电介质物理新版第二章 静电场中的电介质

电介质物理新版第二章  静电场中的电介质
电介质物理新版第二章  静电场中的电介质

校内讲义

电介质物理

二〇〇六年十二月

前言

电介质是在电场作用下具有极化能力并能在其中长期存在电场的一种物质。其特征是以正、负电荷重心不重合的电极化方式传递、存储或记录电的作用和影响,但其中其主要作用的是束缚电荷。极化是电介质的基本属性,也是电介质多种实际应用(如储存静电能)的基础。

电介质物理学主要是研究界之内不束缚电荷在电场(包括光频电场)、应力、温度等作用下的电极化及运动过程,阐明电极化规律与介质结构的关系,揭示介质宏观介电性质的微观机制,同时也研究介电性质的测量方法,以及各种电介质的性能,进而发展电介质的效用。电介质的物理形态可以是气体、液体或固体,自然界中分布极广,本讲义主要介绍固体电介质。

电介质与金属对电场的响应特性是不同的,金属中的电子是共有化的,金属内有自由载流子,使金属具有良好的导电性,它们以传导的方式来传递电的作用和影响。在电介质体内,一般情况下只具有被束缚的电荷,在电场的作用下只能以感应的方式,即电极化(在电场作用下正、负电荷中心不重合)的方式来传递和记录电的影响。尽管对不同种类的电介质,电极化的机制各不相同,但是以电极化方式响应电场的作用却是共同的。因此,研究电介质在电场作用下发生极化的物理过程并推导出相应的规律,是电介质物理的重要课题之一。

由于实际电介质与理想电介质不同,在电场作用下,实际电介质存在泄漏电流和电能的耗散以及在强电场下可能导致的电介质破坏,因此,电介质物理除了研究极化外,还要研究有关电介质的电导、损耗、以及击穿特性。这些就是经典的电介质物理研究的主要内容。

20世纪20年代,关于原子结构和分子结构的研究开始发展的时候,电极化基本过程的研究也发展起来,它从物理学分离出来并成为一个独立分支。目前备受关注的课题包括:(1)材料性质的第一性原理计算;(2)驰豫铁电体;(3)非均匀介质;(4)有限尺寸材料;(5)电解质的驰豫特性研究;(6)微波介质和低介电常数材料

电介质物理学始于物质结构研究密不可分的基础学科,研究的中心问题试电极化与驰豫,故涉及物质结构中束缚电荷的分布、带电粒子间的相互作用,以及这些粒子在外电场作用下的运动和驰豫等。这些是物质结构中带有根本性的问题。所以电介质物理学研究中产生的新概念、新理论促进了其他学科的发展。历史上,电介质物理学的发展对于促进分子物理学、固体物理的发展曾带来深刻的作用。现在,对于促进非线性光学、促进固体光谱学的发展也有着不可磨灭的贡献;在一定意义上形成了这些分支学科的奠基石,同时也是这些学科登堂入室的必由之路。近年来,由于激光技术和非晶态理论的发展,电介质物理又将成为凝聚态物理最基础的组成部分。

高新技术的发展为电介质物理提供了广阔的用武之地,也为学科的发展创造了机遇。例如,场致发光可以用于显示,显示技术不属于电介质物理范畴,但近年来用高介材料余场致发光材料复合时,内场的观点可为降低发光场强提供理论依据。在纳米技术上、机器人等可能影响人类生活方式的领域中电介质的机、电、广、热、声之间的耦合效应将会得到充分的利用,电介质物理将成为这些领域发展的理论基础之一。光信息处理领域中介电非线性、机电耦合等原理可望得到广泛应用,与此同时,如何更深入地理解高新技术领域中所应用的电解质的性能和参数,从而对其改进和提高提供指导,这为电介质物理的研究提供了有价值的空间。可见在交叉学科研究中电介质物理将不断丰富自己的研究内容。

本讲义主要取材于下面参考书:

[1] 张良莹、姚熹:《电介质物理》,西安交通大学出版社,西安,1991。

[2] 李翰如:《电介质物理导论》,成都科技大学出版社,成都,1990。

[3] 殷志文:《电介质物理》(第二版),科学出版社,北京,2006

第二章 静电场中的电介质

1.1 电介质的极化

本节主要讨论各向同性线性电介质在电场中的行为,并以均匀电介质在均匀电场中的行为作为特例进行具体分析。这里所说的均匀是指电介质的性质不随空间坐标发生变化,所说的各向同性是指电介质的参数不随场量的方向发生变化;所说的线性是指电介质的参数不随场量的数值发生变化。

1.电极化

电极化即电介质极化,简称极化,它是电介质基本电学行为之一。在外电场作用下,在电介质内部感生偶极矩的现象,称为电介质的极化。

电介质在电场作用下的极化程度用极化强度矢量P 来表示,极化强度P

是电介质单位体积内的感生偶极矩。它可表示如下:

V

P v ?=∑→?μ 0lim (2-1)

式中μ

为极化粒子的感应偶极矩,V ?为体积元。由式可见,P 是空间坐标的函

数,可用()'''z y x P 或()'r P

表示。在国际制中,极化强度的单位是库仑/米2(C/m 2).

