集成电路输出异常失效分析案例

集成电路输出异常失效分析案例
集成电路输出异常失效分析案例

Ag迁移致集成电路输出异常失效分析

1.案例背景

某功能模块在用户端出现功能失效,经返厂检修,发现该模块上的一片IC输出异常,经更换IC 后,功能模块恢复正常。

2.分析方法简述

对样品进行外观观察,未发现明显异常。

无损检测,未发现明显异常。X-RAY经

内部存在分层现象。扫描发现了ICC-SAM通过

样品C-SAM图片5.NG图

通过IV曲线测试,发现引脚间存在漏电通道。

曲线图6.NG样品IV图

SEM/EDS进行分析,确认了引脚间存在银迁移问题。后,利用DE-CAP

(Wt%)测试结果EDS样品内部NG开封后的1.

表.

3.结论内部存在分层,由于水汽的入侵,加上集成电路各引脚之间存在电位差,导致了引IC IC 输出异常。脚间的银迁移,从而在引脚间形成微导通电路,致

参考标准4.。微电子器件失效分析程序-方法5003GJB 548B-2005

手动微切片法。IPC-TM-650 2.1.1-2004 电子探针和扫描电镜GB/T 17359-2012 X射线能谱定量分析通则。

简介CMA资质认证的第三方检测机构,提供检测服务CNAS美信检测是一家具有和

显微结构分析●表面元素分析形貌观察与测量●●表面异物分析●焊接工艺评定●热学性能测试●力学性能测试●成分分析●

●CT扫描●无损检测●切片分析●阻燃性能测试●油品检测●清洁度测试●可靠性测试●失效分析●配方分析......涂镀层厚度●有毒物质检测●

(完整版)√MOS器件及其集成电路的可靠性与失效分析

MOS 器件及其集成电路的可靠性与失效分析(提要) 作者:Xie M. X. (UESTC ,成都市) 影响MOS 器件及其集成电路可靠性的因素很多,有设计方面的,如材料、器件和工艺等的选取;有工艺方面的,如物理、化学等工艺的不稳定性;也有使用方面的,如电、热、机械等的应力和水汽等的侵入等。 从器件和工艺方面来考虑,影响MOS 集成电路可靠性的主要因素有三个:一是栅极氧化层性能退化;二是热电子效应;三是电极布线的退化。 由于器件和电路存在有一定失效的可能性,所以为了保证器件和电路能够正常工作一定的年限(例如,对于集成电路一般要求在10年以上),在出厂前就需要进行所谓可靠性评估,即事先预测出器件或者IC 的寿命或者失效率。 (1)可靠性评估: 对于各种元器件进行可靠性评估,实际上也就是根据检测到的元器件失效的数据来估算出元器件的有效使用寿命——能够正常工作的平均时间(MTTF ,mean time to failure )的一种处理过程。 因为对于元器件通过可靠性试验而获得的失效数据,往往遵从某种规律的分布,因此根据这些数据,由一定的分布规律出发,即可估算出MTTF 和失效率。 比较符合实际情况、使用最广泛的分布规律有两种,即对数正态分布和Weibull 分布。 ①对数正态分布: 若一个随机变量x 的对数服从正态分布,则该随机变量x 就服从对数正态分布;对数正态分布的概率密度函数为 222/)(ln 21)(σμπσ--?=x e x x f 该分布函数的形式如图1所示。 对数正态分布是对数为正态分布的任 意随机变量的概率分布;如果x 是正态分布 的随机变量,则exp(x)为对数分布;同样, 如果y 是对数正态分布,则log(y)为正态分 布。 ②Weibull 分布: 由于Weibull 分布是根据最弱环节模型 或串联模型得到的,能充分反映材料缺陷和 应力集中源对材料疲劳寿命的影响,而且具 有递增的失效率,所以,将它作为材料或零件的寿命分布模型或给定寿命下的疲劳强 度模型是合适的;而且尤其适用于机电类产品的磨损累计失效的分布形式。由于它可以根据失效概率密度来容易地推断出其分布参数,故被广泛地应用于各种寿命试验的数据处理。与对数正态分布相比,Weibull 分布具有更大的适用性。 Weibull 分布的失效概率密度函数为 m t m t m e t m t f )/()(ηη--?= 图1 对数正态分布

PCB失效分析技术及部分案例

PCB失效分析技术及部分案例 作为各种元器件的载体与电路信号传输的枢纽,PCB已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题。 对于这种失效问题,我们需要用到一些常用的失效分析技术,来使得PCB在制造的时候质量和可靠性水平得到一定的保证,本文总结了十大失效分析技术,供参考借鉴。 1.外观检查 外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB 的失效模式。外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。 2.X射线透视检查 对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X 射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。 3.切片分析 切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB

