和绝对值有关的问题

和绝对值有关的问题
和绝对值有关的问题

和绝对值有关的问题

一、知识结构框图:

二、绝对值的意义:

(1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。

(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;

③零的绝对值是零。

也可以写成:

()

()

() ||0

a a

a a

a a

?

??

=?

?

-

??

当为正数

当为0

当为负数

说明:(Ⅰ)|a|≥0即|a|是一个非负数;

(Ⅱ)|a|概念中蕴含分类讨论思想。

三、典型例题

例1.(数形结合思想)已知a、b、c在数轴上位置如图:

则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A )

A.-3a B. 2c-a C.2a-2b D. b

解:| a | + | a+b | + | c-a | - | b-c

|=-a-(a+b)+(c-a)+b-c=-3a

分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。

脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。

例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++

的值( C )

A .是正数

B .是负数

C .是零

D .不能确定符号

解:由题意,x 、y 、z 在数轴上的位置如图所示:

所以

分析:数与代数这一领域中数形结合的重要载体是数轴。这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。

例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?

分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。

解:设甲数为x ,乙数为y 由题意得:y x 3=,

(1)数轴上表示这两数的点位于原点两侧:

若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6 若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6

(2)数轴上表示这两数的点位于原点同侧:

若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12

若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12

例4.(整体的思想)方程20152015x x -=- 的解的个数是( D )

A .1个

B .2个

C .3个

D .无穷多个

分析:这道题我们用整体的思想解决。将x-2015看成一个整体,问题即转化为求方程a a -=的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的相反数,所以零和任意负数都是方程的解,即本题的答案为D 。

例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.

0)()(=--+-+=--+++y x z y z x y x z y z x

1)

1(+=--x x ()()()()()()

1111112220142015ab a b a b a b ++++++++++L 分析:利用绝对值的非负性,我们可以得到:|a b -2|=|a -1|=0,解得:a=1,b=2 于是()()()()()()

1111112220142015ab a b a b a b ++++++++++L 11112233420152017

11111112233420152017112017

20162017=

++++???=+-+-++-=-=K K 在上述分数连加求和的过程中,我们采用了裂项的方法,巧妙得出了最终的结果.同学们可以再深入思考,有兴趣的同学可以在课下继续探究。

例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.

并回答下列各题:

(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:____相

等 .

(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距

可以表示为 .

分析:点B 表示的数为―1,所以我们可以在数轴上找到点B 所在的位置。那么

点A 呢?因为x 可以表示任意有理数,所以点A 可以位于数轴上的任意位置。那么,如何求出A 与B 两点间的距离呢?

结合数轴,我们发现应分以下三种情况进行讨论。

当x<-1时,距离为-x-1, 当-10,距离为x+1

综上,我们得到A 与B 两点间的距离可以表示为1+x

(3)结合数轴求得23x x -++的最小值为 5 ,取得最小值时x 的取值范围为 -3≤x_≤2______.

分析:2-x 即x 与2的差的绝对值,它可以表示数轴上x 与2之间的距离。

)3(3--=+x x 即x 与-3的差的绝对值,

它也可以表示数轴上x 与-3之

间的距离。

如图,x 在数轴上的位置有三种可能:

图1 图2 图3

图2符合题意

(4) 满足341>+++x x 的x 的取值范围为 x<-4或x>-1

分析: 同理1+x 表示数轴上x 与-1之间的距离,4+x 表示数轴上x 与-4

之间的距离。本题即求,当x 是什么数时x 与-1之间的距离加上x 与-4之间的距离会大于3。借助数轴,我们可以得到正确答案:x<-4或x>-1。 说明:借助数轴可以使有关绝对值的问题转化为数轴上有关距离的问题,反之,有关数轴上的距离问题也可以转化为绝对值问题。这种相互转化在解决某些问题时可以带来方便。事实上,B A - 表示的几何意义就是在数轴上表示数A 与数B 的点之间的距离。这是一个很有用的结论,我们正是利用这一结论并结合数轴的知识解决了(3)、(4)这两道难题。