2.极化电荷及其建立的电场 (1)极化电荷及退极化电场

电介质极化所产生的感应偶极矩,作为场源,在电介质外部空间(真空中)和电介质内部都建立了电场。

如果电介质的体积为V ',在V '内,位于

()r '处的体积元dV 中的感应偶极矩为

()''dV r P

,它在电介质以外的场点()r 形成的电位P d ?,根据偶极子电场公式可得

()()''41''''412

0020dV R

R

r P dV r r r r r r r P d p =?='--?-= πεπε? (2-2) 整个体积V'内的感应偶极矩在场点

()r 形成的电位应用叠加原理,对上式积分可得

()()??='20

0''41v P dV R

R

r P r πε? (2-3)

根据标量函数的梯度,有

20

1'11R

R

R R R grad -=-?=?= (2-4)

式中▽是作用于不加撇的坐标的,?'则是作用于加撇的坐标的,

将式(2-4)代入式(2-3)可得

()()???='0'1''41

v P dV R

r P r πε? (2-5) 根据散度的基本性质

()()()()R

r P r P R r P R r P R div 11]

'1[]'1[??+??=??=

(2-6)

将式(2-6)代入式(2-5)有

()()()[

]

??

??-+?

???????=''

0''41

''41v v p dV R

r P dV R r P r

πεπε? (2-7)

对上式右端第一项应用散度定理可得

()()???=??

??????''00''41''41v A A d R r P dV R r P πε (2-8) 式中'A 为体积V'的界面,00,''n dA n A d

=为'A d 外法线方向的单位面元矢量。

将上式与电荷连续分布在表面A '上,其面电荷密度为()'r σ

,在场点)(r 处的电位公式相比较,可以看出:()0

'n r P ? 是电介质表面某处'A d 上或()'r 处的面电荷密度,这个电荷是由电介质极化产生的。因此是面极化电荷密度,以()'r p σ表示,于是可写为

()()()()'cos '''00r P r P n r P r n ==?=θσ

(2-9)

式中θ为P

与n 间的夹角。以上关系表明,电介质表面某处

()'r 面极化电荷密度()

'r P σ在数值上等于该处极化强度P

()'r 在外表面法线方向(n 方向)上分量()r P n '。

将式(2-7)右端第二项与体分布电荷场源,体电荷密度为()'r ρ,在场点?的电位

公式比较,可以看出:()'r P

??-是电介质内部()r '处的体电荷密度,同样,这个电荷是由电介质极化而产生的,因此是体极化电荷密度,以()'r P σ表示:

()()''r P r P

?-?=ρ (2-10)

上式表明:当极化强度P

随空间位置发生变化时,在电介质内部有极化电荷存在。在

均匀极化的电介质中P

()'r 是恒量,因此()'r ρ=0,这时电介质体内不存在极化电荷。

以上分析表明,电介质极化既感生表面电荷,又感生内部电荷,显然这两种极化电荷都是束缚电荷。极化在电介质中感生极化电荷和在电介质中感生偶极矩是同一物理事实的两种表现。面极化电荷密度与休极化电荷密度与极化强度一样也是表征电介质极化的物理量。式(2-9)和式(2-10)分别表示了它们之间的相互关系。

将式(2-9)和式(2-10)代入式(2-7)有

()()()[]()()??

????+=??-+?=????''0''0

''''41''''41V P A P A V P dV R r dV R r dV R r P dA R

n r P r ρσπεπε? (2-11)

这是极化电荷在电介质外部建立的电位,其电场强度可写为

()()()??

????+=??''0220''''41A V P P P dV R R r dA R R r r E ρσπε (2-12) 电介质极化也可以用极化电荷来表征,这样就可以把体积为V'的极化电介质看成

是具有极化电荷的V '空间。因此V '空间内的电场与V '空间外的电场一样,可以用式(2-11)和式(2-12)进行计算。

以上分析表明,电介质极化对电场的影响可以等效地用极化电荷在真空中建立的电场来描述。习惯上把极化电荷形成的电场称为退极化电场。

退极化电场的大小与电介质试样的几何形状有关,或者说与电极的几何形状有关。对于平行板电极,若极板的面积为A ,极间距离为d ,且A 的线度远大于d ,极板上充电后,若忽略边缘效应,则可认为电极上电荷均匀分布,两极间的电场为均匀电场,电场强度处处相等。如极间充以各向同性的线性均匀电介质,则电介质均匀极化,计划强度处处相等,由式(2-10)可得体极化电荷密度P ρ为零

0=?-?=P P

ρ (2-13)

面极化电荷密度P σ根据式(2-9)可得

P P n P P -==?=πρcos

即在紧靠极板的介质表面,面极化电荷密度在数值上等于极化强度P 的负值。这表明,电介质表面的极化电荷与相邻极板上自由电荷符号相反,这是电介质中感应生成的束缚电荷,如图(2-1)所示。由于极化电荷总是与自由电荷异号,因此,极化电荷

削弱自由电荷建立的电场,故称为退极化电场P E

。根据式(2-12)可计算退极化电场,

但比较复杂,按照真空中的高斯定理即可得

0/εσP E P P -=-= (2-14)

图2-1 平行板电场中电介质的极化电荷

对于各种形状的电介质试样或电极,其退极化电电场强度可由下式表示:

0/εP N E P

-= (2-15)

式中N 为比例常数,称为退极化因子,通常1≤N ,平板试样的。图2-2示出了几种

形状的电介质试样的退极化电场。 (2)宏观平均电场

以上讨论表明,在有电介质存在时的电场,可等效地看成是自由电荷和极化电荷在真空中共同建立的电场,这个电场称为宏观平均电场,也称为外电场,以E 表示,它可写作

P E E E

+=0 (2-16)

其中0E 表示自由电荷在真空中建立的电场。显然E

恒小于0E 。

(3)局域电场与退极化电场

极化场源在电介质内部引起的电场实际上远非以上讨论那样简单。电介质内部充

满着极化粒子,不能把它看成是连续均匀的媒质。极化场源作用在极化粒子上和粒子之

间的局域电场

P

E不相等,因此不能直接用极化电荷建立的电场,即退极化电场来描述,当然它们之间必然存在着联系。

平板

N1

=

E

圆柱

N12

=/

E

=0

N13

=/

圆球

(a)(b)

图2-2 各种形状电介质试样的退极化电场

考虑局域电场与退极化电场之间的关系,仍然必须从静电场的基本规律出发。静电场守恒的特点,即电场强度线积分与路径无关的性质,对于电介质内部局域电场仍然是适用的。若取电介质中某两场点O和Q,P E沿任何路径L从O到Q的线积分等于

该两点的电位差:

Q

O

L P

L d

E?