材料力学案例分析

第三部分工程事故案例分析 一、摘要 2003年11月,某特大桥项目部的混凝土预制件场搬迁,用门式起重机吊装钢底模板,在往5t东风货车上卸载时,由于中心偏移,钢底模板在车厢铁皮板上侧滑,将搬运工甲挤在车厢尾部与挡墙之间,搬用工甲头盖被挤破裂,当场死亡。 二、事故发生经过 2003年11月3日,某特大桥项目部的混凝土预制件场,搬迁工作已处于尾声。该场的工长组织有关人员用门式起重机装车,将制作预制件的钢底模板运走,运输工具是东风牌5t载重汽车,当吊装第二车第一块钢底模板时,所吊的这块钢底模板面积为4 3.8m,重量为1.8t ,一面两角裁切,采用两根吊索对角起吊。本应用4根吊索起吊4个吊点,因为该场处于搬迁阶段且已接近尾声,当时只找到2根吊索,因此钢底模板吊起时,重心有所偏位,钢底模板处于侧斜不平稳状态。当龙门起重机吊起后往东风货车上落钩时,侧斜的钢底模板与车厢底板铁板面先接触。这时吊装指挥(信号工)乙在汽车驾驶室的一侧准备做调整,而搬运工甲则站在车厢尾部稳钩,该场的工长发现甲站位很危险,就喊他快躲开,而甲在没有接到乙发出指挥信号时,就喊落钩,落钩的同时,甲也看到了钢底模板在车厢底板上滑动,便慌忙从车厢尾部往下跳,车厢尾部跟后面的挡墙有1.2m左右距离,挡墙高2.2m距离,这是侧滑的钢底模板正在车厢底板上往挡墙冲过来,甲躲闪不及,头部挤在砖石挡墙上,甲的头盖被挤碎,致使甲当场死亡。 三、选择该事故分析原因 起重事故是指在进行各种起重作业中发生的重物坠落、夹挤、物体打击、起重机倾翻、触电等事故。其中伤害事故可造成重大的人员伤亡或财产损失。根据不完全统计,在事故多发的特殊工种作业中,起重作业事故的起数高,事故后果严重,重伤死亡人数比例大,已引起有关方面的高度重视。故选择该事故进行分析。 四、该工程事故原因分析 1.钢底模板吊挂方法不正确,被起吊的钢底模板应该用4根吊索吊挂在吊板的4个吊点上,可这次吊装作业却只用2根吊索吊挂2个吊点,而且挂钩部位不正确,使吊装的钢底模板处于不稳定状态。 2.搬运工甲在稳钩作业中站位非常危险,现场作业的领导工长虽然发现,但为时已晚。而作为现场的指挥乙却没有发现这种危险情况或者发现了竟无动于衷,没有采取积极措施制止。 3.该预制件场忽视安全生产,尤其在搬迁过程中放松安全管理。首先是从事这种大件吊装,竟然连吊索都没有做好准备,野蛮作业;其次,在搬迁过程中,租用的东风运货车,不具备运输大型构件的能力,东风载重卡车也没有采取任何铺垫措施。 五、事后处理及改进方案 这是一起作业现场混乱,从领导到工人安全生产观念淡薄,在工厂搬迁过程,毫无章法,凑凑乎乎作业,结果酿成这次严重事故,这起事故给我们留下深刻教训。 对上述起重事故事故进行分析,得出今后预防措施如下:(1)凡从事特殊工作,起重工、起重司机、挂钩工、指挥人员都应该接受岗位培训,持证上岗。(2)坚决落实岗位责任制,这些特殊岗位,必须制定好岗位操作规程,落实责任,严禁违章作业,强调劳动纪律。(3)起重装卸重物,最好使用专用吊具,如无专用吊具,吊装方法一定要科学和可靠,不能凑乎,马马虎虎就可能出大问题。

芯片失效分析的意义

芯片失效分析的意义、主要步骤和内容 2011-8-7 19:13|发布者: https://www.360docs.net/doc/2d11588727.html,|查看: 151|评论: 0 摘要: 通过芯片失效分析,可以帮助集成电路设计人员找到设计上的缺陷、工艺参数的不匹配或设计与操作中的不当等问题。 芯片失效分析的意义、主要步骤和内容 一般来说,集成电路在研制、生产和使用过程中失效不可避免,随着人们对产品质量和可靠性要求的不断提高,失效分析工作也显得越来越重要,通过芯片失效分析,可以帮助集成电路设计人员找到设计上的缺陷、工艺参数的不匹配或设计与操作中的不当等问题。 失效分析的意义主要表现 具体来说,失效分析的意义主要表现在以下几个方面: 失效分析是确定芯片失效机理的必要手段。 失效分析为有效的故障诊断提供了必要的信息。 失效分析为设计工程师不断改进或者修复芯片的设计,使之与设计规范更加吻合提供必要的反馈信息。 失效分析可以评估不同测试向量的有效性,为生产测试提供必要的补充,为验证测试流程优化提供必要的信息基础。 失效分析主要步骤和内容 芯片开封:去除IC封胶,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备。

SEM 扫描电镜/EDX成分分析:包括材料结构分析/缺陷观察、元素组成常规微区分析、精确测量元器件尺寸等等。 探针测试:以微探针快捷方便地获取IC内部电信号。镭射切割:以微激光束切断线路或芯片上层特定区域。 EMMI侦测:EMMI微光显微镜是一种效率极高的失效分错析工具,提供高灵敏度非破坏性的故障定位方式,可侦测和定位非常微弱的发光(可见光及近红外光),由此捕捉各种元件缺陷或异常所产生的漏电流可见光。 OBIRCH应用(镭射光束诱发阻抗值变化测试):OBIRCH常用于芯片内部高阻抗及低阻抗分析,线路漏电路径分析。利用OBIRCH方法,可以有效地对电路中缺陷定位,如线条中的空洞、通孔下的空洞。通孔底部高阻区等,也能有效的检测短路或漏电,是发光显微技术的有力补充。 LG液晶热点侦测:利用液晶感测到IC漏电处分子排列重组,在显微镜下呈现出不同于其它区域的斑状影像,找寻在实际分析中困扰设计人员的漏电区域(超过10mA之故障点)。 定点/非定点芯片研磨:移除植于液晶驱动芯片 Pad上的金凸块,保持Pad完好无损,以利后续分析或rebonding。 X-Ray 无损侦测:检测IC封装中的各种缺陷如层剥离、爆裂、空洞以及打线的完整性,PCB制程中可能存在的缺陷如对齐不良或桥接,开路、短路或不正常连接的缺陷,封装中的锡球完整性。 SAM (SAT)超声波探伤可对IC封装内部结构进行非破坏性检测, 有效检出因水气或热能所造成的各种破坏如:o晶元面脱层,o锡球、晶元或填胶中的裂缝,o 封装材料内部的气孔,o各种孔洞如晶元接合面、锡球、填胶等处的孔洞。