四、 小结

1.理解绝对值的代数意义和几何意义以及绝对值的非负性

2.体会数形结合、分类讨论等重要的数学思想在解题中的应用

2019-2020年七年级上册和绝对值有关的问题典型例题(含答案)

2019-2020年七年级上册和绝对值有关的问题典型例题(含答案) 一、知识结构框图: 数 二、绝对值的意义: (1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。 (2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数; ③零的绝对值是零。 也可以写成: () () () ||0 a a a a a a ? ?? =? ? - ?? 当为正数 当为0 当为负数 说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。 三、典型例题 例1.(数形结合思想)已知a、b、c在数轴上位置如图: 则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A ) A.-3a B. 2c-a C.2a-2b D. b 解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a 分析: 解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。脱去绝对值

的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。 例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++ 的值( C ) A .是正数 B .是负数 C .是零 D .不能确定符号 解:由题意,x 、y 、z 在数轴上的位置如图所示: 所以 分析:数与代数这一领域中数形结合的重要载体是数轴。这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。 例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢? 分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。 解:设甲数为x ,乙数为y 由题意得:y x 3=, (1)数轴上表示这两数的点位于原点两侧: 若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6 若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6 (2)数轴上表示这两数的点位于原点同侧: 若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12 若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12 0 )()(=--+-+=--+++y x z y z x y x z y z x

绝对值问题的求解方法

绝对值问题的求解方法 一、定义法 例1 若方程只有负数解,则实数a的取值范围是:_________。 分析与解因为方程只有负数解,故,原方程可化为: , ∴, 即 说明绝对值的意义有两点。其一,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零;其二,在数轴上表示一个点到原点的距离。利用绝对值的定义常可达到去掉绝对值符号的目的。 二、利用非负性 例2 方程的图象是() (A)三条直线: (B)两条直线: (C)一点和一条直线:(0,0), (D)两个点:(0,1),(-1,0)

分析与解由已知,根据非负数的性质,得 即或 解之得:或 故原方程的图象为两个点(0,1),(-1,0)。 说明利用非负数的性质,可以将绝对值符号去掉,从而将问题转化为其它的问题来解决。 三、公式法 例3 已知,求的值。 分析与解, ∴原式 说明本题根据公式,将原式化为含有的式子,再根据绝对值的定义求值。 四、分类讨论法 例4 实数a满足且,那么

分析与解由可得 且。 当时, ; 当时, 说明有的题目中,含绝对值的代数式不能直接确定其符号,这就要求分情况对字母涉及的可能取值进行讨论。 五、平方法 例5 设实数a、b满足不等式,则 (A)且 (B)且 (C)且 (D)且 分析与解由于a、b满足题设的不等式,则有 ,

整理得 , 由此可知,从而 上式仅当时成立, ∴,即且, 选B。 说明运用此法是先对不等式进行平方去掉绝对值,然后求解。 六、图示法 例6 在式子中,由不同的x值代入,得到对应的值。在这些对应值中,最小的值是() (A)1 (B)2 (C)3 (D)4 分析与解问题可变化为:在数轴上有四点A、B、C、D,其对应的值分别是-1、-2,-3、-4,求一点P,使最小(如图)。 由于是当P点在线段AD上取得最小值3,是当P在线段BC上取得最小值1,故的最小值是4。选D。 说明由于借助图形,巧妙地把问题在图形中表示出来,形象直观,便于思考,从而达到快捷解题之目的。

第一讲 和绝对值有关的问题(部分含答案)

第一讲和绝对值有关的问题 一、知识结构框图: 数 二、绝对值的意义: (1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。 (2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数; ③零的绝对值是零。 也可以写成: () () () ||0 a a a a a a ? ?? =? ? - ?? 当为正数 当为0 当为负数 说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。 三、典型例题 例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式| a | + | a+b | + | c-a | - | b-c | 的值等于( A )A.-3a B. 2c-a C.2a-2b D. b 解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a