?-

=

?

?

(2-17)

式中

Q

O

?

?和分别为O和Q点的电位。沿路径L附近,穿过粒子内部或不穿过粒子,或通过粒子之间的任何途径L',1E从O到Q的线积分,也同样应该等于O与Q两点

的电位差

Q

O

?

?-。这表明,局域电场

l

E

的空间平均值<

l

E

>就等于极化电荷建立的退

极化电场

P

E

()

P

l

V

l

E

dV

E

V

r

E

=

?

>=

1

'(2-18)其中V

?为所取平均值的体积。V

?在微观上应足够的大,以包含足够多的极化粒子,使平均值在相邻体积中不致发生涨落现象;同时,在宏观上要足够的小,以使平均值能表征电场中每一点的特性,也就是平均值仍应该是场点空间坐标)

,

,

(z

y

x或)

(r的函数。因此局域电场的空间平均值就是在场点)

(r附近很小体积(V

?)范围内的平均值,根据电场守恒的原则,它等于该场点的退极化电场。

3.电介质的介电常数

实验结果表明,在各向同性的线性电介质中,极化强度P 与电场强度E

成正比,

并且方向相同

E P

0χε= (2-19)

式中χ为电介质的极化率,对于均匀电介质χ是常数,对于非均匀电介质则是空间坐标的函数。χ定量地表示电介质被电场极化的能力,是电介质宏观极化参数之一。

当上式代入电位移D

P E D

+=0ε (2-20)

可得 ()E E E P E D

00001εχχεεε+=+=+= (2-21)

()εεεεχ==+r 001 (2-22)

0/1εεεχ==+r (2-23)

则有 E D

ε= (2-24)

应该注意,式(2-20)是电位移D

的一般定义式,对于各类电介质都适用;而式

(2-24)仅适用于各向同性的线性电介质,这时D 与E 同向。

上列公式中的ε

r ε和分别为电介质的介电常数和相对介电常数(常简称介电常

数)。r ε没有量纲。εr ε和是描述电介质极化性能的基本宏观参数,它们是电介质中

从微观上来看足够大的区域内极化性能的平均值。例如,我们说在各向同性的线性电介质中的电场强度是真空中的1/r ε倍。这是说电介质中在微观上足够大的区域的电场强度的平均值是真空中的1/r ε倍,而并不是说作用在电介质中极化粒子和分子、离子等上的电场强度为真空的1/r ε倍。所以介电常数是宏观参数。对于均匀电介质来说,

εr ε和为常数。电介质的介电常数ε恒大于真空的介电常数0ε,因此电介质的相对介

电常数r ε恒大于1(真空的相对介电常数等于1)。

如果把电介质中与真空中静电场的有关方程相比较的话,就可以看出电介质与真

空的第一区别就在于电介质的介电常数是ε,比真空大,是真空的rε倍。因此从宏观上来持,可以把电介质看成是介电常数为ε的连续媒质。

表2-1 一些典型和常用材料的相对介电常数(室温)

△取决于具体化学组成 *沿不同晶轴方向 4.分界面上的边界条件

要研究电场中不同地点处场量的分布情况,需要解电场的微分方程。当电场中存在两种或多种物质时,必须对每种物质所在区域分别求解,其最终解答与不同物质分界面上的边界条件有关。分界面上的边界条件是指两种不同物质分界面两侧,每种场量必须满足的关系。在静电场中,判定边界条件的简便方法是采用积分形式的静电场方程。 (1)两种电介质分界面上的边界条件

图2-3为介质1和介质2分界面两侧的电场。设界两侧的电场强度和电位移分别为

1E ,1D 和2E 、2D

。根据静电场守恒特性,电场强度的环路积分为零(0=??l d E )

,可以得到电场强度沿分界面的切线分量l E 1、l E 2连续,即

l l E E 21= (2-25)

按照高斯定理可得界面上这两种介质中电位移的关系为

σ=-n n D D 12(-26)

式中n D 1和n D 2分别为电位移1D 和2D

在分界面上的法线分量,σ为分界面上自

由电荷面密度,当σ=0时,有

n D 1=n D 2 (2-27)

上式表明,当分界面上不存在自由电荷时,电位移垂直于分界面的法线分量必须连续。若介质1和介质2的介电常数及相对介电常数分别为r 221,,,εεεε根据式(2-24)有

n r n n E E D 110111εεε== (2-28) n r n n E E D 220222εεε== (2-29)

式中n E 1和n E 2分别为电场强度21E E

和的法线分量。由上式可得

1221//r r n n E E εε= (2-30)

上式表明,在两种介质的分界面上,电场强度的法线分量不连续,与其介质常数成反比。

图2-3 两种电介质分界面上场量的关系

由图2-3可见,在电介质1中,电场强度1E

与分界面的法线成1α角进入介质2,

1α可视为入射角;在介质2中2E

与分界面的法线成2α角,2α可视为折射角,根据式

(2-27)有

22201110cos cos αεεαεεE E r r = (2-31)

据式(2-25)有

2211sin sin ααE E = (2-32)

由以上两式可得

2121//r r tg tg εεαα= (2-33)

上式为复合电介质中静电场的基本关系。

两种电介质分界面上的边界条件还可以用电位?来表示。在静电场中,场量是有限值,因此在分界面上电位必须是连续的,即

21??= (2-34)

其中21,??分别表示分界面两侧介质1和介质2的电位。考虑到以下关系式

n E ?-?=/? (2-35)

()n D r n ??-=/0?εε (2-36)

根据分界面上的电位移法分量连续的条件可得

n

n r r ??=??2211

?

