数字摄影测量学复习

数字摄影测量学复习
数字摄影测量学复习

数字摄影测量学

一、绪论

两个基本关系:几何关系、对应性关系

划分摄影测量发展阶段的根本依据是他们处理两种关系的方式

数据获取技术发展

航空数码成像;卫星成像;POS;LiDAR;SAR;低空摄影测量;移动测量系统理论发展

灭点理论;广义点理论;多基线立体;影像匹配理论发展;目标自动识别

应用发展

灭点应用实践;广义点摄影测量的应用;数码城市建模;数据处理新算法

二、数字影像获取与处理(4-9节)

2.4、数字航摄仪

线阵:ADS40、ADS80、TLS、JAS

面阵:DMC、UCD、A3、SWDC

2.5、POS

POS=GPS+IMU

用于在无地面控制或少量地面控制情况下航空遥感对地定位和影像获取

差分GPS获取高精度位置测量数据

INS输出高采样率的位置数据,高精度的姿态数据

2.6、LiDAR

快速获取精确的高分辨率DSM以及地面物体的三维坐标

2.7、航天数字影像获取系统及特点

特点:高分辨率,线阵式CCD、采用有理函数模型、立体成像、定位精度高提供高分辨率的全色、多光谱、高动态范围和高信噪比的影像、多景影像

主要问题:云量和雪量问题;获得与传统航片一样的制图精度比较困难

2.8、SAR

一般是侧视成像,是一种高分辨率相干成像系统;斜距投影

主要存在斑点噪声、斜距影像的近距离压缩、透视收缩、叠掩、阴影及地形起伏引起的像点位移等几方面的问题

2.9、倾斜摄影测量

特点:反映地物周边真实情况、可实现单张影像量测、

建筑物侧面纹理可采集、数据量小易于网络发布

三、摄影测量解析方法(1-6节)

背景:近景摄影测量中,常常采用大角度大重叠度的摄影方式,外方位元素中存在大的旋转角,相邻摄站点之间存在较大的位置差异,初值很难获取。

经典欧拉角方法不再适用。需要不依赖位置与姿态初始值的解析方法。

3.1、空间后方交会

在后方交会中,有效可靠地描述两坐标系之间的旋转关系是解决问题的关键。

描述旋转的常用形式:欧拉角、正交旋转矩阵、四元数

欧拉角:能明确表示旋转矩阵R的几何意义,但需要较好的位置和姿态初值。

方向余弦法

方案:将9个方向余弦值作为待求参数,参与平差解算。R中只有3个独立元素,其余6个参数可以根据6个正交条件推得。因此可根据6个正交条件建立6个条件方程,按附有条件的间接平差直接解算未知参数。