集成电路特点及可靠性分析

集成电路特点及可靠性分析 电子科学与应用物理学院

数字集成电路的出现, 促进了电子器件更广泛的应用于工业控制、医疗卫生、航天航空、国防军事等生产和生活的各个领域。同时,为了满足这些生产和生活各个领域发展的不断要求,设计和制造体积更小、信息处理能力更强的器件,成为未来信息技术发展的关键所在。 自1958年美国德克萨斯仪器公司(TI)发明集成电路(IC)后,随着硅平面技术的发展,二十世纪六十年代先后发明了双极型和MOS型两种重要的集成电路,它标志着由电子管和晶体管制造电子整机的时代发生了量和质的飞跃。 MOS是:金属-氧化物-半导体(Metal-Oxide-Semiconductor)结构的晶体管简称MOS晶体管,有P型MOS管和N型MOS管之分。由MOS管构成的集成电路称为MOS集成电路,而由PMOS管和NMOS管共同构成的互补型MOS集成电路即为CMOS-IC(Complementary MOS Integrated Circuit)。 目前数字集成电路按导电类型可分为双极型集成电路(主要为TTL)和单极型集成电路(CMOS、NMOS、PMOS等)。CMOS电路的单门静态功耗在毫微瓦(nw)数量级。 CMOS发展比TTL晚,但是以其较高的优越性在很多场合逐渐取代了TTL。 以下比较两者性能,大家就知道其原因了。 1.CMOS是场效应管构成,TTL为双极晶体管构成 2.CMOS的逻辑电平范围比较大(5~15V),TTL只能在5V下工作 3.CMOS的高低电平之间相差比较大、抗干扰性强,TTL则相差小,抗干扰能力差 4.CMOS功耗很小,TTL功耗较大(1~5mA/门) CMOS的主要特点就是功耗低。CMOS集成电路主要应用场效应管,场效应管的互补结构使它们工作时两个场效应管通常处于一个管静止另一个管导通的状态,有由于它们采用串联连接的方式,因此电路静态功耗从理论上看基本为零。实际上看,CMOS集成电路板的功耗并非真正为零,由于电路板的电流在传输过程中存在漏电流损耗,因此CMOS集成电路板中有少许静态功耗,据测试,单一电路的功耗值仅为17.8毫瓦,在1MHz的工作频率下,动态功耗也仅28毫瓦。CMOS的另一个特点是它的工作电压范围宽,对电压波动性的适应能力强,无需稳压器,供电电源的体积小,方便各种应用电路板的设备使用。目前国际上最常

芯片验证与失效分析

芯片验证测试及失效分析1 檀彦卓韩银和李晓维 摘要本文对验证测试与失效分析技术进行了系统介绍,包括验证测试的一般流程、常用的分析方法以及基于验证测试的失效分析。通过分析集成电路设计和制造工艺的发展给测试带来的影响,简要介绍了验证测试面临的挑战以及未来关注的若干问题。 1 芯片的验证测试 在现代集成电路制造工艺中,芯片加工需要经历一系列化学、光学、冶金、热加工等工艺环节。每道工艺都可能引入各种各样的缺陷。与此同时由于特征尺寸的不断缩小,各类加工设施成本也急剧上升。例如有人估计90nm器件的一套掩模成本可能超过130万美元。因此器件缺陷造成的损失代价极为高昂。在这种条件下,通过验证测试,分析失效原因,减少器件缺陷就成为集成电路制造中不可少的环节。 验证测试(Verification Test , Design Debug)是实现“从设计到测试无缝连接”的关键。在0.18微米以下的制造工艺下,芯片验证测试变得更加至关重要。它的主要任务是验证设计和测试程序(Test Programs)的正确性,确定芯片是否符合所有的设计规范([2], pp.21)。它通过合理的失效分析(Failure Analysis)不仅为探求设计的关键参数所决定的特性空间奠定基础,还为设计人员改进设计及时反馈有效的数据依据,并为优化整体测试流程、减小测试开销以及优化后期的生产测试(Production Test)开拓了便利途径。 对芯片最显著的改进不仅仅在设计流程中产生,而且在芯片调试和验证流程中反复进行。尤其是在高性能芯片研制过程中,随着芯片复杂度的提高,对验证测试的要求更加严格,与设计流程的交互更加频繁。因此,从某种意义上说,“设计”与“验证测试”是一个非常密切的“交互过程”。对于设计工程师而言,关于芯片功能和性能方面的综合数据是关键的信息。他们通常根据设计规范预先假设出关于芯片各项性能大致的参数范围,提交给验证测试人员,通过验证测试分析后,得出比较真实的性能参数范围或者特定值。设计工程师再根据这些值进行分析并调整设计,使芯片的性能参数达到符合设计规范的范围。往往这样的交互过程不只一次。通常一个健全的验证测试策略包含很多详细的信息。它一般以数据文件的形式(Data Sheet)为设计人员和测试人员在修复或者完善设计的交互过程中提供有效的数据依据,主要包括芯片的CMOS工艺等的特征描述、工作机理的描述、电气特征(DC参数,AC参数,上/拉电阻,电容,漏电,温度等测试条件,等等)、时序关系图、应用信息、特征数值、芯片电路图、布局图等等([3],pp.24 )。将芯片在验证测试流程中经过参数测试、功能性测试、结构性测试后得出的测试结果与上述数据信息比较,就会有针对性地反映芯片性能方面存在的种种问题。依据这些问题,设计工程师可以对设计做出相应的改进。 随着芯片速度与功能的不断提高,超大规模集成电路尤其是集成多核的芯片系统(System-On-a- Chip, SOC)的出现使得芯片迅速投入量产过程难度增加,由此验证测试变 1本文摘自中国科学院计算技术研究所内部刊物—信息技术快报 2004 年第 9 期