分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。 例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++ 的值( C ) A .是正数 B .是负数 C .是零 D .不能确定符号 解:由题意,x 、y 、z 在数轴上的位置如图所示: 所以 分析:数与代数这一领域中数形结合的重要载体是数轴。这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。 例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢? 分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。 解:设甲数为x ,乙数为y 由题意得:y x 3=, (1)数轴上表示这两数的点位于原点两侧: 若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6 若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6 (2)数轴上表示这两数的点位于原点同侧: 若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12 若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12 例4.(整体的思想)方程x x -=-20082008 的解的个数是( D ) A .1个 B .2个 C .3个 D .无穷多个 分析:这道题我们用整体的思想解决。将x-2008看成一个整体,问题即转化为求方程a a -=的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的相反数,所以零和任意负数都是方程的解,即本题的答案为D 。 0)()(=--+-+=--+++y x z y z x y x z y z x

初一数学绝对值难题解析

初一数学绝对值难题解析 绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。 绝对值有两个意义: (1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。 即|a|=a(当a≥0), |a|=-a (当a<0) (2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|; 思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况) (2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。 (3)零点分段法:求零点、分段、区段内化简、综合。 例题解析: 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子: (1)|a-b|-|c-b| 解:∵a<0,b>0 ∴a-b<0 c<0,b>0 ∴c-b<0 故,原式=(b-a)-(b-c) =c-a (2)|a-c|-|a+c| 解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0 当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a 当a-c<0时,a<c,原式=(c-a)+(a+c)=2c 2、设x<-1,化简2-|2-|x-2|| 。 解:∵x<-1 ∴x-2<0 原式=2-|2-(2-x)|=2-|x|=2+x 3、设3<a<4,化简|a-3|+|a-6| 。 解:∵3<a<4 ∴a-3>0,a-6<0 原式=(a-3)-(a-6) =3 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的? 答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b, 解得b=0,这时a≥0;

和绝对值有关的问题

和绝对值有关的问题 一、知识结构框图: 数 二、绝对值的意义: (1)几何意义:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。 (2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数; ③零的绝对值是零。 也可以写成: () () () ||0 a a a a a a ? ?? =? ? - ?? 当为正数 当为0 当为负数 说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。 三、典型例题 例1.(数形结合思想)已知a、b、c在数轴上位置如图: 则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A ) A.-3a B. 2c-a C.2a-2b D. b 解:| a | + | a+b | + | c-a | - | b-c |=-a-(a+b)+(c-a)+b-c=-3a 分析:解绝对值的问题时,往往需要脱去绝对值符号,化成一般的有理数计算。

脱去绝对值的符号时,必须先确定绝对值符号内各个数的正负性,再根据绝对值的代数意义脱去绝对值符号。这道例题运用了数形结合的数学思想,由a 、b 、c 在数轴上的对应位置判断绝对值符号内数的符号,从而去掉绝对值符号,完成化简。 例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++ 的值( C ) A .是正数 B .是负数 C .是零 D .不能确定符号 解:由题意,x 、y 、z 在数轴上的位置如图所示: 所以 分析:数与代数这一领域中数形结合的重要载体是数轴。这道例题中三个看似复杂的不等关系借助数轴直观、轻松的找到了x 、y 、z 三个数的大小关系,为我们顺利化简铺平了道路。虽然例题中没有给出数轴,但我们应该有数形结合解决问题的意识。 例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢? 分析:从题目中寻找关键的解题信息,“数轴上表示这两数的点位于原点的两侧”意味着甲乙两数符号相反,即一正一负。那么究竟谁是正数谁是负数,我们应该用分类讨论的数学思想解决这一问题。 解:设甲数为x ,乙数为y 由题意得:y x 3=, (1)数轴上表示这两数的点位于原点两侧: 若x 在原点左侧,y 在原点右侧,即 x<0,y>0,则 4y=8 ,所以y=2 ,x= -6 若x 在原点右侧,y 在原点左侧,即 x>0,y<0,则 -4y=8 ,所以y=-2,x=6 (2)数轴上表示这两数的点位于原点同侧: 若x 、y 在原点左侧,即 x<0,y<0,则 -2y=8 ,所以y=-4,x=-12 若x 、y 在原点右侧,即 x>0,y>0,则 2y=8 ,所以y=4,x=12 例4.(整体的思想)方程20152015x x -=- 的解的个数是( D ) A .1个 B .2个 C .3个 D .无穷多个 分析:这道题我们用整体的思想解决。将x-2015看成一个整体,问题即转化为求方程a a -=的解,利用绝对值的代数意义我们不难得到,负数和零的绝对值等于它的相反数,所以零和任意负数都是方程的解,即本题的答案为D 。 例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值. 0)()(=--+-+=--+++y x z y z x y x z y z x