优点:不要求初值,避免了三角函数的计算和欧拉角方法中因旋转角定义不同而导致的公式不同所带来的不便,收敛速度快。

四元数

几何意义:代表了一个转动,可同时确定刚体的位置和姿态。

方案:旋转矩阵用四元数表示,只有一个约束条件,同样据此可建立附有限制条件的间接平常模型解求未知参数

优点:和方向余弦法一致

缺点:较差的初值,收敛情况不如方向余弦法;都能正确收敛时,收敛次数相当,而方向余弦法计算结果更接近于经典欧拉角方法。

Givens变换:用正交变换解最小二乘问题,数值稳定性和解的精度往往优于组成法方程组的方法。当法方程组病态时尤其如此。

3.2、相对定向

原理:共面方程完成标志:上下视差为0。

连续法相对定向元素:以左像空间坐标系为基础,右像片相对于左像片的相对方位元素称为~。

单独法相对定向元素:在以左摄影中心为原点、左主核面为XZ平面、摄影基线为X轴的右手空间直角坐标系中,左右像片的相对方位元素称为~。

大角度相对定向:经典方法μ、v的假设不合理;迭代难以收敛。

基于方向余弦和四元数的连续相对定向均需考虑基线长度的约束条件。

相对定向迭代解法:一般是在影像的内方位和姿态的近似值为已知时被应用。

相对定向直接解法:当内方位、姿态均为未知时采用。

原理:展开共面方程,将所有未知元素合并用系数L表示。利用8对以上同名点,解算其中8个未知数。再由这8个系数求得连续像对的相对定向元素。

;检验|φ|<π/2,|ω|<π/2以舍去不符合的解。注:反求过程首先假定B

x

3.3、核线几何关系解析与核线排列

确定同名核线的两种方法:基于数字影像的几何纠正;基于共面条件

极线几何:描述两张像片之间的内部投影几何关系(由基本矩阵来表达),与场景结构无关,由摄像机内方位元素和像对的相对姿态唯一确定。

极线几何实质:以摄影基线为轴的平面束与像平面的交线构成的几何关系

基本矩阵应用:立体匹配时寻找同名点;粗差点剔除。

表明匹配点应遵循的核线约束方程,反过来,也可以通过两幅图像之间的匹配点恢复出基础矩阵F。

利用相对定向直接解法进行核线排列

核线的重排列:直接在倾斜像片上获取核线影像;在水平像片获取核线影像

3.4 数码相机检校

相机检校:影像进行高精度量测前,相机进行畸变差的测定和补偿,同时测定出相机主距和像主点坐标等参数的过程。

光学畸变差:相机物镜系统设计、制作和装配所引起的像点偏离其理想位置的点位误差。分为径向畸变、偏心畸变、薄棱镜畸变

检校方法:光束法平差、张正友平面网格法、二维DLT

3.5、直线摄影测量

以线状特征为观测值,列立共面条件方程。

在统一坐标系下(像方、物方)建立条件平差模型。

不要求点与点之间严格对应,只要求点集对应。

适用于框幅式中心投影。

每条控制直线列两个独立条件方程,求解外方位元素至少需三条非退化直线。为了保持观测值精度,应选择直线上相距较远的两点或两个端点

最基本成像条件是:在统一的坐标系下,地面上的直线地物与影像上对应的直线特征共面,而且该平面通过成像瞬间的投影中心S。

优点:

在物方空间,线特征提取相对较容易,并且大量的矢量地图和移动测图系统也提供了越来越多线状特征;

增加线特征将增加平差计算的观测值冗余度和几何约束条件,直线摄影测量可以取得和常规摄影测量同样高的精度和可靠性,甚至会更好,且为观测值

的自动量测提供了方向;

同名直线上的点不要求一一对应,不要求同名线段,只要求同名直线;

直线特征与物方特征的关系十分密切;

在处理带有遮掩和不确定信息的情况下,直线特征具有点特征所没有的优点。

3.6、广义点摄影测量

基本思想:从对物理意义上的点列共线条件方程,变成对数学意义上的点列共线条件方程,区别在于特征线上的点(数学意义)根据方向只列一个关于x或y的条件方程。可将各种特征的条件方程变为统一的形式:共线方程,进而统一的平差。

优点:各种特征统一平差,适用于各种遥感影像(包括线阵CCD)。

基于直线:将像方直线上的点到物方直线投影到像方的直线的距离作为残差。

像点坐标由物方直线上一点投影到像方的坐标和像方直线共同确定

(实际上根据直线方向选择残差形式x或y)

基于曲线:未知物方曲线函数参数,可与外方位元素同时求解;已知情况,可将曲线方程代入共线方程求解

基于复杂曲线:折线代替曲线;首先用本次迭代的外方位元素的初值计算对应的影像坐标,然后在像方标号对应线段及其前后几个线段中遍历,找出距离该投影点最近的一个线段,以此作为对应像方线段,按照前面叙述的直线的误差方程式列出该地面点的误差方程式。

一个点列一个误差方程,一条直线列两个,一个圆列n个

四、影像特征量测

定义:利用一定的算法对影像上的点、线等特征进行识别、提取并精确量测其坐标的过程。

4.1、影像特征与信息量

影像特征:由于景物的物理与几何特性使影像中局部区域的灰度产生明显变化而形成。

影像的熵:影像信息量的度量

四种熵:Shannon-Wiener熵、条件熵、平方熵与立方熵

Shannon-Wiener熵:

对于均匀分布的灰度其熵最大;熵可用于影像编码;局部熵反映影像的特征是否存在,具有辐射失真不变性,对噪声不敏感。

可以用局部熵来检测特征,或用各种梯度或差分算子提取特征

4.2、点特征提取

点特征:主要指影像上的明显点,如圆点、角点等

Moravec算子:

在四个主要方向上,选择具有最大最小灰度方差的点作为特征点。

过程:计算兴趣值->选择候选点->抑制局部非最大

缺点:差分近似偏导数只考虑极小值,易受噪声影响。

Harris算子:

图像中某一像素点的自相关矩阵,其特征值是自相关函数的一阶曲率,如果X、Y两个方向上的曲率值都高,那么就认为该点是角点。

过程:计算梯度->高斯滤波->计算M、响应值->非极大值抑制

增大k值,将减小角点响应值R,降低角点检测的灵敏度,减小被检测角点的数量;

优缺点:只用到一阶导数,不涉及阈值,计算简单,自动化程度高,提取的点特征均匀、合理而且稳定。但影像尺度改变其特征也会跟着改变。

Fǒrstner算子:

计算各像素的Robert’s梯度和像素(c,r)为中心的一个窗口的灰度协方差矩阵,在影像中寻找具有尽可能小而接近圆的误差椭圆的点作为特征点。过程:计算Robert’s梯度->灰度协方差阵->q(误差椭圆圆度)、w(权值)->确定待选点->选择极值点