【完整版】材料力学在工程实际中的应用

材料力学在工程实际中的应用 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、稳定和导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常用的属性主要有: 1.密度ρ:密度与结构自重和地震荷载有关。 2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3.强度f:材料的承受能力。 4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴向变形。

5.剪切模量G:指的是材料在单位长度、单位截面面积下受到单位剪切力时的侧向变形量。 材料力学研究的主要问题是杆件的强度、刚度和稳定性问题,因此,制成杆件的物体就应该是变性固体,而不能像理论力学中那样认为是钢体。变形固体中的变形就成为它的主要基本性质之一,必须予以重视。 例如,在土建、水利工程中,组成水闸闸门或桥梁的个别杆件的变形会影响到整个闸门或桥梁的稳固,基础的刚度会影响到大型坝体内的应力分布;在机电设备中,机床主轴的变形过大就不能保证机床对工作的加工精度,电机轴的变形过大就会使电机的转子与定子相撞,使电机不能正常运转,甚至损坏等等。因此,在材料力学中我们必须把组成杆件的各种固体看做是变性固体,固体之所以发生变形,是由于在外力作用下,组成固体的各微粒的相对位置会发生改变的缘故。在材料力学中,我们要着重研究这种外力和变形之间的关系。大多数变形固体具有在外力作用下发生变形,但在外力除去后又能立刻恢复其原有形状和尺寸大小的特性,我们把变形固体的这种基本性质成为弹性,把具有这种弹性性质的变形固体成为完全弹性体。若变性固体的变形在外力除去后只能恢复其中一部分,这样的固体成为部分弹性体,部分弹性体的形变可分为两部分;一部分是随着外力除去而消失的变形,成为弹性变形;而另一部分是在外力除去后仍不能消失的变形成为塑性变形。严格的说,自然界中并没有完全弹性体,一般的变

材料力学案例:教学与学习参考

竭诚为您提供优质文档/双击可除材料力学案例:教学与学习参考 篇一:材料力学案例分析 迈安那斯桥坍塌事故原因分析 1.关键词:桥梁垮塌,组合变形,偏心载荷,设计失误 2.事件背景 时间:1983年6月27日,地点:美国康涅狄格州迈安那斯(mianus)河桥垮塌,造成4辆汽车掉落桥下,3人死亡,多人受伤。 图1垮塌的迈安那斯河桥 该桥梁结构属于钢结构的多跨静定梁,建成于1958年,桥龄25年。大桥双向各三线车道,每日车流量超过10万次。大桥的悬臂式的结构在建桥当时是很流行的样式:主跨为两端外伸梁,主跨两侧各有一段约30米长的悬吊梁垮。垮塌的是东悬吊跨的一段梁,其西端接在称为轴台的支架上,用水平销连接到中跨梁外伸段的自由端;东端以销接吊件连接在东边悬臂梁的末端,正是此悬吊组件的破坏导致了大桥的

坍塌。 1983年春末,大桥边的居民向当局反映他们听到桥身发出尖锐的声响。过去至少五六年来,这些居民陆续在河边检到桥上掉下来的混凝土碎块或碎钢屑,每次他们都尽责地向公路局报告。而近来在轰隆的车流声中,他们又听到了新增的噪音。一位居民表示:“像是几千只鸟同时唧喳地发出刺耳的鸣叫。 整个周末, 都可以清楚地听到这样的声音。” 6月27日星期一凌晨1:30左右,大桥在一声巨响中发生坍塌。 图2悬吊梁的支撑结构 3.事故过程与关键性细节 康州公路局长看了现场的残骸后,表示他发现了桥梁倒塌的可能线索:把掉下去的桥身和悬臂式钢梁拴在一起的栓销少了一个。这个长约18厘米的栓钉的一部分残余物最后在河里被捞起,其余的部分还在桥上,它看起来像是被剪断的。 事故起因是因为栓销断裂,还是另有原因?为了解开谜团,局长请来了专家,另外还有3家独立的工程公司和国家交通安全局的代表以及法院指派的工程师都参与了事故调查,可是各方都强调不同的理由并得出不同的结论。

芯片失效分析的原因(解决方案-常见分析手段)