ε?ε (2-37) 这也是复合介质中静电场基本关系的另一种表示方法。 (2)导体与电介质分界面上的边界条件

在静电场中,导体内的电场强度为零。根据?-?=E ,导体的电位为一常量,因此导体内部和表面是一个等位体,导体表面任何一点的电场强度方向与导体表面垂直,显然,带电导体的电荷分布在导体表面。根据以上情况,在导体(设为第一种物质)与电介质(设为第二种物质)分界面上的边界条件为

02111==E E (2-38) 02111==D D (2-39)

01=n E , 01=n D (2-40) εσ/2=n E σ=n D 2 (2-41)

式(2-41)如用电位表示则为

σ?ε

??-=??=n

2

21, (2-42)

5.复合电介质的电场 (1)无限均匀媒质中的介球

设有一个介电常数为1ε的无限大的均匀电介质(称为第一电介质),介质中电场分布均匀,电场强度为E 。若在此介质中镶嵌一个介电常数为2ε,半径为α的电介质圆球(称为第二电介质),求球内外电场分布。

解:球内外无空间电荷存在,因此球内外任何一点电位都满足拉普拉斯方程:

02=??。我们采用球坐标系(?θ,,r )来解方程。由图2-4可见,取介质球心为原点,

z 轴方向与E

方向平行,这样电场分布对z 轴对称,因此与?无关。根据拉普拉斯方程

可写为

0sin sin 112

22=???

??

???? ????+??? ???????θθθr r r r r (2-43)

上列方程的通解可表示为

()∑∞

=+??

?

?

?+=011cos n n n n n n P r B r A θ? (2-44a )

()∑∞

=+??

?

?

?+

=012cos n n n n n n P r D r C θ? (2-44b )

图2-4 电介质中不同介电常数的介质球

式中21??和分别是球外介质和球内介质中的电位函数,)(cos θn P 为勒让德多项式,n A 、n B 、n C 、n C 则为待定系数。

以上各待定系数可按下列分界面上的边界条件确定: ①远离原点的电场不受引入介质球的影响仍然等于E

,即

θ?cos 1

Er Ez r -=-=∞

→ (1)

②在两种介质的分界面上电位必须连续,即

α

α??===r r 2

1

(2)

③两介质分界面上不存在自由电荷时,电位移垂直于分界面上的法线分量必须连

续,即

α

α?ε?ε==???

????=???

????r r r r 2211 (3)

④在球心(0=r

)处2?是有限值。

按照边界条件①和勒让德多项式线性独立的性质,除1A 以外,所有其它的n A 系数都是零,并且有E A -=1。根据边界条件④,所有的n C 系数为零。这样式(2-44)就

可写为

()∑

=+-=0

1

1cos cos n n n Er P r

B θθ? (2-45a )

()∑∞

==0

2cos n n n n P r C θ?

(2-45b)

对以上两式再分别应用边界条件②和③,则对任何1≠n 的正整数(包括零)分别有

n n n n a C a B =+1

(2-46) ()

122

11-+=+-n n n n

a nC a

B n εε (2-47) 解以上联立方程可得

n B =0 n C =0

当1=n 时有

a C E a B a 12

1

=- 213

112εεC E a B =??

?

??+ (2-48) 解此联立方程得

E a B 3

2

11212εεεε+-=

(2-49)

E C 2

11

123εεε+-

= (2-50)

将以上所得关系代入式(2-45)则得

Ez r a ???

? ??-+-=123321121εεεε? (2-51a )

Ez 2

11

223εεε?+-

= (2-51b )

介质球内的电场强度2E

可由式(2-51)得出

E z E 2

112223εεε?+=??-= (2-52)

上式表明介质球内的电场是均匀电场,并与E 的方向一致。 (2)电介质中空球腔内中心偶极子的电场

设有一介电常数为ε的无限大均匀电介质,在此介质中有一个半径为α的真空小球腔,若在该球腔中心有一个偶极子,其偶极矩为u

,求其电场分布。

解:球内外无空间电荷存在,其电场分布满足拉普拉斯方程。选用球坐标,以球腔中心为原点,并取z 轴与u

的方向一致,因此电场分布对z 轴对称,而与?无关。这时其拉普拉斯方程与式(2-43)完全一致,方程的解也具有与式(2-44)相同的形式,但必须满足以下边界条件:

①离球腔中心无限远处偶矩的作用可以忽略不计,即

01

=∞

→r ?

(1)

其中1?表示电介质中的电位

②球腔表面电位必须连续,即

a

r a

r ===2

1

?? (2)

③电位移垂直真球腔表面分量必须连续,即

a

r a r r r ==???

????=???