可首先用一简单的差分算子提取初选点,然后采用Fǒrstner算子在3*3窗口计算兴趣值,并选择备选点最后提取的极值点为特征点。

优点:能给出特征点的类型且精度较高,同时对影像亮度和对比度变化敏感;

复杂性:Moravec算子

SUSAN算子:提取角点及边缘特征

同化核同值区:在图像上设置一个移动的圆形模板,若模板内的像素灰度与模板中心的像素差值小于给定的阈值,则认为该点与中心点是同值的,由满足这样条件的像素组成的区域叫做~。

在一幅图像中搜索图像角点或边缘点,就是搜索SUSAN最小(小于一定值)的点,即搜索最小化同化核同值区。

阈值越小,可从对比度越低的图像中提取特征。

过程:确定掩膜核->掩膜2维遍历->形成角点强度图像->去除伪点->抑制局部非最大

优点:无需梯度运算,具有积分特征、良好的定位能力

在纹理信息丰富的区域,SUSAN算子对明显角点提取的能力较强;在纹理相近处,Harris算子提取角点的能力较强。

4.3、线特征提取

线特征:影像的“边缘”与“线”

边缘:影像局部区域特征不相同的那些区域间的分界线

线:具有很小宽度的其中间区域具有相同的影像特征的边缘对

距离很小的一对边缘构成一条线;线特征提取算子通常也称边缘检测算子

一阶差分算子中若卷积值大于阈值,二阶差分算子若卷积值过零点

则模板中心点对应像素就是边缘点

LSD算子

基本思想:首先利用高斯模板对原始图像进行去噪处理,然后计算每个像素的梯度幅值和梯度方向,并对梯度幅值进行排序,按照梯度幅值的顺序,通过迭代方法将具有梯度方向相似性的像素划分为具有同一梯度方向的像素区域,最后利用矩形结构逼近这些相同梯度方向的区域,取矩形结构的中心线作为该区域线段特征。

过程:梯度幅值和梯度方向估计->直线支撑区域生成->矩形逼近直线支撑区域->直线检测

优点:实时性、准确性、鲁棒性,计算效率高,不需过多设置参数,能控制虚假直线

4.4、面特征提取

影像分割是提取面特征的主要手段

图像分割算法大致分为三类

基于阈值:计算量小、易于实现,但未考虑空间特征,抗噪性差;

基于边缘:抗噪性和检测精度难以兼顾

基于区域:区域生长、分裂合并、分水岭分割、空间自相关

遥感影像分割的难点:数据量明显增加;同物异谱;尺度依赖性强

4.5、圆点特征定位

Wong-Trinder圆点定位算子

基本思想:利用二值图像重心对圆点进行定位。首先将窗口中的影像二值化,再计算目标重心坐标(x,y)与圆度r.当r小于阈值时,目标不是圆;否则圆心为(x,y)。阈值取最小灰度值与平均灰度值和的一半。

受二值化影响,误差可达0.5像素。

用原始图像灰度作为权进行改进,理想情况下,定位精度可达0.01像素。

椭圆拟合法

基本思想:首先用边缘检测算子对椭圆边缘进行粗定位,然后剔除粗差,再对像素级边缘点进行亚像素边缘检测得到亚像素精度的边缘点,最后对提取的标志边缘点进行椭圆最小二乘拟合,从而确定标志中心的精确位置。

定位精度约为0.02像素

4.6、角点特征定位

Fǒrstner定位算子

特点:速度快、精度较高

步骤:最佳窗口选择->在最佳窗口内加权重心化

以原点到窗口内边缘直线的距离为观测值,梯度模之平方为权,列误差方程

高精度角点与直线定位算子

一维理想边缘的成像为刀刃曲线;梯度与系统的线扩散函数成正比。

平差模型采用梯度的模为观测值。因为梯度方向代替直线方向存在不容忽视的误差,Hough变换等使用梯度方向的方法不可能达到很高的精度。

过程:确定窗口(粗定位)->列误差方程(梯度模为观测值)->确定直线参数初值(Hough变换)->剔除粗差(选权迭代)->计算角点->评估精度

五、基于灰度的影像匹配(概述,3、4节)