芯片失效分析的原因(解决方案/常见分析手段) 一般来说,芯片在研发、生产过程中出现错误是不可避免的,就如房缺补漏一样,哪里出了问题你不仅要解决问题,还要思考为什么会出现问题。随着人们对产品质量和可靠性要求的不断提高,失效分析工作也显得越来越重要,社会的发展就是一个发现问题解决问题的过程,出现问题不可怕,但频繁出现同一类问题是非常可怕的。本文主要探讨的就是如何进行有效的芯片失效分析的解决方案以及常见的分析手段。 失效分析失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及。它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。失效分析是确定芯片失效机理的必要手段。失效分析为有效的故障诊断提供了必要的信息。失效分析为设计工程师不断改进或者修复芯片的设计,使之与设计规范更加吻合提供必要的反馈信息。失效分析可以评估不同测试向量的有效性,为生产测试提供必要的补充,为验证测试流程优化提供必要的信息基础。 失效分析基本概念1.进行失效分析往往需要进行电测量并采用先进的物理、冶金及化学的分析手段。 2.失效分析的目的是确定失效模式和失效机理,提出纠正措施,防止这种失效模式和失效机理的重复出现。 3.失效模式是指观察到的失效现象、失效形式,如开路、短路、参数漂移、功能失效等。 4.失效机理是指失效的物理化学过程,如疲劳、腐蚀和过应力等。 失效分析的意义1.失效分析是确定芯片失效机理的必要手段。 2.失效分析为有效的故障诊断提供了必要的信息。 3.失效分析为设计工程师不断改进或者修复芯片的设计,使之与设计规范更加吻合提供必要的反馈信息。 4.失效分析可以评估不同测试向量的有效性,为生产测试提供必要的补充,为验证测试流程优化提供必要的信息基础。 失效分析主要步骤和内容芯片开封:

失效分析及其在保证电子产品可靠性中的作用

失效分析及其在保证电子产品可靠性中的作用 本报编辑:韩双露时间: 2009-3-19 10:55:13 来源: 电子制造商情 中国赛宝实验室可靠性研究分析中心 李少平 1 电子产品失效分析概述 失效分析(FA)是指为了确定失效部件的失效模式、失效机理、失效原因以及失效后果所作的检查和分析。 电子产品失效分析利用电分析、形貌分析、成分分析、物理参量分析、应力试验分析等手段求证失效样品的失效证据,根据失效证据与失效机理的内在联系,并结合样品现场的失效信息,诊断失效样品的失效机理、失效原因。 在电子产品中,FA的对象是电子元器件,电子元器件主要包括要电容器、电阻器、电感器、继电器、连接器、滤波器、开关、晶体器件、半导体器件(包括半导体分立器件、集成电路)、纤维光学器件、组件(具有一定功能、独立封装的电子部件,如DC/DC电源,晶体振荡器等)等。 失效是指电子元器件丧失或部分丧失了预定的功能。 失效模式是指电子元器件失效的外在宏观表现。对于半导体分立器件失效模式主要有开路、短路、参数漂移(退化)、间歇失效,密封继电器失效模式主要有接触不良、触点粘接、开路、断路,瓷介电容失效模式主要有开裂、短路、低电压失效。不同类别的电子元器件失效模式的表现各不相同,既使对同一门类的电子元器件,由于其原理、结构和电气性能的差异失效模式的表现也不尽相同。失效模式的确认是失效分析工作的重要的环节,失效模式确认需要借助于观察、测试等技术方法。 失效机理是指电子元器件失效的物理、化学变化,这种变化深层次的意义指失效过程中元器件内部的原子、分子、离子的变化,以及结构的变化,是失效发生的内在本质。电子元器件的失效机理可分为机械失效机理,如磨损、疲劳、断裂等;电失效机理,如静电放电损伤、电压引起的场致击穿和退化、电流引起热致击穿和退化等;热失效机理,如热引起的物态变化、结构变化等;反应失效机理,如腐蚀、合金、降解等;电化学机理,如化学电迁移、源电池效应等;产品特有的失效机理,如CMOS集成电路的闩锁效应、金属化铝电迁移效应、热电子

生活中的材料力学实例分析【爆款】.doc

生活中的材料力学实例分析 一意义 材料力学主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 二对象 材料力学的研究通常包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。 材料力学不仅在复杂机械工程中有重要的作用,在生活中也很常见。比如随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者

其他设施 (如管道、电缆等)跨越天然障碍 (如河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。 三分析

如果在安全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 四总结 因此,材料力学是一门很有用的学科,能够处理各种各样复杂的问题。只要注意观察,生活中处处有材料力学的踪影。利用材料力学的知识对我们身边的事物进行分析并加以改进,对我们的生活和社会的发展能起到积极的促进作用。

材料失效分析

材料失效分析

关于散装无铅焊料的脆性到塑形断裂的 转变温度的研究 姓名:肖升宇专业:材料科学与工程学号:0926000333 摘要 断裂韧性的散装锡,锡铜无铅焊料,锡银和测量功能温度通过一个摆锤冲击试验(冲击试验)。韧脆断裂转变他们发现,即急剧变化,断裂韧性,相比没有转变为共晶锡铅。过渡温度高纯锡,Sn-0.5%铜和Sn-0.5%铜(镍)合金在- 125℃含有Ag的焊料显示过渡在较高温度:在范围78到45–°–°C最高转变温度45℃–°测定锡- 5%银,这是球以上的只有30–°角的增加的银内容变化的相变温度较高的值,这可能与高SnAg3颗粒体积分数的焊料的量。这些结果被认为是非常重要的选择最好的无铅焊料组合物。 简介 由2006年七月份。铅的使用电子在欧洲将被禁止,以及无铅焊料应取代锡铅焊料,常用于微电子领域超过50年。许多以Sn为基体的焊料针对于过去几年进行深入研究,如锡银,铜,Sn-Ag-Cu等等,特别是关于其可靠性,工作是远远没有完成。自从这个“软”铅被从焊料中提取出来之后,导致无铅焊料不容易变行和增长了当地积累的应力水平,这也增加了裂缝成核的概率。这显着影响着主要焊点的失效模式,即焊料疲劳。这是众所周知的一些金属松动的低温延性,并表现出脆性断裂模式。因此,韧性到脆性转变温度是一个重要参数。