????201?ε?ε (3)

④当球面半径无限增大时,即偶极子处于无限在的真空中时,偶极子电位是

2

024cos r

a πεθ

μ?=

∞→ (4)

现在根据以上四个边界条件确定式(2-44)n A 、n B 、n C 、n C 四个待定系数。将边界条件①和勒让德多项式线性独立的性质用于式(2-44a ),可得0=n

A ,因此有

()θ?cos 01

1P r

B n n n

=+= (2-53) 将边界条件②和③用于式(2-53)和式(2-44b )可得

1

1+-+=n n n

n n n a D a C a B ()

()2

1

211+-++-=+-n n n n n n r a

D n na C a B n ε (2-54) 解以上联立方程可得

()()

n a r r r n D a

n n n C 1

21

11-+++--

=εεε (2-55)

n

r r n D n n n B +++=

εε1

2

(2-56)

将式(2-55)代入式(2-44b )并根据边界条件④有

()2

012

4cos cos r P r D n n n n a πεθ

μθ?==∑

=+∞→ (2-57)

由上式得

,14/,110

1=≠==D n D n πεμ

将以上关系式代入式(2-55)和式(2-56)可得 当1=n 时,

14123πεμ

ε+=

r B (2-58)

()0

3

1411212πεμ

εεa C r r +--

= (2-59)

当1≠n 时,n B =0,n C =0

将以上所得待定系数n B 、n C 和n D 代入式(2-53)和式(2-44b )则得

()()()??

?

???+--=

+=

z r r r r r r μεεπεεπεθμ?3

30

2011212141

124cos 3 (2-60) ()()z a r r r μεε???????+--=

0212121

41 (2-61) 由上式可得真空球腔内电场强度2E

()???

???+-+-??=-=μεμμ? 0002211212341a r

r r r grad E r r (2-62) 真空球腔内的电场2E

可以分成以下两个部分:

??

?

???-?=303

000341r r r r E μμμ (2-63)

()??????+-=30121241a E r

r r μεεπε (2-64) 将式(2-63)与偶极子电场比较可以看出μE

是球腔中心偶极子在球腔内建立的电场,r E

则是电介质与球腔界面上的极化电荷在球腔内建立的电场。

6.电介质极化的宏观参数与微观参数

以上讨论指出,从宏观介电行为来看,电介质与真空的唯一区别是它的介电常数比真空大,是真空的r ε倍。这相当于把电介质看成是连续均匀的一片,这个“形象”实际上是不确切的。电介质实际上是不连续不均匀的,它是由原子、分子或离子等微粒所组成的。因此从微观上来看,极化强度P 应定义如下:极化强度是电介质单位体积中所有极化粒子偶极矩的向量和。若单位体积中有0n 个极化粒子,各个极化粒子偶极

矩的平均值为μ

,则有

μ

?=0n P (2-65)

对于线性极化,μ

与电场强度成正比,有

r E

αμ= (2-66)

式中r E

是作用在各原子、分子或离子等生粒上的局域电场,称为有效电场;α为

比例系数,称为原子、分子或离子的极化率,其单位为法·米2(F ·m 2),α是表征电介质各种微粒极化性质的微观极化参数。

将式(2-66)代入式(2-65)有

r E n P

α0= (2-67)

注意到E P 0χε=,其中E

为介质中的宏观平均电场,可得

()r r E n E E P

αεεχε0001=-== (2-68)

或者

E

E

n r 001εαε+= (2-69)

以上两式表示了电介质中与极化有关的宏观参数(E r

,,εχ)与微观参数

(r E n

,,0α)之间的关系。

1.2 洛伦兹有效电场

1.洛伦兹(Lorentz )有效电场

有效电场不同于宏观平均电场,是作用在微观粒子上的局域电场。作用在某一被考察原子、分子或离子上的有效电场可以看成是自由电荷和除该粒子以外的所有其它极化粒子在被考察粒子上建立的电场。要直接计算所有其它极化粒子对被考察粒子的作用是很困难的,为此,很多学者提出了各种计算模型。本书将讨论两种常用的模型,这里首先讨论洛伦兹模型对有效电场的计算。

图2-5(a )给了洛伦兹有效电场度算模型。这个模型可表述如下:在均匀电场E

用下,电介质均匀极化,极化强度为P

。设电介质中某一被考虑粒子所在点为O ,以O

为中心想象作一个半径为a 的圆球。作这人想象圆球的目的是:试图把球内外介质对球

心被考察粒子的作用按不同方式进行处理。洛伦兹把离子被考察很远的球外电介质作宏观处理。换句话说,就是把球外的电介质看成是介电常数为ε的连续均匀媒质。这样一来,有效电场所要计算的其它极化粒子的作用,就从整个电介质的范围缩小到球内的极化粒子上了。为达到以上目的,所作圆球的半径a ,一方面,在微观尺度上要求尽量的大,比粒子间距离大得多,以使球外介质的作用可以用宏观方法予以处理;另一方面,在宏观上要足够的小,比两极板间的距离要不得多,以使球内介质的不连续不均匀性对球外电介质中的电场颁不至发生影响。这个想象的电介质圆球常被称为洛伦兹球,这就是洛伦兹计算模型。

按照以上模型,应用叠加原理,作用于球心被考察粒子上的电场强度e E

由以下几

个分量组成(见图2-5(b ))

(a ) (b)

图2-5 洛伦兹有效电场计算模型

210E E E E e

++= (2-70)

式中:0E

为极板上自由电荷所产生的电场强度; 1E

为球外极化电介质所产生的电场强度; 2E

为球内极化粒子所产生的电场强度。

极板上自由电荷在真空中所产生的电场强度0E ,根据真空中的高斯定理可计算如下:

000/εεσεD A q E ===

静电场中的电介质

3.1 填空题 3.1.1 电介质的极化分为( )和( )。 3.1.2 分子的正负电荷中心重合的电介质叫做( )电介质;在外电场作用下,分子的正负电荷中心发生相对位移形成( )。 3.1.3 如果电介质中各点的( )相同,这种介质为均匀电介质;满足( )关系的电介质称为各向同性电介质。 3.1.4 平行板电容器两极板间相距为0.2 mm ,其间充满了相对介电常数r ε=5.0的玻璃片,当 两极间电压为400 V 时,玻璃面上的束缚电荷面密度为( )。 3.1.5 一平行板电容器充电后断开电源,这时储存的能量为0w ,然后在两极板间充满相对介电常数为r ε的电介质,则电容器内储存的能量变为( )。 3.1.6 一平行板电容器,充电后与电源保持连接,然后使两极板间充满相对介电常数为r ε的 各向同性均匀电介质,这时两极板上的电量是原来的( )倍;电场强度是原来的( )倍;电场能量是原来的( )倍。 3.1.7 两个电容器1和2,串联以后接上电动势恒定的电源充电。在电源保持联接的情况下,若把电介质充入电容器2中,则电容器1上的电势差( ),电容器1极板上的电量( )(填增大、减小、不变)。 3.1.8 一平行板电容器两板充满各向同性均匀电介质,已知相对介电常数为r ε,若极板上的自由电荷面密度为σ,则介质中电位移的大小D =( ),电场强度的大小E =( )。 3.2 选择题 3.2.1 两个相距很近而且等值异号的点电荷组成一个( )。 A :重心模型; B :电偶极子; C :等效偶极子; D :束缚电荷。 3.2.2 可以认为电中性分子中所有正电荷和所有负电荷分别集中于两个几何点上,这称为分 子的( ) A :电介质; B :电偶极子; C :重心模型; D :束缚电荷。 3.2.3 电偶极子的电偶极矩定义为( ) A :E p M ?=; B :l q p =; C :l q p ?=; D :l q p ?= 3.2.4 在电场E 的作用下,无极分子中正负电荷的重心向相反方向作微小位移, 使得分子偶 极矩的方向与场强E 一致,这种变化叫做( ) A :磁化; B :取向极化; C :位移极化; D :电磁感应。 3.2.5 在真空平行板电容器的中间平行插一片介质,当给电容器充电后,电容器内的场强为( ) A :介质内的电场强度为零; B :介质内与介质外的电场强度相等; C :介质内的场强比介质外的场强小; D :介质内的场强比介质外的场强大。 3.2.6 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为r ε的均匀电介质充满电容器。则下列说法中不正确的是( ) A :介质中的场强为真空中场强的r ε1 倍;

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

电介质中电场

第九章 导体和电介质中的静电场 §9-1静电场中的导体 一.导体的静电平衡条件 1.静电感应现象 a.静电感应:外电场的作用导致导体中电荷重新分布而呈现出带电的现象 b.静电平衡状态:导体内部和表面上都没有电荷的定向移动状态 2.导体的静电平衡条件 (1).静电平衡条件: a.导体内部任何一点的场强为零 b.导体表面上任何一点的场强方向垂直于该点的表面 (2).等价条件: 静电平衡时,导体为等势体. 证:设a 和b 为静电平衡导体上任意两点 单位正电荷由a 移到b ,电场力的功为 b a b a U U l d E -=?? U ?= (1).a 、b 在导体内部: 0=E 0=?∴U (2).a 、b 在导体表面: l d E ⊥0=?∴l d E 即0=?U ----静电平衡的导体是等势体 二.静电平衡导体的电荷分布 1.导体处于静电平衡时,导体内部没有净电荷,电荷只能分布在导体表面上 证:在导体内任一点P 处取一任意小的高斯面S 静电平衡导体内0≡E ?=?∴S S d E 0 →0=∑内 S i q ----体内无净电荷 即电荷只能分布在导体表面上 2.有空腔的导体:设空腔导体带电荷Q 空腔内没有电荷时:导体内部和空腔内表面上都没有净电荷存在,电荷只分布在导体外表面 证:在导体内作一包围空腔的高斯面 S 导体内0≡E ?=?∴S S d E 0 导体的静电感应过程 静电平衡状态 + + + +

即 0=∑内 S i q ----S 内无净电荷存在 问题:会不会出现空腔内表面分布有等量 异号电荷的情况呢? 空腔内有电荷q 时:空腔内表面感应出等值异号电量-q ,导体外表面的电量为导体原带电量Q 与感应电量q 的代数和 由高斯定理和电荷守恒定律可证 3.静电平衡导体,表面附近场强的大小与 该处表面的电荷面密度成正比 证:过紧靠导体表面的P 点作垂直于导体 表面的小圆柱面,下底△S ’在导体内部 ??S S d E ???=S S d E S E ?=0 εσS ??= εσ= ∴E 4.静电平衡导体,表面曲率越大的地方,电荷面密度越大 以一特例说明: 设有两个相距很远的导体球,半径分别 为R 和r (R >r ),用一导线将两球相连 R Q U R 041πε= R R R 02 44πεσπ= εσR R = r q U r 041 πε=r r r 0244πεσπ= 0εσr r = r R R r =∴ σσ 三.导体静电平衡特性的应用 1.尖端放电 年美富兰克首先发明避雷针 2.静电屏蔽 静电屏蔽:隔绝电的相互作用,使内外互不影响的现象. a.对外电场的屏蔽 ++ ++ +

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

导体和电介质习题

第六章静电场中的导体与电介质 6 -1 将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将() (A)升高(B)降低(C)不会发生变化(D)无法确定

分析与解不带电的导体B相对无穷远处为零电势。由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。 6 -2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。若将导体N的左端接地(如图所示),则() (A)N上的负电荷入地(B)N上的正电荷入地 (C)N上的所有电荷入地(D)N上所有的感应电荷入地

分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d q v E 04,0πε= = (B )d q v d q E 02 04,4πεπε= = (C )0,0==v E (D )R q v d q E 02 04,4πεπε= =

