LG LC470WUN-SAA2-731逻辑板电路原理图

全加器逻辑电路图

全加器逻辑电路图 全加器英语名称为full-adder,是用门电路实现两个二进制数相加并求出和的组合线路,称为一位全加器。一位全加器可以处理低位进位,并输出本位加法进位。多个一位全加器进行级联可以得到多位全加器。常用二进制四位全加器74LS283。 一位全加器:全加器是能够计算低位进位的二进制加法电路 一位全加器(FA)的逻辑表达式为: S=A⊕B⊕Cin Co=AB+BCin+ACin 其中A,B为要相加的数,Cin为进位输入;S为和,Co是进位输出; 如果要实现多位加法可以进行级联,就是串起来使用;比如32位+32位,就需要32个全加器;这种级联就是串行结构速度慢,如果要并行快速相加可以用超前进位加法, 超前进位加法前查阅相关资料; 如果将全加器的输入置换成A和B的组合函数Xi和Y(S0…S3

控制),然后再将X,Y和进位数通过全加器进行全加,就是ALU的逻辑结构结构。 即X=f(A,B) Y=f(A,B) 不同的控制参数可以得到不同的组合函数,因而能够实现多种算术运算和逻辑运算。 半加器、全加器、数据选择器及数据分配器 一、实验目的 1.验证半加器、全加器、数据选择器、数据分配器的逻辑功能。 2.学习半加器、全加器、数据选择器的使用。 3.用与非门、非门设计半加器、全加器。 4.掌握数据选择器、数据分配器扩展方法。 二、实验原理 1.半加器和全加器 根据组合电路设计方法,列出半加器的真值表,见表7。逻辑表达式为: S =AB + AB= A⊕B

C = AB 半加器的逻辑电路图如图17所示。 用两个半加器可组成全加器,原理图如图18所示。 在实验过程中,我们可以选异或门74LS86及与门74LS08来实现半加器的逻辑功能;也可用全与非门如74LS00、反相器74LS04组成半加器。这里全加器不用门电路构成,而选用集成的双全加器 74LS183。其管脚排列和逻辑功能表分别见图19和表4.9所示 (a)用异或门组成的半加器(b)用与非门组成的半加器 图17 半加器逻辑电路图

第3章--组合逻辑电路习题答案

第3章 组合逻辑电路 3.1 试分析图3.59所示组合逻辑电路的逻辑功能,写出逻辑函数式,列出真值表,说明电路完成的逻辑功能。 (b) (c) (a)A B C D L =1 =1 =1 C 2 L 1L 2L 3 图3.59 题3.1图 解:由逻辑电路图写出逻辑函数表达式: 图a :D C B A L ⊕⊕⊕= 图b :)()(21B A C AB B A C AB L C B A L ⊕+=⊕=⊕⊕= 图c :B A B A L B A A B B A B A L B A B A L =+=+=+++==+=321 由逻辑函数表达式列写真值表: A B C D L 0 0 0 0 00 0 0 1 10 0 1 0 10 0 1 1 00 1 0 0 10 1 0 1 00 1 1 0 00 1 1 1 11 0 0 0 11 0 0 1 01 0 1 0 01 0 1 1 11 1 0 0 01 1 0 1 11 1 1 0 11 1 1 1 0 由真值表可知:图a 为判奇电路,输入奇数个1时输出为1;图b 为全加器L 1为和,L 2为进位;图c 为比较器L 1为1表示A>B ,L 2为1表示A=B, L 3为1表示A

D C B A W X Y Z 输入 输出 图3.61 题3.3图 解: BA C A C D B C A C D W +++= A C A C D CBA A C D A B B D X +++=B D A C D CB D B C D Y ++=B C D A B D DBA CA CB D Z +++= D C B A W X Y Z 输入输出 B C BA C A C D A C D W DCBA +++==∑)13,12,11,10,8,6,5,4,3()( A C D CBA B D A B X DCBA +++==∑)15,13,12,9,8,7,4,2,0()(

MOS管及简单CMOS逻辑门电路原理图

MOS管及简单CMOS逻辑门电路原理图 现代单片机主要是采用CMOS工艺制成的。 1、MOS管 MOS管又分为两种类型:N型和P型。如下图所示: 以N型管为例,2端为控制端,称为“栅极”;3端通常接地,称为“源极”;源极电压记作Vss,1端接正电压,称为“漏极”,漏极电压记作VDD。要使1端与3端导通,栅极2上要加高电平。 对P型管,栅极、源极、漏极分别为5端、4端、6端。要使4 端与6端导通,栅极5要加低电平。 在CMOS工艺制成的逻辑器件或单片机中,N型管与P型管往往是成对出现的。同时出现的这两个CMOS管,任何时候,只要一只导通,另一只则不导通(即“截止”或“关断”),所以称为“互补型CMOS管”。 2、CMOS逻辑电平 高速CMOS电路的电源电压VDD通常为+5V;Vss接地,是0V。 高电平视为逻辑“1”,电平值的范围为:VDD的65%~VDD(或者~VDD)