匹配:在不同数据集合之间建立对应或相关关系

影像匹配:在影像间建立对应关系,

实质:在两幅(或多幅)影像之间识别同名点

配准:在遥感影像和地图间建立对应关系

数字影像匹配:在两张或多张数字影像的要素之间自动建立对应关系,这些影像是(或至少局部是)对同一场景在不同位置或不同时刻的成像。

要素:是数字影像中的点(即像素),也可以是数字影像中提取的其它特征

5.1、数字影像匹配基础

理论基础:相关函数

四类遥感影像配准:不同主点、不同时期、不同传感器、场景到模型

需考虑:几何变形类型、辐射变形类型、噪音干扰、匹配精度、应用类型等

5.2、基于灰度影像匹配

定义:以影像上局部范围内的灰度值及其分布作为匹配实体(或比较要素),通过计算匹配实体之间的相似性测度寻找共轭实体的影像匹配方法

相似性测度(代价函数)

距离型:差平方和、差绝对值

方向型:相关函数、协方差函数(中心化)

夹角型:相关系数(标准化)

局限性:窗口形状、窗口影像内容、影像强度的变化

5.3、VLL法

定义:直接确定物体表面点空间三维坐标的影像匹配方法

铅垂线轨迹法影像匹配

过程:给定地面点的平面坐标,与近似最低高程。从最低高程出发,计算像点坐标、相关系数,按步长搜索Z,使相关系数最大。可用抛物线拟合法或

减小步长增加精度

基于物方的多视影像匹配

过程:确定过目标点的光线S

0p

,根据目标点初始高程和误差,确定高程搜索

范围,根据精度要求确定步长。计算物方坐标,像点坐标,n幅待匹配影像窗口与目标影像窗口的相关系数,按步长搜索Z使相关系数和最大。

5.4、最小二乘影像匹配

基本思想:依据目标窗口影像的灰度值分布,以搜索窗口的中心位置和形状作为待定参数,通过极小化目标窗口与搜索窗口的影像灰度值差的平方和来估计待定参数值,从而确定同名点。

特点:考虑辐射畸变、几何畸变,搜索窗口的形状是不断变化的

优点:模型化几何变换、精度高、符合误差传播定律

不仅可以被用于一般的数字地面模型获取、正射影像生成,而且可以用于控制点的加密(空中三角测量)及工业上的高精度测量

可以引入各种已知参数和条件,进行整体平差;可以引入粗差检测

可以求单点视差、空间坐标,同时求待定点坐标与影像的方位元素

还可以解决多点、多片影像匹配

缺点:要求相对精确的初值

单点最小二乘:

过程:迭代进行匹配,计算改正值、变形参数,几何畸变改正、重采样,辐射畸变改正,计算相关系数

带有共线条件的多片影像匹配

基本思想:将共线条件作为制约条件,最小二乘影像匹配与共线方程两类误差方程联合组成法方程式

误差方程式个数n×m×m+2n未知数个数6×n+3

VLL方式的最小二乘解

物方空间点的平面位置是固定的,当高程改变时,目标窗口和搜索窗口影像都会改变。

误差方程式个数m×m未知数个数8

引入共线条件:误差方程式个数m×m+4 未知数个数8+1

多片影像匹配:误差方程式个数n×m×m+2n+2未知数个数2+6×n+3

位置偏移向量a

0、b

的估计精度由3个参数所决定:

影像噪声方差、窗口内像素数量N、梯度图像的方差和协方差

六、基于特征的影像匹配(1-3节)

6.1、特征匹配概述

特征匹配:通过计算从影像中提取的特征属性或描述参数之间的相似性测度来实现配准的影像匹配方法。具有整像素定位精度

步骤:特征提取->候选特征的确定->变换参数估计或最终的特征对应

影像匹配策略

建立金字塔多层数据结构:先验视差未知,已知两种情况确定层数

特征提取:分级,提取方式与目的相适应,点的两种分布方式

特征点的匹配:二维与一维匹配;匹配的备选点选择方法;提取与匹配的顺序;匹配的准则;粗差的剔除

6.2、跨接法影像匹配

先进行几何改正再进行特征匹配

特征参数:三个特征点(灰度梯度最大点、两个突出点)的像素号与△g

过程:特征提取->构成跨接法匹配窗口(两个特征连接)->跨接法影像匹配计算目标窗口与重采样的匹配窗口的相关系数,按最大相关系数的准则确定同名特征。

相对几何变形改正并不要求重采样后的搜索窗口的形状与目标窗口的形状完全相同。只要求长度相同

6.3、SIFT影像匹配

基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的特征匹配适用于具有几何畸变、辐射畸变、空间分辨率不一致的影像

优点:

1.SIFT特征是图像的局部特征,对旋转、尺度缩放、亮度变化保持不变性,

对视角变化、仿射变换、噪声也保持一定程度的稳定性。

2.独特性好,信息量丰富,可在海量特征数据库中进行快速、准确的匹配

3.多量性,即使少数的几个物体也可以产生大量SIFT特征向量。

4.可扩展性,可以很方便的与其它形式的特征向量进行联合。

缺点:实时性不高、有时特征点少、对边缘模糊的目标无法准确提取特征点

SIFT特征提取

1)尺度空间的极值探测;