至于我们的知识,只有现有无铅合金的数据,见迈耶[1],显示出锡5%银的转变温度为-25°,相比没有过渡锡,铅-1.5Ag93.5%。这其实是相当令人失望,因为许多标准热 循环试验开始温度低至-40甚至-60℃,这会影响故障模式。此外,这个温度范围也有一些应用程序,例如航天。“本文的目的是研究几大部分含铅量焊料的脆性到韧性骨折转变温度。 实验 众所周知的一个摆锤冲击试验,“摆锤试验”,用以确定在断裂消耗的能源量,这是一个断裂韧性的措施材料,如温度的功能。“实验装置如图1所示。 对7种合金材料做了测试,结果如下: ·99.99wt.%Sn ·Sn-0.7wt.%Cu, ·Sn-0.7wt.%Cu (0.1wt.%Ni) ·Sn-3wt%Ag-0.5wt%Cu, ·Sn-4wt%Ag-0.5wt%Cu ·Sn-5wt%Ag ·Sn-37wt.%Pb,作为参考 根据所进行的测试ASTM E23标准的V型缺口样品大小为 10x10x55mm。对于某些样本大小为5x5x55mm的合金被使用,由于只有有限的物质可用。锤能量为50J和冲击速度为3.8米/秒。能源锤358J被用于多次测量时吸收能量大于50J。结果是由截面样品表面正

材料力学在工程实际中的应用

材料力学在工程实际中的应用

材料力学在工程实际中的应用 材料力学是研究材料在各种外力作用下产生的应变、应力、强度、稳定和导致各种材料破坏的极限。而研究材料力学在工程实际中的应用,将会直接给我们在进一步的学习中提供一个现实的模型。 材料力学在生活中的应用十分广泛。大到机械中的各种机器建筑中的各个结构小到生活中的塑料食品包装很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作所以材料力学就显得尤为重要。生活中机械常用的连接件如铆钉、键、销钉、螺栓等的变形属于剪切变形在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形如车床主轴工作时同时发生扭转,弯曲及压缩三种基本变形钻穿立柱同时发生拉伸与弯曲两张变形。 说到材料力学,我们首先应该了解它的属性。材料力学在工程中常用的属性主要有: 1.密度ρ:密度与结构自重和地震荷载有关。 2.弹性模量E:指的是材料在在单位长度、单位截面面积下受到单位轴向力时的轴向变形量。 3.强度f:材料的承受能力。 4.泊松比v:指的是材料在受轴向力时,材料的横向变形或材料的轴向变形。

性固体在外力作用下,总会是既有弹性变形也有塑性变形。不过,实验指出,像金属、木材等常用建筑材料,当所受的外力不超过某一限度时,可看成是完全弹性体。为了能采用理论的方法对变形固体进行分析和研究,从而得到比较通用的结论。 总而言之,杆件要能正常工作,必须同时满足以下三方面的要求:(1)不会发生破坏,即杆件必须具有足够的强度。 (2)不产生过大变形,发生的变形能限制在正常工作许可的范围以内。即杆件必须具有足够的强度 (3)不失稳,杆件在其原有形状下的平衡应保持为稳定的平衡,即杆件必须具有足够的稳定性。 这三方面的要求统称为构件的承载能力。一般来说,在设计每一杆件时,应同时考虑到以上三方面的要求,但对某些具体的杆件来说,有事往往只需考虑其中的某一主要方面的要求(例如稳定性为主),当这些主要方面的要求满足了,其它两个次要方面的要求也就自动地得到满足。当设计的杆件能满足上述三方面的要求时,就可认为设计是安全的,杆件能够正常工作。 其次,材料力学在工程实际中的应用时非常多的,例如在铁路和桥梁等等上。 1976年7月28日发生在中国唐山,震级为M7.8级的地震,造成了大面积公路、铁路、桥梁普遍倒塌或者严重损坏,据有关部门专家对这次地震的分析,桥梁破坏主要集中在新进建造的桥梁,主要原因有

IC封装样品失效分析概述

IC封装样品失效分析概述 Angus 2011-12-05

IC封装样品失效分析 FA (Failure Analysis),失效分析不仅有助于提高产品可靠性,而且可以带来很高的经济效益,是IC生产中不可缺少的部分。 按照分析目的或分析手段,FA可分为: PFA(Physical Failure Analysis), 是主要做物理、材料方面的失效分析EFA(Electrical Failure Analysis),是以电学测试为主的失效分析,

IC封装样品失效分析 Cu pad on substrate Pillar Bump 失效分析的目的:分析失效现象,确定失效原因,提出改善建议,提高产品可靠性如何做失效分析:先简单后复杂,先外后内,先无损后有损

IC封装样品失效分析 1.X-Ray (X射线检测) 2.C-SAM (超声波检测) 3.Microscope (显微镜检测) 4.SEM & EDX(扫描电镜及能谱检测) 5. Decapsulation(开帽检查) 6.Cross-Section (Polish&FIB) 7.EFA(EMMI, OBIRCH,InGaAs)