低电平视作逻辑“0”,要求不超过VDD的35%或0~。 +~+应看作不确定电平。在硬件设计中要避免出现不确定电平。 近年来,随着亚微米技术的发展,单片机的电源呈下降趋势。低电源电压有助于降低功耗。VDD为的CMOS器件已大量使用。在便携式应用中,VDD为,甚至的单片机也已经出现。将来电源电压还会继续下降,降到,但低于VDD的35%的电平视为逻辑“0”,高于VDD的65%的电平视为逻辑“1”的规律仍然是适用的。 3、非门 非门(反向器)是最简单的门电路,由一对CMOS管组成。其工作原理如下:A端为高电平时,P型管截止,N型管导通,输出端C的电平与Vss保持一致,输出低电平;A端为低电平时,P型管导通,N型管截止,输出端C的电平与V一致,输出高电平。 4、与非门

液晶屏背光板工作原理电路图

液晶屏背光板工作原理电路图 一、前言随着液晶电视机销量的逐渐增多,需要投入更多的精力来研究液晶电视机的维修,而目前液晶电视机中背光板的维修量占有较大的比例,同时由于背光板是显示屏供应商供屏时自带的,供应商出于对技术的保密性,现在我们还拿不到背光板的电路图和IC资料,这对我们背光板的维修带来了很大的难处。为了改善我们的背光板修理,本文对背光板的通用工作原理及常见故障判断作一介绍,对网络维修具有一定的参考价值。本文的目的是想帮助网络提高维修技能,但由于我们对背光板的电路和维修了解得还不多,因此其中的一些观点可能有不准确或描述错误的地方,请大家指出来共同讨论,从而共同提高我们的维修水平,谢谢!二、背光板在液晶电视机中的作用背光板也称Inverter板即逆变器板,它的作用是将一个直流电压转变为多个交流电压,作为液晶屏灯管的工作电压,它的输入、输出连接框图如下图。背光板有三个输入信号,分别是供电电压、开机使能信号、亮度控制信号,其中供电电压由电源板提供,一般为直流24V(个别小屏幕为12V);开机使能信号ENA即开机控制电平由数字板提供,高电平3V时背光板工作,低电平0V 时背光板不工作;亮度控制信号DIM由数字板提供,它是一个0-3V的模拟直流电压,改变这它可以改变背光板输出交流电压的高低,从而改变灯管亮度。背光板有多个交流输出电压,一般为AC800V,每个交流电压供给一个灯 管。三、背光板工作原理方框图背光板电路由输入接口电路、PWM控制电路、MOS管导通与直流变换电路、LC振荡及高压输出回路、取样反馈电路等几部分组成,其工作原理 方框图:四、背光板各部分电路介绍1、输入接口电路1)供电输入电压输入接口电路中的供电输入电压一路直接加到MOS管导通电路,作

1602液晶显示计算器电路图及程序

#include #include #include #include unsigned char code Error[]={"error"}; unsigned char code Systemerror[]={"system error"}; unsigned char code Lcd[]={"lcd calculate"}; char str[16]; sbit RS=P2^0; sbit RW=P2^1; sbit E=P2^2; sbit BF=P0^7; /*********************** 函数功能:延时1ms ***********************/ void delay1ms() { unsigned char i,j; for (i=0;i<10;i++) for (j=0;j<33;j++) ; } /************************ 函数功能:延时n毫秒 入口参数:n ************************/ void delaynms(unsigned char n) { unsigned char i; for (i=0;i

大屏幕液晶显示屏背光灯及高压驱动电路原理与维修(一

大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析(一) (目前液晶电视的销量和社会保有量非常大,液晶电视的维修资料奇缺,而液晶电视的背光灯高压驱动电路又是液晶电视中极易发生故障的部位,它类似于CRT电视的行扫描电路,是高压大电流电路,其故障率不低于CRT电视的行扫描电路。目前对于该部分的原理电路分析维修的资料很少,该文对于背光灯管及驱动电路的特性、构造、组成、要求、电路原理分析比较详尽,以帮助维修人员更加深刻的理解液晶电视背光灯驱动电路,为下一步维修打好基础) 液晶电视的显示屏是属于被动发光型的显示器件,液晶屏自身不发光,它需要借助背光灯来实现屏的发光,即背光灯管发出光线通过液晶屏透射出来,利用液晶的分子在电场作用下控制通过的光线(对光进行调制)以形成图像,所以一块液晶屏工作成像必须配上背光源才能成为一个完整的显示屏,要显示色彩丰富的优质图像,要求背光灯的光谱范围要宽,接近日光色以便最大限度的展现自然界的各种色彩。目前的液晶屏背光灯,一般采用的是光谱范围较好的冷阴极荧光灯(cold cathode fluorescent lamp;CCFL)作为背光光源。 大屏幕的液晶电视要保证有足够的亮度、对比度和整个屏幕亮度的均匀性,均采用多灯管系统,32寸屏一般采用16只灯管,47寸屏一般采用24只灯管。耗电量每只灯管约为为8W计算,一台32寸屏的液晶电视背光灯耗电量达到130W,一台47寸的液晶电视背光灯的耗电量达到近200W(加上其它电路耗电,一台32寸屏的液晶电视耗电量在200W左右) 冷阴极荧光灯的构造和工作原理 冷阴极荧光灯CCFL是气体放电发光器件,其构造类似常用的日光灯,不同的是采用镍﹑钽和锆等金属做成的无需加热即可发射电子的电极——冷阴极来代替钨丝等热阴极,灯管内充有低气压汞气,在强电场的作用下,冷阴极发射电子使灯管内汞原子激发和电离,产生灯管电流并辐射出253.7nm紫外线,紫外线再激发管壁上的荧光粉涂层而发光,图1。 冷阴极荧光灯的特性 冷阴极荧光灯是一个高非线性负载,它的触发(启动)电压一般是三倍于工作(维持)电压,(电压值的大小和灯管的长度和直径有关)冷阴极荧光灯在开始启动时,当电压还没有达到触发值(1200~1600V)时,灯管呈正电阻(数兆欧),一旦达到触发值,灯管内部产生电离放电产生电流,此时电流增加,灯管两端电压下降呈负阻特性 图2,所以冷阴极荧光灯触发点亮后,在电路上必须有限流装置,把灯管工作电流限制在一个额定值上,否则会因为电流过大烧毁灯管,电流过小点亮又难以维持。