分析与解达到静电平衡时导体内处处各点电场强度为零。点电荷q在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O点的电势等于点电荷q在该处激发的电势。因而正确答案为(A)。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

静电场中的电介质

静电场中的电介质 (一)要求 1、了解电介质极化的微观机制,掌握极化强度矢量的物理意义 2、理解极化电荷的含义,掌握极化电荷、极化电荷面密度与极化强度矢量P 之间的关系 3、掌握有介质时场的讨论方法,会用介质中的高斯定理来计算静电场;明确E 、P 、D 的联系和区别 4、了解静电场的能量及能量密度 5、演示实验:介质对电容器电容的影响 (二)要点 1、电介质的极化 (1)电介质的电结构 (2)电介质的极化 2、极化强度矢量 (1)极化强度矢量 (2)极化电荷 (3)极化电荷体密度与面密度 3、有介质时的静电场方程 (1)电位移矢量

(2)介质中的高斯定理 (3)介质中的电场方程 *4、静电场的边值关系 5、静电场的能量和能量密度 (三)难点 求解介质中静电场的具体问题,如极化电荷的分布,介质中电场的分布等 § 3-1电介质的极化 一、介质中的电场强度 实验表明,电容器中填充介质后电容增大,增大程度由填充介质的相对介电常数£决定。由于引入外电场后,电介质表面出现电荷,产生附加电场比方向与外电场方向相反,削 弱了电介质内部的外电场,这样

f f f 4 E=E^ + E f 但 E t丰E‘,辰工On 二、电介质的极化 在外电场作用下电介质表面出现电荷的现象叫做电介质的极化,在表面出现的这种电荷叫极化电荷(束缚电荷)。 由于极化电荷比自由电荷少得多,极化电场比感应电场也小得多,因此介质内部合场强不为零但要注意极化电荷与自由电荷、极化电场与感应电场的区别。 §3-2极化强度矢量 一、极化的微观机制1无极分子的位移极化 在外电场作用下,无极分子正负电荷“中心”发生相对位移而出现极化电荷的现象,称为位移极化。 2、有极分子的取向极化 在外电场作用下,有极分子的电偶极矩受到电场的力矩而转向外电

大学物理练习题 静电场中的电介质

练习八 静电场中的电介质 一、选择题 1. 极化强度P v 是量度介质极化程度的物理量,有一关系式为()E P v v 1r 0?=εε,电位移矢量公 式为P E D v v v +=0ε,则 (A ) 二公式适用于任何介质。 (B ) 二公式只适用于各向同性电介质。 (C ) 二公式只适用于各向同性且均匀的电介质。 (D ) 前者适用于各向同性电介质,后者适用于任何电介质。 2. 电极化强度P v (A ) 只与外电场有关。 (B ) 只与极化电荷产生的电场有关。 (C ) 与外场和极化电荷产生的电场都有关。 (D ) 只与介质本身的性质有关系,与电场无关。 3. 真空中有一半径为R ,带电量为Q 的导体球,测得距中心O 为r 处的A 点场强为() 30π4r r Q E A εv v =,现以A 为中心,再放上一个半径为ρ,相对电容率为ε r 的介质球,如图所示,此时下列各公式中正确的是 (A ) A 点的电场强度r εA A E E v v =′。 (B ) ∫∫=?S Q S D v v d 。 (C ) ∫∫?S S E v v d =Q /ε0。 (D ) 导体球面上的电荷面密度σ = Q /(4πR 2)。 4. 在一点电荷产生的静电场中,一块电介质如图放置,以点电荷所 在处为球心作一球形闭合面,则对此球形闭合面: 电介质 (A ) 高斯定理成立,且可用它求出闭合面上各点的场强。 (B ) 高斯定理成立,但不能用它求出闭合面上各点的场强。 (C ) 由于电介质不对称分布,高斯定理不成立。 (D ) 即使电介质对称分布,高斯定理也不成立。 5. 关于高斯定理,下列说法中哪一个是正确的? (A ) 高斯面内不包围自由电荷,则面上各点电位移矢量D r 为零。 (B ) 高斯面上处处D r 为零,则面内必不存在自由电荷。 (C ) 高斯面的D r 通量仅与面内自由电荷有关。 (D ) 以上说法都不正确。 6. 关于静电场中的电位移线,下列说法中,哪一种是正确的? (A ) 起自正电荷,止于负电荷,不形成闭合线,不中断。 (B ) 任何两条电位移线互相平行。 (C ) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交。 (D ) 电位移线只出现在有电介质的空间。 7. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为: (A ) ε0E 。 (B ) ε0εr E 。 (C ) εr E 。 (D ) (ε0εr ?ε0)E 。

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球 A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有 ∑=0q 而导体的电势V ≠0。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答:必须注意以下两点: (1)这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6为什么不能使一个物体无限制地带电? 答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q′。其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与