高斯核是实现尺度变换的唯一线性变换核;一幅二维图像,在不同尺度下的尺度空间表示可由图像与高斯核卷积得到;

尺度空间因子越小:图像被平滑的越少,相应的尺度也就越小

DOG算子:两个不同尺度的高斯核的差分;LOG算子的近似

2)关键点的精确定位;

通过拟合三维二次函数以精确确定关键点的位置;

目的:进一步精化极值点在图像尺度空间的位置

方法:对尺度空间函数进行泰勒展开,求取函数极值进行位置修正

同时去除低对比度的关键点和不稳定的边缘响应点

3)确定关键点的主方向;

使SIFT算子具有旋转不变性

一个关键点可能会被指定具有多个方向

4)关键点的描述。

对每个关键点使用4×4共16个种子点来描述;每个种子点有8个方向

向量信息;这样对于一个关键点就可以产生128维的SIFT特征向量。

长度归一化可去除光照的影像

SIFT特征匹配

当两幅影像的SIFT特征向量生成后,采用关键点特征向量的欧式距离作为两幅影像中关键点的相似性判定度量。

在目标图像中取出某个关键点,并通过遍历找出其与右影像中欧式距离最近的前两个关键点。如果最近的距离与次近的距离比值少于某个阈值(经验值

0.8),则接受这一对匹配点。降低阈值,可增加匹配点的正确率,但匹配点

数同时会减少。

优化:

尺度空间的层数

约束条件:唯一性约束、核线约束、视差范围约束、互对应约束

核线上特征点的快速查找:将影像划分为格网,并记录每一格网中的特征点高维空间搜索的优化算法:BBF算法、哈希表查找

粗差剔除:RANSAC算法

6.4、RANSAC估计

思想:尽量用比较少的点估计出模型,再用剩余点来检验模型。减轻了存在严重错误点时异常数据对模型参数估计的影响。

基本假设:数据集中含有噪声;给定一组正确的数据,存在可以计算出符合这些数据的模型参数的方法

基于RANSAC算法的直线估计

随机选择两点确定一条直线l;根据阈值t,确定与直线l的几何距离小于t 的数据点集S(l),并称它为直线l的一致集;

重复若干次随机选择,得到n条直线和相应的一致集;

使用几何距离,求最大一致集的最佳拟合直线,作为数据点的最佳匹配直线。

RANSAC用于误匹配剔除

自动提取两幅图像的特征点集,建立初始“匹配对集”

RANSAC去除错误匹配对

由最大一致集(即正确匹配对)重新估计基本矩阵

七、整体影像匹配(1-2节)

整体影像匹配:考虑相容性、一致性、整体协调性,可以纠正或避免错误的结果,从而可以提高影像匹配的可靠性。

算法:多点最小二乘影像匹配、松弛法影像匹配、动态规划影像匹配、人工神经网络影像匹配、半全局影像匹配等

7.1多点最小二乘影像匹配

定义:将有限元内插法与最小二乘影像匹配相结合,直接解求规则分布格网上的视差(或高程)的整体影像匹配方法

有限元法:为解算一个函数,有时需要把它分成为许多适当大小的“单元”,在每一个单元中用一个简单的函数来近似的代表它。对于曲面也可以用大量的有限面积单元来趋近它,这就是~

任意一点的视差值可用其所在格网的4个顶点的视差值作双线性内插求得。以视差为参数展开误差方程;

与起起视差表面平滑作用的虚拟误差方程式联合求解

优点:不仅可以基于像方,也可基于物方;可同时确定地形特征线。

缺点:即使采用多级数据结构,收敛速度也很慢。

7.2、松弛法影像匹配

并行算法:对每个象素的处理是独立的,不依赖于其他象素的处理结果;

效率高,但可能产生与邻近的结果不协调和不合理的现象

串行算法:在处理某个像元时,须要考虑先前已处理过的邻近点的结果;

在相关算法中引入了预测,减小了搜索范围,减少了运算工作量;在某种意义上,还可以减少相关的粗差。但先前结果出错会影响后面的处理结果。

松弛算法:是一种并行和迭代的算法,在每一次迭代过程中,在每一点上的处理是并行的,但是在下一次迭代过程,它将根据上次迭代过程中周围点上的处理结果来调整期结果。

基本思想:在松弛法的每一次迭代计算过程中,它并不进行绝对的分类,只是确定概率,每次迭代过程中求得P

的增量,增量由相容系数决定

ij

基于松弛法的整体影像匹配

影像匹配的实质是确定左(或右)影像中某个目标(或像点)j 在另一张影像上的共轭目标(或像点)i 的问题。若将目标点j 视为类别,而共轭备选点i 的集合视为目标,则影像匹配问题可用松弛法来解决