与门电路和与非门电路原理

什么就是与门电路及与非门电路原理? 什么就是与门电路 从小巧的电子手表,到复杂的电子计算机,它们的许多元件被制成集成电路的形式,即把几十、几百,甚至成干上万个电子元件制作在一块半导体片或绝缘片上。每种集成电路都有它独特的作用。有一种用得最多的集成电路叫门电路。常用的门电路有与门、非门、与非门。 什么就是门电路 “门”顾名思义起开关作用。任何“门”的开放都就是有条件的。例如.一名学生去买书包,只买既好瞧又给买的,那么她的家门只对“好瞧”与“结实”这两个条件同时具备的书包才开放。 门电路就是起开关作用的集成电路。由于开放的条件不同,而分为与门、非门、与非门等等。 与门 我们先学习与门,在这之前请大家先瞧图15-16,懂得什么就是高电位,什么就是低电位。 图15-17甲就是我们实验用的与用的与门,它有两个输入端A、B与一个输出端。图15-17乙就是它连人电路中的情形,发光二极管就是用来显示输出端的电位高低:输出端就是高电位,二极管发光;输出端就是低电位,二极管不发光。

实验 照图15-18甲、乙、丙、丁的顺序做实验。图中由A、B引出的带箭头的弧线,表示把输入端接到高电位或低电位的导线。每次实验根据二极管就是否发光,判定输出端电位的高低。 输入端着时,它的电位就是高电位,照图15-18戊那样,让两输人端都空着,则输出瑞的电位就是高电位,二极管发光。 可见,与门只在输入端A与输入端B都就是高电位时,输出端才就是高电位;输入端A、B只要有一个就是低电位,或者两个都就是低电位时,输出端也就是低电位。输人端空着时,输出端就是高电位。 与门的应用

图15-19就是应用与门的基本电路,只有两个输入端A、B同低电位间的开关同时断开,A与B才同时就是高电位,输出端也因而就是高电位,用电器开始工作。 实验 照图15-20连接电路。图中输入端与低电位间连接的就是常闭按钮开关,按压时断开,不压时接通。 观察电动机在什么情况下转动。 如果图15-20的两个常闭按钮开关分别装在汽车的前后门,图中的电动机就是启动汽车内燃机的电动机,当车间关紧时常闭按钮开关才能被压开,那么这个电路可以保证只有两个车门都关紧时汽车才能开动。 与非门,与非门就是什么意思 DTL与非门电路: 常将二极管与门与或门与三极管非门组合起来组成与非门与或非门电路,以消除在串接时产生的电平偏离, 并提高带负载能力。

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理

对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨) 在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。 什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。 图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。重新编

排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。 每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。也是一个独立的整体。这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。为了保证此电路正常工作,一般对这个独立的驱动系统单独的设计了一个独立的开关电源供电(这个向液晶屏驱动系统供电的开关电源一般就称为:TFT偏压电路);由整机的主开关电源提供一个5V或12V电压,给这个开关电源供电,并由CPU控制这个开关电源工作;产生这个独立的驱动系统电路提供所需的各种电压,就好像我们的电视机是一个独立的系统他有一个单独的开关电源,DVD机是一个独立的系统他也有一个单独的开关电源一样。是非常重要也是故障率极高的部分(开关电源都是故障率最高的部分,要重点考虑)。图1所示是液晶屏驱动系统框图。从图中可以看出,其中的“TFT偏压供电开关电源”就是这个独立系统电路的供电电源它产生这个驱动系统电路需要的各种电压,有VDD、VDA、VGL和VGH电压供各电路用。

与门电路和与非门电路原理

什么是与门电路及与非门电路原理? 什么是与门电路 从小巧的电子手表,到复杂的电子计算机,它们的许多元件被制成集成电路的形式,即把几十、几百,甚至成干上万个电子元件制作在一块半导体片或绝缘片上。每种集成电路都有它独特的作用。有一种用得最多的集成电路叫门电路。常用的门电路有与门、非门、与非门。 什么是门电路 “门”顾名思义起开关作用。任何“门”的开放都是有条件的。例如?一名学生去买书包,只买既好看又给买的,那么他的家门只对“好看”与“结实”这两个条件同时具备的书包才开放。 门电路是起开关作用的集成电路。由于开放的条件不同,而分为与门、非门、与非门等等。 与门 我们先学习与门,在这之前请大家先看图15-16,懂得什么是高电位,什么是低电位。 图15-17甲是我们实验用的与用的与门,它有两个输入端A、E和一个输出端。图15-17乙是它连人电 路中的情形,发光二极管是用来显示输出端的电位高低:输出端是高电位,二极管发光;输出端是低电位,二极管不发光。 实验 照图15-18甲、乙、丙、丁的顺序做实验。图中由A、B引出的带箭头的弧线,表示把输入端接到高电位或低电位的导线。每次实验根据二极管是否发光,判定输岀端电位的高低。