专题-含有绝对值图像及综合问题

关于绝对值的图像 法一:图像变换;法二:分类讨论改写成分段函数 一关于max 与min 1 (2008江西理科)函数y =tan x +sin x -|tan x -sin x |在区间( 2 ,2)内的图象大致是 A B C D 二转化分段函数 1 作出函数y =x |2-x |的图像 2 函数的大致图像为() . 3 函数()f x cos x tan x =?在区间322,ππ?? ??? 上的图像为() 2|log | 1 ()2 x f x x x =- -

三相关应用 1 求函数()2 21y x x x R =+--∈的最小值 答案:最小值是 34 2 已知函数()()(),2 210f x x a g x x ax a =-=++>且函数()f x 与()g x 的图像与y 轴交于同一点。 (1)求a 的值; (2)求函数()()f x g x +的单调增区间。 答案:(1)a=1;(2),1 2??-+∞???? 3 已知函数()()2232log ,log f x x g x x =-= (1) 如果[]1,4x ∈,求函数()()() ()1h x f x g x =+的值域; (2) 求函数()()()()() 2 f x g x f x g x m x +--= 的最大值; 答案:(1)换元法。(2)()()()()()()()22,log ,02 32log ,2,g x f x g x x x m x x x f x f x g x ≥?<≤??==??->时()1m x <,所以()max 1m x = 此时 2 x =。 4

初中数学绝对值专项练习题有问题详解

标准、据探测,月球表面白天垂直照射的地方温度高达127℃,而夜晚温度可降低到1 ℃℃.根据以上数据推算,在月球上昼夜温差有零下183,则此时甲、乙,乙走了—32m、甲、乙两人在一条笔直的公路上,同时从2A地出发,记向右为正,甲走了+48m m 之间的距离是 (填“>”、“<”或“=”)3 、比较大小:--3的非负整数是4、大于-2而小于集合.、从正有理数集合中去掉正分数集合,得到53,4,5,6.根据图,6、一个体的每个面分别标有数字12,?中该体三种状态所显示的数据,可推出“?”处的数字是多少? 7、绝对值不小于3又不大于5的所有整数之和为__________ 8、写出一个值,使你写出的值为 . 9、在数轴上到-2所表示的点的距离为3个单位长度的点表示的数是 . 10、如果m>0,n<0,m<|n|,那么m、n、﹣m、﹣n的大小关系是. 11、下表是我市某一天在不同时段测得的气温情况:则这一天气温的极差是℃. 文案. 标准时间0:00 4:00 8:00 12:00 16:00 20:00 18℃17气温℃19℃26℃27℃22℃ ABCABACBC中点间距离是.中点与两点之间的距离是5 cm,是线段上的任意一点,