第三章静电场中的电介质

第 三 章 静电场中的电介质(6学时) 一、目的要求 1.掌握电介质极化机制,熟悉极化强度、极化率、介电常数等概念。 2.会求解极化强度和介质中的电场。 3.掌握有介质时的场方程。 4.理解电场能量、能量密度概念,会求电场的能量 。 二、教学内容与学时分配 1.电介质与偶极子( 1学时) 2.电介质的极化(1学时) 3.极化电荷(1学时) 4.有电介质时的高斯定理(1学时) 5.有介质的场方程(1学时) 6.电场的能量(1学时) 三、本章思路 本章主要研究电介质在静电场中的特性,其基本思路是:电介质与偶极子→电介质的极化→电介质的极化规律 →有介质的静电场方程 →静电场的能量。 四、重点难点 重点:有介质的静电场方程 难点:电介质的极化规律。 五、讲授要点 §3.1 电介质与偶极子 一、教学内容 1.电介质概述 2.电介质与偶极子 3.偶极子在外电场中受到的力矩 4.偶极子激发的静电场 二、教学方式、 讲授 三、讲课提纲 1.电介质概述 电介质是绝缘材料,如橡胶、云母、玻璃、陶瓷等。 特点:分子中正负电荷结合紧密,处于束缚状态,几乎没有自由电荷。 当导体引入静电场中时,导体对静电场有很大的影响,因静电感应而出现的感应电荷 产生的静电场在导体内部将原场处处抵消,其体内00='+=E E E ,且表现出许多特性,如导体是等势体、表面是等分为面、电荷只能分布在表面等;如果将电介质引入电场中情况又如何呢?实验表明,电介质对电场也有影响,但不及导体的影响大。它不能将介质内

部的原场处处抵消,而只能削弱。介质内的电场00≠'+=E E E 。 2.电介质与偶极子 (1)电介质的电结构 电介质原子的最外层电子不像金属导体外层电子那样自由,而是被束缚在原子分子上,处于事缚状态。一般中性分子的正负电荷不止一个,且不集中于一点,但它们对远处一点的影响可以等效为一个点电荷的影响,这个等效点电荷的位置叫做电荷“重心”。分子中电荷在远处一点激发的场近似等于全部正负电荷分别集中于各自的“重心”时激发的场,正负电荷“重心”重合在一起的称无极分子,如 H ,N ,CO 等。正负电荷“重心”不重合在一起的称有极分子,像SO ,H O,NH 等。这样一个分子等效为一个偶极子。 (2)偶极子 两个相距很近,带等量异号电量的电荷系统叫做偶极子 ①偶极子在外场中受到的力矩 均匀外场中,0=∑F 但受到一个力矩:θθθsin sin *2*sin *2*qLE L F L F T =+= 定义:L q P = 称为偶极子的偶极矩,上式可写为: E P T ?= 满足右手螺旋关系 Q 、L 可以不同。但只要其乘积qL 相同,力矩便相同。此力矩总是企图使偶极距转到 外电场的方向上去; 非均匀外场中,0≠∑F ∑≠0T 如摩擦事的笔头吸引纸屑,其实质就是纸屑在笔头电荷的非均匀电场中被极化,等效为偶极子,偶极子受到非均匀电场的作用力(指向场强增大的方向)而向笔头运动。 ②偶极子的场 中垂面上一点的场强:场点到的距离相等,产生的场强大小相等为: 但它们沿垂线方向分量互相抵消,在平行于连线方向分量 相等,故有: 延长线上一点的场强 向右,向左,故总场强大小为 偶极子在空间任一点的场强 4 412 20l r q E E + = =-+πε2322 )4(41 2l r ql COS E E πεθ+==+⊥20)2(41l r q E -= +πεE =-3 02220220//42]) 4 (241 )2(1 )2(1 [4r P l r qlr l r l r q E E E πεπεπε≈-=+--=-=-+ 图3-3 图3-4 +q -q 图3-1 图 3-2

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。试求: (1) 球壳内外表面上的电荷; (2) 球心O 点处,由球壳内表面上电荷产生的电势; (3) 球心O 点处的总电势。 习题10-1图 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。 (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 0d 4q q U a πε-= ?a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= 04q r πε= 04q a πε- 04Q q b πε++ 01114()q r a b πε=-+04Q b πε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。试求: (1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。 习题10-2图 解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为 . 在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理, ()22 0cos 024P q E r b θσ επε⊥= +=+ ∴ () 2 /32 22/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ( ) 32 2 2d d d //Q S qbr r r b σ==-+ q Q a b O r

第十章 静电场中的电介质

第九章 静电场中的导体 9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为 (A) 3 2r U R . (B) R U 0. (C) 2 0r RU . (D) r U 0 . [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离 板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 2εσ . (C) 0εσh . (D) 0 2εσh . [ A ] 9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定 一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B) d q 04επ. (C) R q 04επ-. (D) )1 1(4 R d q -πε. [ D ] 9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此 点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变. (D) 球壳内、外场强分布均改变. [ B ] 9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:

(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀. (D) 内表面不均匀,外表面也不均匀. [ B ] 9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. [ D ] 9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势. 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q . (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 a dq U q 04επ= ?-a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ= a q 04επ- b q Q 04επ++ )111(40b a r q +-π=εb Q 04επ+ 9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布. (2) 面上感生电荷的总电荷.

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电 场中的导体和电介质课后习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球 上电荷分布的影响。试证明:R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+= =??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π41 00εε+ ? 03π4π400=+'=R q R q εε

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

大学物理课后答案第七章静电场中的导体和电介质(精)

习题7 27-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与 C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少? 解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ 2 题7-2图 (1)∵ UAC=UAB,即 ∴ EACdAC=EABdAB ∴ σ1EACdAB===2 σ2EABdAC qA S且σ1+σ2= 得σ2=qA2q, σ1=A 3S3S 而 qC=-σ1S=-2qA=-2?10-7C 3 qB=-σ2S=-1?10-7C (2) UA=EACdAC= σ1dAC=2.3?103V ε0 7-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势

题7-3图 U=?∞ R2 ∞E?dr=?qdrq= R24πεr24πε0R0 (2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生: U=q 4πε0R2-q4πε0R2=0 (3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且 UA=q' 4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2 得 q'= 外球壳上电势 R1q R2 -q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+ 7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势U O=0 7-4图

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

相关文档
最新文档