1.X-Ray (X射线检测) X射线是1895年由伦琴发现的,因此也叫伦琴射线。 X射线肉眼不可见,但可是照相底片感光,具有很强的穿透力。 X射线本质上是一种波长很短的电磁波,波长范围0.01~ 10nm,介于紫外线与γ射线之间。 左图为X射线的产生原理图: 1.在阴极灯丝1与阳极4之间加直流高压(上万伏), 2.灯丝产生大量热电子, 3.电子在高压电场作用下,冲击阳极上的靶材5, 4.靶材受电子激发产生X射线。 灯丝的材质通常为钨,靶材的材质有Ti、Cu、Mo等

集成电路中esd失效机理分析

目录 摘要: (1) 0 前言 (1) 1 静电放电危害及静电放电模型 (2) 1.1 静电产生的物理原理 (2) 1.2 静电放电危害 (2) 1.3 静电放电模型 (2) 2 失效模式与失效机理 (3) 2.1 失效模式 (3) 2.2 ESD失效机理与失效位置 (7) 3 ESD 失效的特征 (8) 3.1人体模型和机器模型ESD失效 (8) 3.2带电器件模型ESD失效 (9) 4 静电放电的防护 (10) 4.1 预防静电释放的外部因素 (10) 4.2预防静电释放的内部因素 (11) 5结论 (12) 参考文献 (12)

摘要: 静电放电对微电子器件的危害越来越受到人们的重视。本文简介了静电的产生及静电释放的危害,介绍了人体模型、机器模型和带电器件模型等模型。然后通过对静电放电过程的研究建立放电模型,分析了静电放电的失效模式和失效机理和其对半导体器件的损坏机理。其中从理论角度突出对ESD失效机理和失效位置的研究;通过借助仪器分析的结果对ESD失效案例的ESD放电模型做了合理推断,这种通过失效分析推断放电路径的方法对于改善ESD保护电路性能和提高ESD防护等级有着重要参考作用。最后论述ESD失效的预防措施,分别从外部措施和内部措施提出预防静电放电的方法。 关键词: 静电放电微电子器件失效模式失效机理失效特征 IC Failure Mechanism Of ESD Abstract: Electrostatic discharge (ESD) damage to IC(Integrated Circuit) has been paid more attention than ever. This paper introduces generation of static electricity, three kinds of ESD models and test methods, and ESD protection circuit. ESD failure mode, failure mechanism, experiment plan and results, and failure signature of some ESD models are discussed. Then This paper tries to start with the physical theory of electrostatic toexplore the progress of ESD and set up the model of ESD. The paper analysesin details the process of ESD and several ESD models and the mechanism of ESD damage semiconductor devices. Key words: ESD Microelectronic Devices Failure Mode Failure Mechanism 0 前言 环境中存在静电,这种静电电压从几百伏到几千伏甚至更高,如果没有任何静电保护结构,集成电路在存储、运输以及使用工程中很容易被静电损伤。静电放电(ESD)是两个靠近的带电体之间电荷再次平衡的过程,当带静电的人或物体与MOS 器件的引脚接触,并通过器件向地或者其他物体放电时,高电压及其产生的大电流可能造成器件的损伤。ESD保护结构能将高压静电转化成瞬态低压大电流,最终将电流泄放,从而达到保护集成电路的目的。ESD保护结构的特征和要求主要有:具有迅速的泄放静电的能力,在静电泄放过程中,保护结构本身不会被损伤。 ESD保护电路的作用在于将出现在芯片管脚上的高电荷按照预先设计好的路径泄放掉,进而防止静电对内部电路的损坏。所以通过对ESD引起失效的器件进行物理失效分析,将有利于改善ESD电路性能和提高ESD防护等级。本文将对静电产生的危害及相关静电模型和ESD失效机理以及失效特征和如何进行预防进行阐述。 1

材料失效分析报告报告材料

上海应用技术学院 研究生课程(论文类)试卷 2 0 15 / 2 0 16 学年第二学期 课程名称:材料失效分析与寿命评估 课程代码:NX0102003 学生姓名:丁艳花 专业﹑学号:材料化学工程 156081101 学院:材料科学与工程学院

凝汽器铁管管壁减薄的失效分析报告 1.失效现象描述 秦山第三核电公司1#700M W重水堆核能发电机组2A凝汽器。该凝汽器从2002年8月起投入使用,实际运行时间8年左右。根据资料记载,1#机组第3次例行大修时,管外壁减薄程度较轻,但在第4次例行大修时发现管外壁减薄程度加深,在2010年5月第5次例行大修时发现部分钛管外壁减薄现象相当明显。各机组凝汽器缺陷管主要分布在冷凝管塔式分布的最外侧。据专业人员介绍,大修后对缺陷管抽管检查后发现,管壁减薄主要集中在支撑板处,减薄位置和减薄程度各不相同。如果让异常减薄缺陷管继续运行,有可能引起管穿孔的泄漏事件。 2.背景描述 凝汽器是大型汽轮机循环设备中的重要环节。其中的冷凝管起到将蒸汽凝结成水的作用,是凝汽器中的核心部件。冷凝管一旦发生破损将导致冷却水泄露并污染循环水,从而会对整个系统的正常运行造成严重影响。因此冷凝管的选材质量决定了凝汽器的安全可靠性与使用寿命。工业纯钛作为冷凝管最常用的材料,具有良好的力学性能与耐蚀性能。在复杂运行工况下,纯钛材料仍有可能发生磨损、腐蚀等常见的材料失效现象,引发冷凝管破损并导致冷却水泄露并污染循环水,由此对凝汽器的正常运行带来安全隐患。若不找到这一过早失效的真正起因,并采取有效的防护措施,最终必将导致钛管泄漏,不但经济损失巨大,甚至有可能引发重大安全事故。 国内关于凝汽器钛管的案例的产生原因大致可分为以下几类: 第一类,由于相关方面施工建造时就存在不当操作或不当设计导致运行中出现落物砸伤或凝汽器自身运行故障。如国华太仓发电超临界机组发生凝汽器钛管泄露导致冷凝水水质不合格,其原因在于上部低压加热器表面隔板未按规定安装,导致隔板掉落砸伤引起泄露。再如未充分考虑到钛管共振问题由于钛管本身管壁极薄(0.5mm到0.7mm),强烈的震动极易导致铁管破裂引起泄露,这点在宝钢电厂与大亚湾核电站的运行中已经得到了证实此外还存在着钛管板间焊接质量不良,