输入端着时,它的电位是高电位,照图15-18戊那样,让两输人端都空着,则输岀瑞的电位是高电位, 二极管发光。 可见,与门只在输入端A与输入端E都是高电位时,输岀端才是高电位;输入端A、E只要有一个是低电位,或者两个都是低电位时,输岀端也是低电位。输人端空着时,输岀端是高电位。 与门的应用 图15-19是应用与门的基本电路,只有两个输入端A、E同低电位间的开关同时断开,A与E才同时是高电位,输出端也因而是高电位,用电器开始工作。 实验 照图15-20连接电路。图中输入端与低电位间连接的是常闭按钮开关,按压时断开,不压时接通 观察电动机在什么情况下转动。 如果图15-20的两个常闭按钮开关分别装在汽车的前后门,图中的电动机是启动汽车内燃机的电动机, 当车间关紧时常闭按钮开关才能被压开,那么这个电路可以保证只有两个车门都关紧时汽车才能开动。与非门,与非门是什 么意思

3.1 MOS逻辑门电路解析

3逻辑门电路 3.1 MOS逻辑门电路 3.2TTL逻辑门电路 *3.3射极耦合逻辑门电路 *3.4砷化镓逻辑门电路 3.5逻辑描述中的几个问题 3.6逻辑门电路使用中的几个实际问题* 3.7用VerilogHDL描述逻辑门电路

3.逻辑门电路 教学基本要求: 1.了解半导体器件的开关特性。 2.熟练掌握基本逻辑门(与、或、与非、或非、异或门)、三态门、OD门(OC门)和传输门的逻辑功能。 3.学会门电路逻辑功能分析方法。 4.掌握逻辑门的主要参数及在应用中的接口问题。

3.1 MOS逻辑门 3.1.1数字集成电路简介 3.1.2逻辑门的一般特性 3.1.3MOS开关及其等效电路 3.1.4CMOS反相器 3.1.5CMOS逻辑门电路 3.1.6CMOS漏极开路门和三态输出门电路3.1.7CMOS传输门 3.1.8CMOS逻辑门电路的技术参数

1 . 逻辑门:实现基本逻辑运算和复合逻辑运算的单元电路。 2. 逻辑门电路的分类 二极管门电路 三极管门电路 TTL 门电路 MOS 门电路 PMOS 门 CMOS 门 逻辑门电路 分立门电路 集成门电路 NMOS 门 3.1.1 数字集成电路简介

1.CMOS 集成电路: 广泛应用于超大规模、甚大规模集成电路 4000系列 74HC 74HCT 74VHC 74VHCT 速度慢 与TTL 不兼容 抗干扰 功耗低 74LVC 74VAUC 速度加快 与TTL 兼容 负载能力强 抗干扰 功耗低 速度两倍于74HC 与TTL 兼容 负载能力强 抗干扰 功耗低 低(超低)电压 速度更加快 与TTL 兼容 负载能力强 抗干扰功耗低 74系列 74LS 系列 74AS 系列 74ALS 2.TTL 集成电路: 广泛应用于中、大规模集成电路 3.1.1 数字集成电路简介

LCD液晶显示屏工作原理

LCD 液晶显示屏工作原理 一、工作原理和概念术语 1、液晶显示屏的工作原理 液晶(Liquid Crystal ):是一种介于固态和液态之间的具有规则性分子排列,及晶体的光学各向异性的有机化合物,液晶在受热到一定温度的时候会呈现透明状的液体状态,而冷却则会出现结晶颗粒的混浊固体状态,因为物理上具有液体与晶体的特性,故称之为“液晶”。 液晶显示器LCD (Liquid Crystal Display ):是新型平板显示器件。显示器中的液晶体并不发光,而是控制外部光的通过量。当外部光线通过液晶分子时,液晶分子的排列扭曲状态不同,使光线通过的多少就不同,实现了亮暗变化,可重现图像。液晶分子扭曲的大小由加在液晶分子两边的电压差的大小决定。因而可以实现电到光的转换。即用电压的高低控制光的通过量,从而把电信号转换成光像。 (1)、液晶分子的电-光特性(如图2-1所示) (2)、液晶的电光控制特性(如图2-2所示) (a) (光 光控制电压010 9050%液晶显示器的电光特性(常暗模式) 101009050%b )液晶显示器的电光特性(常亮模式) 液晶显示器的电光控制特性 图中Uth —阈值电压(临界电压);Usat —饱和电压 透过率透过率控制电压 图2-1液晶的电-光特性图 图2-2 旋光性