整体影像匹配过程

局部匹配:根据匹配窗口的影像信息,计算其相似性测度,给出候选匹配点整体挑选:根据挑选规则从候选匹配点中选出最终的匹配结果

整体最佳:通过邻域内匹配点的兼容性来实现。

好的匹配点获得的邻域支持强度较大,坏的匹配点获得的邻域支持强度较小。

相容系数:通过邻域内匹配点的视差变化的一致性来确定

八、数字微分纠正(2-4节)

基本任务:实现两个二维图像之间的几何变换

定义:根据有关的参数与数字地面模型,利用相应的构像方程式,或按一定的数学模型用控制点解算,从原始非正射数字影像获取正射影像,将影像化为很多微小的区域逐一进行,且使用数字方式处理的过程

直接法:由原始像点求纠正后的相应点坐标

间接法:由纠正后的像素坐标反求原始像点

8.1框幅式中心投影影像的数字微分纠正

间接法特点:纠正图像上所得的点规则排列,在规则排列的灰度量测值中进行灰度内插,适合于制作正射影像图

直接法特点:是一个迭代运算过程;纠正图像上所得的点非规则排列,有的像元可能“空白”(无像点),有的可能重复(多个像点),难以实现灰度内插并获得规则排列的纠正数字影像

8.2线性阵列扫描影像的数字微分纠正

处理过程

1.根据图像的成像方式确定影像坐标和地面坐标之间的数学模型;

2.根据所采用的数学模型确定纠正公式;

3.根据地面控制点和对应像点坐标进行平差计算变换参数,评定精度;

4.对原始影像进行几何变换计算,像素亮度值重采样。

纠正方法:共线方程法,有理函数法,多项式法

共线方程法

间接法:

首先求各元素对应的外方位元素,才能求出该相应像点的y及t,或y及x 关键在于确定像点的成像时刻,需要迭代计算

实用过程:DEM重采样得到规则格网->每个DEM网格,利用共线方程反求出其四个格网点对应的像点坐标(仍需迭代)->逐像素进行正射纠正

直接法:过程与框幅式中心投影影像的正解法过程基本相同

直接法与间接法相结合:(无需迭代)

在影像上确定一个规则格网,其所有格网点的行、列坐标已知,间隔按像元的地面分辨率化算后与数字高程模型DEM的间隔一致,用直接法解算它们的地面坐标,这些点在地面上是一个非规则网点,由它们内插出地面规则格网点对应的像坐标,再按间接法进行纠正

8.3、数字真正射影像

遮蔽

绝对遮蔽:被遮挡的建筑物在影像上不可见

相对遮蔽:地面上有些区域在一张像片上可见,而在另一张影像上不可见

真正射影像以DSM为基础来进行数字微分纠正

1.利用DSM进行正射纠正,改正由地形起伏和建筑物造成的投影差;

2.检测并标识被建筑物遮挡的区域;

3.合并相邻的正射影像,对被遮挡区域进行填充。

多度重叠影像:选择一张影像作为主纠正影像,而其它影像则作为从属影像遮挡部分在从属影像上可见,否则利用相邻区域的纹理进行填充补偿

对生产工艺、成本、航空摄影等多方面都提出了更高的要求

提取DSM或DBM十分耗时

8.4、数字正射影像的匀光匀色

影像镶嵌技术:将同一场景中的两幅或者两幅以上有部分重叠区域的影像进行镶嵌从而得到宽视角影像的过程

匀光匀色:为了消除影像照度与色彩上的差异,对影像进行的色彩平衡处理

单幅影像匀光:Mask法

过程:用一张模糊的透明正片作为遮光板,将模糊透明正片与负片按轮廓线叠加在一起进行晒像,得到一张反差较小而密度比较均匀的像片;然后用硬性相纸晒印,增强整张像片的总体反差;最后得到晒印的光学像片