则12、已知,13、绝对值大于2,且小于4的整数有_______. abab= ,则│—+5│=014、若│+—4│ 。的两点之间的距离是__________15、数轴上表示数和表示二、简答题 元买了礼物去看爷爷,母亲节时他又取元,存入银行.十一放假取出35080016、某同学春节期间将自己的压岁钱) 元给妈妈买了礼物,则存上存入、支出情况显示为( 出100+100 ,+800,+350100 .+800,+350,﹣B.A +100 350,.﹣,﹣100 D800,﹣,﹣C.+800350分别填入六个形,使得按虚线折成体后,相对,2710,7,,-2,-1017、右面是一个体纸盒的展开图,请把-) 分面上的两数互为相反数。(4 文案. 标准6分)18、根据下面给出的数轴,解答下面的问题:(本题 B;:两点的位置,分别写出它们所表示的有理数A:、⑴请你根据图中AB观察数轴,与点A 的距离为4的点表示的数是:;⑵ ⑶若将数轴折叠,使得A点与-3表示的点重合,则B点与数表示的点重合; ⑷若数轴上M、N两点之间的距离为2014(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N 两点表示的数分别是:M: N: . 19、数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8 (1). 计算以下各点之间的距离:

七年级动点问题与绝对值有关的综合运用

图 1图 2 与绝对值有关的综合应用 【课前导读——知识要点】 一、数轴与运动:起点、方向、运动量?终点 1.如图1,点A 对应的数为a ,若点A 向右运动m 单位到达点B,则点B 对应的数为a m +; 2.如图2,点A 对应的数为a ,若点A 向左运动m 单位到达点B,则点B 对应的数为a m -; 注意:右加左减; 二、数轴上两点间的距离:求距离,大减小 如图,A 点对应的数为a ,B 点对应的数为b ,则线段AB 的长度为b a -; 三、数轴两点对应线段的中点:求中点,平均数 如图,A 点对应的数为a ,B 点对应的数为b ,则线段AB 的中点M 对应的数为 2 a b +; 解:设M 点对应的数为x (如图). 则有:MA= ,BM= , ∵M 为线段AB 的中点,∴MA=BM,∴ , ∴x = ,即点M 对应的数为 . (a 、b 的平均数) 四、利用绝对值性质解绝对值方程: 1.若x a =(0a ≥),则x a =±?若()f x a =(0a ≥),则()f x a =±; 2.若a b =,则a b =或0a b +=?若()()f x g x =,则()()f x g x =或()()f x g x =; 3.若()()f x g x =,则()()f x g x =或()()f x g x =,但需要检验()0g x ≥; 4.若()()f x g x a ±=,零点分段讨论法分别去掉两个绝对值符号; 【新知讲授】 例一、已知数轴上A、B 两点对应的数分别为-2和4,P 点为数轴上的一点,若P 点到A 点的距离是P 点到 B 点距离的2倍,求P 点对应的数. x

初一数学绝对值难题解析

初一数学绝对值难题解析 令狐采学 绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。 绝对值有两个意义: (1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。 即|a|=a(当a≥0), |a|=-a (当a<0) (2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a- b|≤|a|+|b|; 思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况) (2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。

(3)零点分段法:求零点、分段、区段内化简、综合。 例题解析: 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用1、在数轴上表示a、b两个数的点如图所示,并且已知表示c 的点在原点左侧,请化简下列式子: (1)|a-b|-|c-b| 解:∵a<0,b>0 ∴a-b<0 c<0,b>0 ∴c-b<0 故,原式=(b-a)-(b-c) =c-a (2)|a-c|-|a+c| 解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0 当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a 当a-c<0时,a<c,原式=(c-a)+(a+c)=2c 2、设x<-1,化简2-|2-|x-2|| 。 解:∵x<-1 ∴x-2<0 原式=2-|2-(2-x)|=2-|x|=2+x 3、设3<a<4,化简|a-3|+|a-6| 。 解:∵3<a<4 ∴a-3>0,a-6<0 原式=(a-3)-(a-6) =3 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的?