(3)、 液晶分子排列状态的改变可实现对光的控制 液晶分子在偏光板间排列成多层,在不同层间, 液晶分子的长轴沿偏光板平行平面连续扭转90°,与偏光板的偏振光方向一致的偏振光,垂直射向无外加电场的液晶分子时,入射光将因其偏振方向随液晶分子轴的扭曲而旋转射出。故称为扭曲向列型液晶显示器。 当给液晶层施以某一电压差时,液晶分子会改变它的初始排列状态而不扭转,不改变光的极化方向,因此经过液晶的光会被第二层偏光片吸收而整个结构呈现不透光的状态。 2、概念和术语 (1)、光学的各向异性 液晶的特有性质,改变液晶两端电压,可改变液晶某一方向折射出的光的大小 (2)、偏振片(器) 只能在特定方向上透过光线的器件 (3)、像素、子像素、节距、分辨率(如图2-3所示) (4)、视角 当背光源的入射光通过偏极片、液晶后,输出光便具备了特定的方向特性,假如从一个非常斜的角度观看一个全白的画面,我们可能会看到黑色或是色彩失真。这个效应在某些场合有用,但在大部分的应用上是我们不希望要的。制造商们已经花了很多时间来试图改善液晶显示器的视角特性,有数种广视角技术被提出:IPS(IN-PLANE -SWITCHING 、MVA(MULTI-DOMAIN VERTICAL ALIGNMENT)、TN+FILM 。 这些技术都能把液晶显示器的视角增加到160度,甚至更多,就如同CRT 屏幕的视角特性一样。最大视角的定义是对比值至少能达到10:1的视角(通常有四个方向,上/下/左/右),如图2-4。 平板显示器的象素结构 绿、蓝三个组成一个像1024 列) 图2-3 平板显示器的像素结构 水平视角 显示器件的视角 图2-4 显示器件的视角

【精品】液晶屏及其附属电路维修

任务2。3液晶屏及其附属电路的维修 教学目的 知识能力:掌握检修工具及仪器的基本操作使用方法。 知识能力 随着平板电视机的大量上市,液晶电视机在平板彩电中占有重要角色.液晶屏是液晶电视机内部最为关键的部件,对液晶电视机的性能和价格具有关键性的作用。 2.3.1液晶显示器件 1.液晶显示器优缺点 (1)优点 1)与传统的显像管相比,液晶电视机信号不失真,视觉不疲劳,没有射线造成的健康损害;节约能源,耗电量是同样大小尺寸显像管电视机耗电量的62%;寿命长,采用新开发的长寿命液晶背灯,大约可以使用10年(按照每天使用16小时计算)而不用更换;清晰度高,基本不反光.

2)轻薄便携。传统显示器由于使用阴极射线管,必须通过电子枪发射电子束到屏幕,因而显像管的管颈不能做得很短,当屏幕增加时也必然增大整个显示器的体积。液晶则通过显示屏上的电极控制液晶分子状态来达到显示目的,即使屏幕加大,它的体积也不会成正比的增加,而且在重量上比相同显示面积的传统显示器要轻得多,液晶电视机的重量大约是传统电视的1/3. 3)色彩丰富。液晶电视机拥有16。7百万的色彩,画面层次分明,颜色绚丽真实。 4)分辨率大,清晰度高。液晶显示器一开始就使用纯平面的玻璃板,其平面直角的显示效果比传统显示器看起来好得多。不过在分辨率上,液晶显示器理论上可提供更高的分辨率,但实际显示效果却差得多(存在一个最佳分辨率的问题),虽然液晶电视机

可以克服扫描线的抖动和闪烁,但由于液晶本身的缝隙较粗,会造成图像如网格般的收看效果。所以液晶屏幕的最佳分辨率一般可达1024×768(已经足够收视)。而传统显示器在较好显示卡的支持下达到完美的显示效果. 5)绿色环保。液晶显示器根本没有幅射可言,而且只有来自驱动电路的少量电磁波,只要将外壳严格密封即可排除电磁波外泄。所以液晶显示器有称为冷显示器或环保显示器.液晶电视机不存在屏幕闪烁现象,不易造成视觉疲劳。 6)耗电量低,使用寿命长.按照行业标准、使用时间为每天4.5小时的年耗电量换算,用30英寸液晶电视机替代32英寸显像管电视,每年每台可节约电能71千瓦.液晶电视机的使用寿命一般为5万个小时,比普通电视机的寿命长得多。 (2)缺点 1)在显示反应速度上,传统显示器由于技术上的优势,反应速度非常好。TFT液晶显示器由于显示特性,就不怎么乐观了(低温无法正常工作,且存在反应时间).LCD的响应时间比较长,因此在动态图像方面的表现的不理想. 2)对显示品质而言,传统显示器的显示屏幕采用荧光粉,通过电子束打击荧光粉而显示,因而显示的明亮度比液晶的透光式显示(以日光灯为光源)更为明亮.LCD理论上只能显示18位色(约262144色),但阴极射线管的色深几乎是无穷大。 3)LCD的可视角度相对阴极射线管显示器来说是比较小的. 4)LCD显示屏比较脆弱,容易受到损伤。这就提高了液晶电视机的使用和维护难度. 5)由于液晶是一种介于固体与液体之间,具有规则性分子排列的有机化合物.在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像.液晶电视机就是利用这种原理制成的。但是正是由于这个原理,所有液晶电视机在工艺上很难做大,而且价格昂贵。 6)目前的制造工艺决定了LCD存在点缺陷问题,其制造的良品率相对较低,这也在一定程度上增加了LCD的制造成本,所以价格是困扰LCD推广的最大障碍。 7)LCD产品在画面切换时,可能会产生影像残留现象,尤其是在长时间显示静止画面后。正常条件下使用是不会产生影像残留的。正常条件的定义是在规定的环境中显示连续变化的画面,如果静止的画面显示时间太长的话,可能造成像素电极的充电差异。这样的差异就会导致某些区域的电极上积累电荷,并影响到液晶分子的排列。这样,前一个画面就会残留在新画面上.