原理:模拟出影像的背景影像,将其从原影像中减去就可以得到受光均匀的影像;然后进行拉伸处理增大影像的反差,就可以消除单幅影像的光照不平衡现象

背景影像的生成的两种方法

基于影像的成像模型对亮度分布不均匀问题进行处理

利用低通滤波的方法,从影像中快速分离出亮度分布信息

多幅影像匀光:Wallis滤波器

采用线性变换将局部影像的灰度均值和方差映射到给定的灰度均值和方差确定标准参数再变换,彩色影像分通道,选择一张具有代表性的作为基准

摄影测量学基础复习资料

名词解释 1空中三角测量:利用航摄像片与所摄目标之间的空间几何关系,根据少量像片控制点,计算待求点的平面位置、高程和像片外方位元素的测量方法。 2像点位移:由于在实际航空摄影时,在中心投影的情况下,当航摄的飞行姿态出现较大倾斜即像片有倾斜,地面有起伏时,便会导致地面点在航摄像片上构像相对于在理想情况下的构像,产生了位置的差异,这一差异称为像点位移。 3摄影基线:航线方向相邻两个摄影站点间的空间距离。 4航向重叠:同一条航线上,相邻两张像片应有一定范围的影像重叠,称为航向重叠。 5旁向重叠:相邻航线相邻两像片的重叠度 6同名核线:同一核面与左右影像相交形成的两条核线,其中核面指物方点与摄影基线所确定的平面。 7像片的内方位元素:表示摄影中心与像片之间相互位置的参数,f,x0,y0 8像片的外方位元素:表示摄影中心和像片在地面坐标系中的位置和姿态的参数。 9相对定向:根据立体像对内在的几何关系恢复两张像片之间的相对位置和姿态,使同名光线对对相交,建立与地面相似的立体模型。即确定一个立体像对两像片的相对位置。 10绝对定向元素:描述立体像对在摄影瞬间的绝对位置和姿态的参数。 11单像空间后方交会:利用至少三个已知地面控制点的坐标,与其影像上对应三个像点的影像坐标,根据共线条件方程,反求该像片的外方位元素。 12空间前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。 13同名像点:同名光线在左右相片上的构像 填空 1、4D 产品是指 DEM 、DLG 、DRG 、DOM 。 2、摄影测量按用途可分为地形摄影测量、非地形摄影测量。 3、摄影测量学的发展经过了模拟摄影测量、解析摄影测量、数字摄影测量三个阶段。 4、模拟摄影测量是利用光学/机械投影方法实现摄影过程的反转。 5、解析摄影测量以电子计算机为主要手段,通过对摄影像片的量测和解析计算方法的交会方式来研究和确定被摄物体的形状、大小、位置、性质及其相互关系,并提供各种摄影测量产品的一门科学。 6、像点坐标的系统误差改正主要包括底片变形改正,摄影机物镜畸变差改正,大气折光改正和地球曲率改正。 7、共线方程表达的是像点、投影中心与地面点之间关系。 8、立体摄影测量基础是共面条件方程。 9、把一条航线的航摄像片根据地物影像拼接起来,各张像片的主点连线不在一条直线上,而呈现为弯弯曲曲的折线,称航线弯曲。 10、航摄像片为量测像片,有光学框标和机械框标。 11、地图是地面的正射投影,像片是地面的中心投影。 12、在像空间坐标系中,像点的z 坐标值都为-f 。 13、一张像片的外方位元素包括:三个直线元素(Xs 、Ys 、Zs ):描述摄影中心的空间坐标值;三个角元素(?、ω、κ) ) :描述像片的空间姿态。 14、相对定向的理论基础、目的、标准是两像片上同名像点的投影光线对对相交。 15、双像解析摄影测量的任务是利用解析计算方法处理立体像对,获取地面点的三维空间信息。 16、在摄影测量中,一个立体像对的同名像点在各自的像平面坐标系的x 、y 坐标之差,分别称为左右视差、上下视差。 17、解析法相对定向的理论基础是同名光线对对相交于核面内。 18、解析绝对定向需要量测 2 个平高和 1 个高程以上的控制点,一般是在模型四个角布设四个控制点。 19、解析空中三角测量按数学模型分为航带法、独立模型法、光束法。 20、像底点上不存在投影差,但存在倾斜误差。倾斜航片上等比线上点的倾斜误差等于零。 21、立体模型空间相对定向时,连续像对的相对定向元素为 ,单独像对的相对定向元素为 。 22、某像点的像平面坐标为(x,y),摄影仪主距为f ,则该点在像空间坐标系中的坐标为(x ,y ,-f )。 23、摄影测量采用的五种常用坐标系中,地面测量坐标系是左手系。 222 v w b b φωκ、、、、22211ωκ?κ?、、、、