绝对值问题的解法

绝对值问题的解法 绝对值是初中代数中的重点内容,也是复习的难点,深刻的理解绝对值的概念,牢固地掌握绝对值的性质,是解决绝对值问题的关键,现将绝对值有关性质总结如下: ⑴若a>0,则∣a∣=a; 若 a=0, 则∣a∣=a, 若 a<0, 则∣a∣= - a。 ⑵∣a∣≧0,即绝对值的非负性。 ⑶∣a∣+∣b∣=0,则a=0,b=0。 ⑷∣a∣=m,则a=m或a=-m。 下面举例说明绝对值问题的解法。 一、运用绝对值概念: 例1、若x<-2,则y=∣1-∣x+1∣∣等于()。 (A)2+x (B) -2-x (C) x (D) –x 解:∵x<-2, ∴1+x<0 ∴∣1+x∣=(1+x)=-1-x 于是y=∣1-(-1-x)∣=∣2+x∣ 又∵2+x<0,∴y=-(2+x)=-2-x,故选( B )。 二、平方法: 例2、已知实数 a满足∣1-a∣=1+∣a∣, = 。 解:原式两边平方得: 1-2a+ a 2 =1+2∣a∣+ a 2 ∵∣a∣=-a,即a≤0 ∴∣a-1∣=1-a 三、分类讨论法: 例3、若ab>0,则∣a∣/a+ ∣b∣/b- ∣ab∣∕ab的值等于。 解:∵ab>0,∴a、b同号。 ⑴若a、b同正,则∣a∣=a,∣b∣=b,∣ab∣=ab ∴∣a∣/a+ ∣b∣/ b-∣ab∣/ab=1+1-1=1。 ⑵若a、b同负,则∣a∣=-a,∣b∣=-b,∣ab∣=ab,∴∣a∣/a+∣b∣/b-∣ab∣/ ab=-1-1-1=-3。 综上所述,本题答案为1或-3。 四、应用非负数性质: 例4、若∣x-y+2∣与∣x+y-1∣=0 ∵ x+y-1=0

和绝对值相关的函数问题

和绝对值相关的函数问题 一、热点追踪 例1.(1)函数()||x f x e x a =-在(1,2)-上单调递增,则实数a 的取值范围是 . (2)已知函数()||ln f x x x a x =--,求函数)(x f y =的单调区间. 例2(1)已知函数||)(a x x x f -=在[0,2]上的值域为[0,4],则实数a 的取值范围是 . (2)已知函数|1||2|)(++-=x a x x f ,若)(x f 的最小值为1,则实数a 的值是 . 串讲: 1.已知函数||)(2a x x x f -=,存在]2,1[∈x ,使得2)(,求函数()f x 的最小值.

变式:求函数2()2([0,1],)f x x x a x a R =+-∈∈的最小值. 例3已知函数x a x x x f 2||)(+-=.若存在]4,4[-∈a ,使得关于x 的方程)()(a tf x f =有三个不相等的实数根,则实数t 的取值范围是 . 串讲: 函数2()3,f x x x =+若方程()10f x a x --=恰有4个互异的实数根,则实数a 的取值范围为_________ 拓展: 1.已知函数f (x )=???ax -1, x ≤0,x 3-ax +|x -2|,x >0 的图象恰好经过三个象限,则实数a 的取值范围是_______. 2.若函数0,),,(|2|)(>?∈--=b a R b a b ax x x f ,总存在]2,1[0∈x ,使得m x f ≥)(0,则实数m 的取值范围是 .

2016上海初一数学绝对值难题解析

2016上海初一数学绝对值难题解析 绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。 绝对值有两个意义: (1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。 即|a|=a(当a≥0), |a|=-a (当a<0) (2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|; 思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况) (2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。 (3)零点分段法:求零点、分段、区段内化简、综合。 例题解析: 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子: (1)|a-b|-|c-b| 解:∵a<0,b>0 ∴a-b<0 c<0,b>0 ∴c-b<0 故,原式=(b-a)-(b-c) =c-a (2)|a-c|-|a+c| 解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0 当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a 当a-c<0时,a<c,原式=(c-a)+(a+c)=2c 2、设x<-1,化简2-|2-|x-2|| 。 解:∵x<-1 ∴x-2<0 原式=2-|2-(2-x)|=2-|x|=2+x 3、设3<a<4,化简|a-3|+|a-6| 。 解:∵3<a<4 ∴a-3>0,a-6<0 原式=(a-3)-(a-6) =3 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的? 答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b, 解得b=0,这时a≥0;