LED显示屏专用电源电路图及工作原理

TL494电路图的工作原理,主要是各元件的功能 整流器之前的不用说了吧? 494 脉宽调制输出至V3、V4。494 的各脚功能请看其pdf资料。1 脚是比较器+输入端,接电压监测。如图,VR1 是输出电压调整。 V3、V4 是功率推动三极管。T2是推动变压器,将推动电压提高以驱动末级功率管,末级工作在开关状态。 V2、V3 接成推挽功率放大。VD5、VD6是反峰保护二极管。R3、C8是尖峰吸收网络。 VD9、VD10、C9 组成全波整流滤波,给494供电。 T1 的右部分就是低压部分了。整流滤波输出,没什么特别的。 220V交流电经VD1整流,C5,C6滤波得到300V左右直流电。此电压经R1,R2分压后约150V给C7充电,经T1高压8,9脚绕组,T2绕组8,6脚,V2等形成启动电流。T2反馈绕组7,9绕组,10,6绕组产生感应电压,使V1,V2轮流导通。因此在T1低压供电绕组(6,7,13)产生电压,经VD9,VD10整流,C9滤波,给TL494,,V3,V4等供电。此时输出电压较低。TL494启动后其8脚,11脚轮流输出脉冲,推动V3,V4,经T2反馈给绕组(7.9,10.6)激励V1,V2。使V1,V2,由自激状态转入受控状态。T2输出绕组电压上升,此电压经R31,R29,R30,VR1分压后反馈给TL494的1脚(电压反馈)使输出电压稳定。J1,J2是电流取样电阻,充电或输出时J1,J2产生压降。此电压经R36反馈给TL494的15脚(电流反馈)使充电或输出电流恒定。 大体原理已经说清楚了,具体原理还有什么不明白追问,我就不一一说明每个元件的作用了。 R8,R9,R40 是V2的偏置电阻,VD8反馈整流,经R10,R11到V2基极,加

液晶显示器电路图的识读

液晶显示器电路图主要有方框图、单元电路图、集成电路内部方框图、整机电路图、印制板图等多种,但对于维修人员来说,通常了解电路图方框图、电路原理图和印制板图就可以了。 1.方框图 (1)方框图简介 方框图是一种用各种方框和连线来表示电路工作原理和构成概况的电路图。它与原理图的区别,就在于原理图详细地绘制了电路的全部元器件及其连接方式,而方框图只是简单地将电路按照功能划分为几个部分,将每一个部分描绘成一个方框,在方框中标注上简单的文字说明,在方框之间用连线来说明各方框之间的关系。 虽然,方框图简单,但无论对初学者还是有经验的技术人员都是非常重要的。只要真正地掌握液晶显示器的方框图,明白每一个功能方块在电路中的作用,就会使维修工作更加得心应手。 2.方框图的种类 方框图的种类较多,具体说明如下: (1)整机电路方框图 整机电路方框图是表达整机电路图的方框图,从这张方框图中可以了解到整机电路组成和各部分单元电路之间的相互关系,通过图中的箭头还可以了解信号的传输途径等。 (2)系统电路方框图 一个整机电路是由许多系统电路构成的,系统电路方框图用来表示该系统电路的组成情况。它是整机电路方框图的下一级方框图,往往比整机电路方框图更加详细。 (3)集成电路内部电路方框图 集成电路内部电路组成情况可以用内部电路或内部电路方框图来表示。由于集成电路内部电路十分复杂,所以在许多情况下采用方框图来表示更有益于读图。从集成电路的内部电路方框图中可以了解到集成电路的组成、有关引脚的作用等,这对阅读该集成电路的应用电路十分有用。集成电路一般引脚比较多,内部电路功能比较复杂,所以在进行电路分析时给出集成电路内部电路方框图是最为方便的。 3.方框图的功能 方框图具有下列一些功能: (1)粗略表达了某电路(可以是整机电路、系统电路和功能电路等)的组成情况,通常是给出这一电路的主要单元电路位置、名称,以及各部分单元电路之间的连接关系。

MOS管及简单CMOS逻辑门电路原理图

MOS 管及简单CMOS 逻辑门电路原理图 现代单片机主要是采用CMO 工艺制成的。 1、MOS 管 MOS 管又分为两种类型:N 型和P 型。如下图所示: V DD 4 5 I c 6 =Vss P 型MOS 管 以N 型管为例,2端为控制端,称为“栅极”;3端通常接地,称为 “源极”;源极电压记作Vss , 1端接正电压,称为“漏极”,漏极电压记作VDD 要使1端与3端导通,栅极2 上要加高电平。 对P 型管,栅极、源极、漏极分别为 5端、4端、6端。要使4 端与6端 导通,栅极5要加低电平。 在CMO 工艺制成的逻辑器件或单片机中,N 型管与P 型管往往是 成对出 现的。同时出现的这两个 CMO 管,任何时候,只要一只导通,另一只则 不导通(即“截止”或“关断”),所以称为“互补型—CMO 管”。. 2、CMO 逻辑电平 高速CMO 电路的电源电压 VDD S 常为+5V; Vss 接地,是0V 。 高电平视为逻辑“ 1”,电平值的范围为:VDD 勺65%-VDD 或者VDD-1.5V ? VDD 低电平视作逻辑“ 0”,要求不超过 VDD 的35%或 0?1.5V 。 +1.5 V ?+3.5V 应看作不确定电平。在硬件设计中要避免出现不确定电平。 近年来,随着亚微米技术的发展,单片机的电源呈下降趋势。低电源电压有 助于降低功耗。VDD 为3.3V 的CMO 器件已大量使用。在便携式应用中, VDC 为 2.7V ,甚至1.8V 的单片机也已经出现。将来电源电压还会继续下降,降到0.9V , 但低于VDD 的 35%勺电平视为逻辑“ 0”,高于VDD 勺65%勺电平视为逻辑“ 1” 的规律仍然是适用的。 VDD Vss