半导体器件失效分析_半导体器件芯片焊接技巧及控制

半导体器件失效分析_半导体器件芯片焊接技巧及控制 随着技术的发展,芯片的焊接(粘贴)技巧也越来越多并不断完善。半导体器件焊接(粘贴)失效主要与焊接面洁净度差、不平整、有氧化物、加热不当和基片镀层质量有关。树脂粘贴法还受粘料的组成结构及其有关的物理力学性能的制约和影响。要解决芯片微焊接不良问题,必须明白不同技巧的机理,逐一分析各种失效模式,及时发现影响焊接(粘贴)质量的不利因素,同时严格生产过程中的检验,加强工艺管理,才能有效地避免因芯片焊接不良对器件可靠性造成的潜在危害。 本文首先介绍了芯片焊接(粘贴)技巧及机理,其次介绍了失效模式分析,最后介绍了焊接质量的三种检验技巧以及焊接不良原因及对应措施,具体的跟随小编一起来了解一下。 芯片焊接(粘贴)技巧及机理芯片的焊接是指半导体芯片与载体(封装壳体或基片)形成牢固的、传导性或绝缘性连接的技巧。焊接层除了为器件提供机械连接和电连接外,还须为器件提供良好的散热通道。其技巧可分为树脂粘接法和金属合金焊接法。 树脂粘贴法是采用树脂粘合剂在芯片和封装体之间形成一层绝缘层或是在其中掺杂金属(如金或银)形成电和热的良导体。粘合剂大多采用环氧树脂。环氧树脂是稳定的线性聚合物,在加入固化剂后,环氧基打开形成羟基并交链,从而由线性聚合物交链成网状结构而固化成热固性塑料。其过程由液体或粘稠液→凝胶化→固体。固化的条件主要由固化剂种类的选择来决定。而其中掺杂的金属含量决定了其导电、导热性能的好坏。 掺银环氧粘贴法是当前最流行的芯片粘贴技巧之一,它所需的固化温度低,这能够避免热应力,但有银迁移的缺点。近年来应用于中小功率晶体管的金导电胶优于银导电胶。非导电性填料包括氧化铝、氧化铍和氧化镁,能够用来改善热导率。树脂粘贴法因其操作过程中载体不须加热,设备简单,易于实现工艺自动化操作且经济实惠而得到广泛应用,尤其在集成电路和小功率器件中应用更为广泛。树脂粘贴的器件热阻和电阻都很高。树脂在高温下简单分解,有可能发生填料的析出,在粘贴面上只留下一层树脂使该处电阻增大。因此它不适于要求在高温下工作或需低粘贴电阻的器件。另外,树脂粘贴法粘贴面的机械强

材料力学工程应用实例分析

锯床模型工程案例分析报告 刘 红 良 班级:卓越2班 学号:201002070707 2012年5月20日

工程案例分析大作业 试建立锯床锯架的力学分析模型。 如图设两个铰链之间的距离为L,主动轮和从从动轮的半径均为R,机构在工作时,锯条受到X C F的切削阻力。设锯床在未工作前,皮带上应加一个预紧力F?,机构在工作时锯条左端皮带受力为F?,右端受力为F?,铰链两端对两轮的力均为F P 。试求F?与F?之间的关系,以及F?与F?的关系。 解:在初始预紧力作用下,皮带伸长△l。工作时,在F?的作用下,皮带伸长△l1 ,在F?作用下皮带伸长△l2,主动轮皮带伸长△l3。∴△l=△l1+△l2+△l3① △l= 01 F l E A , △l1= 12 F l E A , △l2= 23 F l E A ② 3 1 2L R l=+∏ 1 2 2 L l= 在机构工作时,进行受力分析有:

F ?- F ?=X C F ③ M=( F ?- F ?)R ④ 对主动轮进行受力分析,d θ取 为圆心角对应的弧段: f dF +()T θ=()T θ+()dT θ ∵f dF =()N F θ×f =()T θ·()D θ·f ∴()T θ·f ()d θ=()dT θ 即f ()d θ= () () dT T θθ F xc

∴1f ln ()T C θθ=+ ∴()T θ=2f C e θ ⑥ ∵(0)T =F 2 ∴2 C = F 2 21()f T F e F ∏ ∏==⑧ 由③⑧得F 2=1XC F f e ∏ - 1= 1XC f F e F f e ∏∏- 20 ()f F e R T d EA θ θθ ∏∏?= ? = 2f ()(1) F R T e E A F θ∏ ∏?= - = ? l 3 ⑦ 将 ② ⑦ 代 入 ③ 中 得 F = ()f f 3122 f 122X C f L R e L R e F e L R θ ∏ ∏ ∏??+∏++- ???-+∏ 这样就求出了初始预紧力,以及1F 2F 的关系及大小。

相关文档
最新文档