绝对值的最值问题

【例题1】:求|x+11|+|x-12|+|x+13|的最小值,并求出此时x的值? 分析:先回顾化简代数式|x+11|+|x-12|+|x+13|的过程 可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值) 1)当x<-13时,x+11<0,x-12<0,x+13<0,则|x+11|+|x-12|+|x+13|=-x-11-x+12-x-13=-3x-12 2)当x=-13时,x+11=-2,x-12=-25,x+13=0,则|x+11|+|x-12|+|x+13|=2+25+13=40 3)当-130,则|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14 4)当x=-11时,x+11=0,x-12=-23,x+13=2,则|x+11|+|x-12|+|x+13|=0+23+2=25 5)当-110,x-12<0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36 6)当x=12时,,x+11=23,x-12=0,x+13=25,则|x+11|+|x-12|+|x+13|=23+0+25=48 7)当x>12时,x+11>0,x-12>0,x+13>0,则|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12 可知:当x<-13时,|x+11|+|x-12|+|x+13|=-3x-12>27 当x=-13时,|x+11|+|x-12|+|x+13|=40 当-1312时, |x+11|+|x-12|+|x+13|=3x+12>48 观察发现代数式|x+11|+|x-12|+|x+13|的最小值是25,此时x=-11 解:可令x+11=0,x-12=0,x+13=0 得x=-11,x=12,x=-13(-13,-11,12是本题零点值)将-11,12,-13从小到大排列为-13<-11<12 可知-11处于-13和12之间,所以当x=-11时,|x+11|+|x-12|+|x+13|有最小值是25 例题4:求代数式|x-1|+|x-2|+|x-3|+|x-4|的最小值 分析:回顾化简过程如下 令x-1=0,x-2=0,x-3=0,x-4=0 则零点值为x=1 , x=2 ,x=3 ,x=4 (1)当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10 (2)当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8 (3)当2≤x<3时,|x-1|+|x-2|+|x-3|+|x-4|=4 (4)当3≤x<4时,|x-1|+|x-2|+|x-3|+|x-4|=2x-2 (5)当x≥4时,|x-1|+|x-2|+|x-3|+|x-4|=4x-10 根据x的范围判断出相应代数式的范围,在取所有范围中最小的值,即可求出对应的x的范围或者取值 解:根据绝对值的化简过程可以得出 当x<1时,|x-1|+|x-2|+|x-3|+|x-4|=-4x+10 >6 当1≤x<2时,|x-1|+|x-2|+|x-3|+|x-4|=-2x+8 4<2x+8≤6 当2≤x<3时,|x-1|+|x-2|+|x-3|+|x-4|=4

关于某绝对值函数的问题解决精华(含问题详解)

. 下载可编辑 . 关于绝对值函数的问题解决 有一道某地高三模拟考试题,涉及到绝对值函数,用来说明数学中的分类讨论思想非常有代表性。 试题 已知函数1)(2 -=x x f ,|1|)(-=x a x g . (1) 若关于x 的方程)(|)(|x g x f =只有一个实数解,数a 的取值围; (2) 若当R x ∈时,不等式)()(x g x f ≥恒函数成立,数a 的取值围; (3) 求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果......,不需给出演..... 算步骤... ). 解答 (1)方程|()|()f x g x =,即2|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的解或无解 ,结合图形得0a < . (2)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立, ①当1x =时,(*)显然成立,此时a ∈R ;

. 下载可编辑 . ②当1x ≠时,(*)可变形为21|1| x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ?+>?-==?-+<-? 因为当1x >时,()2x ?>,当1x <时,()2x ?>-, 所以()2x ?>-,故此时2a -≤. 综合①②,得所数a 的取值围是2a -≤. (3)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2221,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ?+--?--++->即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增, 且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +. ② 当01,22 a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++, 经比较,知此时()h x 在[2,2]-上的最大值为33a +. ③ 当10,02 a a -<<即-2≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++, 经比较,知此时()h x 在[2,2]-上的最大值为3a +. ④ 当3 1,222a a -<-<-即-3≤≤时,结合图形可知()h x 在[2,]2a -,[1,]2 a -上递减,