组合逻辑电路的分析

一.目的 由逻辑图得出逻辑功能 二.方法(步骤) 1.列逻辑式: 由逻辑电路图列输出端逻辑表达式; (由输入至输出逐级列出) 2.化简逻辑式: 代数法、卡诺图法; (卡诺图化简步骤保留) 3.列真值表: 根据化简以后的逻辑表达式列出真值表;4.分析逻辑功能(功能说明): 分析该电路所具有的逻辑功能。 (输出与输入之间的逻辑关系); (因果关系) (描述函数为1时变量取值组合的规律) 技巧:先用文字描述真值表的规律(即叙述函数值为1时变量组合所有的取值),然后总结归纳电路实现的具体功能。 5.评价电路性能。 三.思路总结:

四.注意: 关键:列逻辑表达式; 难点:逻辑功能说明 1、逻辑功能不好归纳时,用文字描述真值表的规律。(描述函数值为1时变量组合所有的取值)。 2、常用的组合逻辑电路。 (1)判奇(偶)电路; (2)一致性(不一致性)判别电路; (3)相等(不等)判别电路; (4)信号有无判别电路; (5)加法器(全加器、半加器); (6)编码器、优先编码器; (7)译码器; (8)数值比较器; (9)数据选择器; (10)数据分配器。 3、多输出组合逻辑电路判别: 1)2个输出时考虑加法器:2输入半加;3输入全加。 2)4输出时考虑编码器:4输入码型变换;编码器。

五.组合逻辑电路分析实例 例1 电路如图所示,分析电路的逻辑功能。 A B Y 解: (1)写出输出端的逻辑表达式:为了便于分析可将电路自左至右分三级逐级写出Z 1、Z 2、Z 3和Y 的逻辑表达式为: 321 3121Z Z Y BZ Z AZ Z AB Z ==== (2)化简与变换:将Z 1、Z 2、和Z 3代入到公式Y 中进行公式化简得: B A B A BZ AZ BZ AZ Z Z Z Z Y +=+=+=+==11113232 (3)列出真值表:根据化简以后的逻辑表达式列出真值表如表所示。

液晶屏驱动板的原理与维修代换方法

液晶屏驱动板的原理与维修代换方法 1、液晶屏驱动板的原理介绍 液晶屏驱动板常被称为A/D(模拟/数字)板,这从某种意义上反应出驱动板实现的主要功能所在。液晶屏要显示图像需要数字化过的视频信号,液晶屏驱动板正是完成从模拟信号到数字信号(或者从一种数字信号到另外一种数字信号)转换的功能模块,并同时在图像控制单元的控制下去驱动液晶屏显示图像。液晶显示器的驱动板如图1、图2所示。 图1 品牌液晶显示器采用的驱动板 图2部分液晶显示器采用的是通用驱动板 如图3所示,液晶屏驱动板上通常包含主控芯片、MCU微控制器、ROM存储器、电源模块、电源接口、VGA视频信号输入接口、OSD按键板接口、高压板接口、LVDS/TTL驱屏信号接口等部分。 液晶屏驱动板的原理框图如图4所示,从计算机主机显示卡送来的视频信

号,通过驱动板上的VGA视频信号输入接口送入驱动板的主控芯片,主控芯片根据MCU微控制器中有关液晶屏的资料控制液晶屏呈现图像。同时,MCU微控制器实现对整机的电源控制、功能操作等。因此,液晶屏驱动板又被称为液晶显示器的主板。 图3 驱动板上的芯片和接口 液晶屏驱动板损坏,可能造成无法开机、开机黑屏、白屏、花屏、纹波干扰、按键失效等故障现象,在液晶显示器故障中占有较大的比例。 液晶屏驱动板广泛采用了大规模的集成电路和贴片器件,电路元器件布局紧

凑,给查找具体元器件或跑线都造成了很大的困难。在非工厂条件下,它的可修性较小,若驱动板由于供电部分、VGA视频输入接口电路部分损坏等造成的故障,只要有电路知识我们可以轻松解决,对于那些由于MCU微控制器内部的数据损坏造成无法正常工作的驱动板,在拥有数据文件(驱动程序)的前提下,我们可以用液晶显示器编程器对MCU微控制器进行数据烧写,以修复固件损坏引起的故障。早期的驱动板,需要把MCU微控制器拆卸下来进行操作,有一定的难度。目前的驱动板已经普遍开始采用支持ISP(在线编程)的MCU微控制器,这样我们就可以通过ISP工具在线对MCU微控制器内部的数据进行烧写。比如我们使用的EP1112最新液晶显示器编程器就可以完成这样的工作。 图4 驱动板原理框图 在液晶显示器的维修工作中,当驱动板出现故障时,若液晶显示器原本就使用的是通用驱动板,就可以直接找到相应主板代换处理,当然,仍需要在其MCU 中写入与液晶屏对应的驱动程序;若驱动板是品牌机主板,我们一般采用市场上常见的“通用驱动板”进行代换方法进行维修; “通用驱动板”也称“万能驱动板”。目前,市场上常见的“通用驱动板”有乐华、鼎科、凯旋、悦康等品牌,如图5所示,尽管这种“通用驱动板”所用元器件与“原装驱动板”不一致,但只要用液晶显示器编程器向“通用驱动板”写入液晶屏对应的驱动程序(购买编程器时会随机送液晶屏驱动程序光盘),再通过简单地改接线路,即可驱动不同的液晶屏,通用性很强,而且维修成本也不高,用户容易接受。

