小叫做圆的面积。πr,用字母S表示。 一条弧所对的圆周角是圆心角的二分之一。 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。 周长计算公式 1.、已知直径:C=πd 2、已知半径:C=2πr 3、已知周长:D=cπ

中考初中数学圆的最值问题含答案分析

数学组卷圆的最值问题 一.选择题(共 7 小题) 1.( 2014春?兴化市月考)在平面直角坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 为第 且 AC=2,设 tan ∠ BOC=m ,则 m 的取值范围是 C . D . 2.( 2013?武汉模拟)如图∠BAC=60°,半径长1 的⊙O 与∠BAC 的两边相切,P 为⊙O 上一动点,以 P 为圆心, 射线 AP 、AO 分别与⊙O 交于B 、C A 两.点2.若 B ⊙.O 3的 半径 C .长为 3, D O .P 3= ,则弦BC 的最大值为( 4.( 2015?黄陂区校级模拟)如图,扇形AOD 中,∠AOD=90°,OA=6,点P 为弧AD 上任意一点(不与点A 和D 5.( 2010?苏州)如图,已知A 、B 两点的坐标分别为(2,0)、(0,2), ⊙C 的圆心坐标 1.若D 是⊙C 上的一个动点,线段 DA 与 y 轴交于点E ,则△ABE ) D . 6.( 2013?市中区模拟)如图,已知 A 、B 两点的坐标分别为(8,0)、(0,﹣6), ⊙C 的 圆心坐标为(0,7),半径为5.若P 是⊙C 上的一个动点,线段PB 与x 轴交于点D ,则 A .63 B .31 C .32 D .30 △ABD 面积的最大值是( ) 7.( 2013?枣庄)如图,已知线段OA 交⊙O 于点B ,且OB=AB ,点P 是⊙O 上的一个动 A 点.,9那0°么 B ∠.OA 6P 0°的 最 C .大4值5°是 ( D . 3 0°) 一象限内一点, A .m ≥0 B . .合弧0)<A ,D r P <上Q 3⊥运 O 动B D .时于r ,=3Q r ,的C 点值.满 3I <为足r △<(O 3 PQ 的 ) 内 D 心.,r=过3 O , I 和 D 三点的圆的半径为 r . 则当点P 为(﹣1,0),半径为 A 面.积2的 最 B 小.值1是 ( C . 3.( 2014?武汉模拟)如图,P 为⊙O 内的一个定点,A 为⊙O 上的一个动点,

人教版九年级数学上册教案《圆》

《圆》 圆是常见的几何图形, 是平面几何中基本的图形之一,它具有独特的性质。本章是在学生在小学学过的圆的知识的基础上,系统研究圆的概念和性质,点与圆、 直线与圆的位置关系、正多边形和圆的关系,以及圆的弧长与面积的计算等问题。 本小节是圆这一章的第一节课,主要是研究圆的概念及其相关概念,本节内容是继续研究圆的性质的基础。教材一开始是让学生观察生活中有关圆的形象的物体,结合小学学过的有关圆的知识,通过用圆规画圆的方法导入圆的定义的。圆的定义方法有两种,一种是描述性定义,一种是集合性定义。圆的描述性定义,要让学生用自己的语言尝试表述,教师可以引导学生通过观察画加深理解;圆的集合定义,应通过观察、体会画圆的过程,引导学生从圆和点两个方面去思考得出圆的集合定义。得出圆的定义后,接着介绍圆心、半径、弦、直径、弧、半圆、等圆、等弧等相关性质。教材中的例1是证明四点共圆,只要证明矩形的四个顶点到对角线的交点距离相等即可,进一步让学生体会圆的集合定义的应用。 【知识与能力目标】 1.理解圆、弧、弦、圆心角、圆周角的概念; 2.了解等圆、等弧的概念。

【过程与方法目标】 从感受圆在生活中大量存在到圆的概念的形成过程中,让学生体会圆的不同定义方法,感受圆和实际生活的联系。 【情感态度价值观目标】 在探索圆的概念的过程中让学生体会数学知识无处不在,感受生活中处处有数学。 【教学重点】 对圆的两种定义的理解。 【教学难点】 对圆的集合定义的理解。 多媒体课件、教具等。 一、创设情境,引入新课 问题1 观察下列图形,你能从中找出它们的共同特征吗? 追问:你能再举出一些生活中类似的实例吗? 设计意图:让学生观察图形,感受圆和实际生活的密切联系,为学习圆的相关概念打下基础,同时还可以激发学生的学习热情。 二、探索新知,形成概念 问题2 观察下列画圆的过程,你能由此说出圆的形成过程吗?

相关文档
最新文档