上海初一数学绝对值难题解析

上海初一数学绝对值难题 解析 Revised final draft November 26, 2020

2016上海初一数学绝对值难题解析 灵活应用绝对值的基本性质: (1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在什么条件下成立? |a-b|=|a|-|b|,在什么条件下成立? 常用解题方法: (1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。 (3)零点分段法:求零点、分段、区段内化简、综合。 第一类:考察对绝对值代数意义的理解和分类讨论思想的运用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左 侧,请化简下列式子: (1)|a-b|-|c-b| (2)|a-c|-|a+c| 2、设x<-1,化简2-|2-|x-2|| 。 3、设3<a<4,化简|a-3|+|a-6| 。 4、已知|a-b|=a+b,则以下说法:(1)a一定不是负数;(2)b可能是负数;哪个是正确的? 第二类:考察对绝对值基本性质的运用 5、已知2011|x-1|+2012|y+1|=0,求x+y+2012的值? 6、设a、b同时满足: (1)|a-2b|+|b-1|=b-1; (2) |a-4|=0;那么ab等于多少? 7、设a、b、c为非零有理数,且|a|+a=0,|ab|=ab,|c|-c=0, 请化简:|b|-|a+b|-|c-b|+|a-c| 。 8、满足|a-b|+ab=1的非负整数(a,b)共有几对?

绝对值的化简问题

绝对值的化简问题 【知识梳理】 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“ ”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? # 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?;a a b b =(0)b ≠; (4)222||||a a a ==; (5)a b a b a b -≤+≤+,

对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; ! 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立. 绝对值几何意义 当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤: 找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离. 【例1】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义 是数轴上表示 的点与 之间的距离;x 0-(>,=,<); — 【例2】 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; 【例3】 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若 31x -=,则x = . 【例4】 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若

绝对值的化简问题

绝对值的化简问题 【知识梳理】 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“ ”,求一个数的绝对值,就是根据性质去 掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?;a a b b =(0)b ≠; (4)222||||a a a ==; (5)a b a b a b -≤+≤+, 对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立;

对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立. 绝对值几何意义 当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤: 找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离. 【例1】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.x 的几何意义 是数轴上表示 的点与 之间的距离;x 0-(>,=,<); 【例2】 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则 21-= ; 【例3】 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若 31x -=,则x = . 【例4】 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若 22x +=,则x = .

关于绝对值函数的问题解决精华(含答案)

1 关于绝对值函数的问题解决 有一道某地高三模拟考试题,涉及到绝对值函数,用来说明数学中的分类讨论思想非常有代表性。 试题 已知函数1)(2 -=x x f ,|1|)(-=x a x g . (1) 若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2) 若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3) 求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果......,不需给出演算...... 步骤.. ). 解答 (1)方程|()|()f x g x =,即2|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1 x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的解或无解 ,结合图形得0a < . (2)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立, ①当1x =时,(*)显然成立,此时a ∈R ;

2 ②当1x ≠时,(*)可变形为21 |1| x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ?+>?-==?-+<-? 因为当1x >时,()2x ?>,当1x <时,()2x ?>-, 所以()2x ?>-,故此时2a -≤. 综合①②,得所求实数a 的取值范围是2a -≤ . (3)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2221,(1), 1,(11),1,(1).x ax a x x ax a x x ax a x ?+--? --++->即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增, 且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +. ② 当01,22 a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++, 经比较,知此时()h x 在[2,2]-上的最大值为33a +. ③ 当10,02 a a -<<即-2≤ ≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++, 经比较,知此时()h x 在[2,2]-上的最大值为3a +. ④ 当3 1,222a a -<-<-即-3≤ ≤时,结合图形可知()h x 在[2,]2a -,[1,]2 a -上递减,

相关文档
最新文档