基本门电路

基本门电路 一、实验目的 1.了解TTL 门电路的原理、性能和使用方法; 2.掌握基本门电路逻辑功能; 3.熟悉基本运算单元、半加器和全加器的逻辑关系和功能。 二、实验原理 在数字电路中,门电路是实现某种逻辑关系的最基本的单元,任何复杂的组合电路和时序电路都可用逻辑门通过适当的组合连接而成。因此,掌握逻辑门的工作原理,熟练、灵活地使用逻辑门,是学习数字电路的基础。本实验在数字学习机上进行,其各种逻辑电路都是由集成TTL 门电路构成,逻辑关系用正逻辑分析。 1.与门 逻辑功能为当输入端A 与B 均为“1”时,输 出才为“1”,其逻辑函数式为 B A F ?= 2.或门 逻辑功能为当输入端A 或B 有一端为“1”时, 输出为“1”,其逻辑函数式为 B A F += 3.异或门 其逻辑功能为当输入信号A 、B 相同时,输 出为“0”,当两个输入信号不同时,输出为“1”。 其逻辑函数式为 B A B A B A F ⊕=+= 4.半加器 半加器是求同一位上的两个加数和的运算单元。这个和称为半加和或本位和。逻辑表达式为 n n n n n n n B A B A B A S ⊕=+=' n n n B A C =' 式中,n A ,n B 分别表示两个加数在第n 位上的数码,'n S 为本位和,' n C 为该位向高一位的进位。 5.全加器 全加器是在半加器的基础上,能够实现两 个加数的某一位加法运算全功能的逻辑电路。 它不仅能求本位和,而且可以同时将从低位来 的进位也加进去。全加器电路由两个半加器和 一个或门构成,逻辑表达式为 1'1'-++=n n n n n C S C S S 1' -+=n n n n n C S B A C 式中,n S 表示全加和,1-n C 表示低位全加器输 出的进位数,n C 表示本位全加进位数,' n S 表示 半加和。 图20-1 与门电路 F 图20-2 或门电路 F 图20-3 异或门电路 F 图20-4 有异或门的半加器 C 'n S 'n An Bn 图20-5 全加器逻辑图 1

LCD显示器电路原理解说

LCD显示器电路原理解说 一、LCD电源板的工作原理: 1.LM2596系列有LM2596S-3.3 LM2596S-5.0 LM2596S-1 2. LM2596S-ADJ 功能脚: PIN1.VIN:最大输入电压为40V. PIN2.OUT: 5V.3.3V.12V可调整1.2V-37V电压输出. PIN3.GND PIN4.Feedback 检测电压输出波动、改变PIN4电压可改变输出电压。 Vout=Vref(1+R2/R1)Vref=1.25V PIN5.ON/OFF控制。当Pin5电位<1.3V时ON. 当Pin5电位>1.3时OFF。 2.AIC1084-33C输出+ 3.3V。 功能脚:PIN1.GND PIN2.Vout PIN3.VIN 特殊用法:改变PIN1的对地电压即可改变输出电压。Vout= Vout=Vref(1+R2/R1)Vref=1.25V 3.3842构成稳压源输出+12V。 AOC液晶显示器为适用于世界不同国家与地区的交流电压种类和频率的需要,其稳压电源电路都采用UC3842PWM脉宽调制型开关电源集成控制器。 UC3842的工作原理: 7脚为电压输入端,其启动电压范围为16—30V,在电源启动时,如果Vcc 小于16V时输入电压施密特比较器输出为0,此时无基准电压产生,电路不工作,当Vcc大于16V时,输入电压施密特比较器高电平到5V基准稳压器,产生5V基准电压,此电方面供内部电路工作,另一方面通过8脚向外部提供参考电压。当施密特比较器翻转为高电平(即IC启动之后),Vcc可以在10—34V范围内变化而不影响的工作状态,当Vcc低于10V时,施密特比较器又翻转为低电平,电路停止工作。当基准稳压源有5V基准电压输出时,基准电压检测逻辑比较器即送出高电平信号到输出电路,同时,振荡器将根据4脚外接Rt、Ct的参数振荡信号,引信号一路直接加到图腾柱式电路的输入端,另一路加到PWM脉冲宽度控制器RS触发器的置位端,RS型PWM脉宽调制器的R接电流检测比较器输出端,R端为占空比调节控制器,当R电压上升时,Q输出端脉冲加宽,同时6脚送出脉冲也加宽(占空比增大);当R电压下降时,Q输出端脉宽变窄,同时6脚送出的脉冲变窄(上空比减小)。2脚一般接输出电压取样信号,也称反馈信号,当2脚电压上升时,1脚电压将下降,R端随之下降,从而脉宽变窄;反之6脚脉冲变宽。3脚为电流传感端,通常在功率管的源极式发射极串入一小阻值的取样电阻,将流过开关管的电流转换为电压,并将此电压引入3脚,当负载短路或其它原因引起功

相关文档
最新文档