摄影测量学复习资料

摄影测量学 第一章 1、摄影测量的定义、任务? 定义:摄影测量与遥感是从非接触成像和其他传感器系统,通过记录、量测、分析与表达等处理,获取地球及其环境和其他物体可靠信息的工艺,科学与技术。其中摄影测量侧重于提取几何信息,遥感侧重于物理信息。任务:(1)测绘各种比例尺地形图。(2)建立数字地面模型(地形数据库)。 2、摄影测量学:是对研究的对象进行摄影,根据所得的构象信息,从几何方面和物理方面 加以分析研究,从而对所摄对象的本质提供各种资料的一门学科。 3、解决的基本问题:几何定位和影像解译。 4、摄影测量的三个发展阶段及其特点。 1、航摄仪物镜的焦距与其主距有什么不同? 焦距:自物方主点S1到物方焦点F1的距离称为光学系的物方焦距f1;自像方主点S2到像方焦点F2的距离称为镜头的像方焦距f2。 主距:像主点和摄影机物镜后节点之间的距离称为摄影机主距。 2、量测摄影机与非量测摄影机的区别? (1)量测摄影机的主距是一个固定的已知值 (2)量测摄影机的承片框上具有框标,即固定不变的承片框上,四个边的中点各安置一个机械标志;框标,其目的是建立像片的直角,框标坐标系。 (3)量测摄影机的内方位元素是已知值。 3、航向重叠:摄影时飞机沿相邻影像之间必须保持一定的重叠度。一般P=50%~65%;P值最小不能小于53%。 旁向重叠:完成一条航线的摄影后,飞机进入另一条航线进行测量摄影,相邻航线影像之间也必须有一定的重叠。一般q=30%~40%,最小不得小于15%。 4、B与近景C之间这一段间隔内的所有景物,在像面上仍可获得清晰的图像,此时,近景 与远景之间的纵深度称为景深。 5、超焦点距离:当物镜向无限远物体对光时,不仅远处的物体构象清晰,而且在离开物镜 不小于某一距离H的所有物体,其构象都很清晰,这个距离H就称为超焦点距离。 第三章 1、航摄像片上特殊的点、线、面。 (1)像主点:摄影中心S在像片平面上的投影点。 (2)像底点:主垂线与像片面P的交点n称为像底点。 (3)等角点:倾角α的平分线与像片面交于点C称C点为等角点。 (4)主纵线:主垂面W与像平面P的交线称为主纵线W。 (5)等比线:过像主点平行于合线的直线称为等比线。 2、摄影测量常用的坐标系统,它们是如何定义的? (1)像平面坐标系:是以该像片的像主点为坐标原点的坐标系,用来表示像点在像片面上的位置,在实际应用中,常采用框标连线的交点为坐标原点,称为框标平面坐标系。X、y轴的方向按需要而定,常取与航线方向一致的连线为x轴,航线方向为正。 (2)像空间坐标系:以摄影中心S为坐标原点,X轴和Y轴分别与像平面直角坐标系的X轴和Y轴平行,Z轴与主光轴重合,向上为正,像点的像空间坐标系表示为(x、y、-f)。 (3)像空间辅助坐标系:其坐标原点是摄影中心S坐标轴依情况而定,通常有三种方法:a、以每一条航线的第一张像片的像空间坐标系作为像空间辅助坐标系。 b、取u、v、w轴系分别平行于地面摄影测量坐标系D-XYZ,这样同一像点a在像空间坐标系中的坐标为x、y、z=(-f),而在像空间辅助坐标系中的坐标为u、v、w。 c、以每个像片对的左片摄影中

摄影测量学考试复习.docx

4D 产品是指DEM、DLG、DRG、DOM。 摄影测量学:是利用光学摄影机摄取照片,通过像片来研究和确定被摄物体的形状大小位置和相互关系的一门科学技术摄影测量按远近分为航天摄影测量、航空摄影测量,地面摄影测量,近景摄影测量,显微镜摄影测量。 摄影测量按用途口J分为地形摄影测量、非地形摄影测量。 摄影测量学的发展经过了模拟摄影测量、解析摄影测量、数字摄影测量三个阶段。 2.由于立体像对选取的像空间辅助坐标系的不同分为连续邃戒与里独像对 摄影机的主距:航空摄影物镜中心至底片面的距离是固定值1?摄影比例尺:严格讲,摄影比例尺是指航摄像片上一线段为J与地向上相应线段的水干距L之比。摄影像片的影像比例尺处处均不相等 3?摄影航高:摄影机的物镜中心至该面的距离 2?绝对航高:摄影物镜相对于平均海平而的航高,指摄影物镜在摄影瞬间的真实海拔高度。 3?相对航高:摄影物镜相对于某一基准面或某一点的高度 2 ?制定航摄计划: 1.确定摄区范围; 2.选择航摄仪; 3.确定航摄仪的比例尺;4,确定摄影航高;5,需要像片数,F1期等。 5.摄影基线:航线方向相邻两摄站点间的空间距离称为摄影基线。 2?摄影资料的基本要求:1.影像的色调,2.像片的重叠,3.像片倾角,4.航线弯曲,5,像片旋角 2?像片倾角:空中摄影采用竖直摄影方式,即摄影瞬间摄影机的主光轴近似与地面垂直,它偏离铅垂线的夹角应小于3D,夹角称为像片倾角。 3?航向重叠:同一条航线内相邻像片之间的影像重叠称为航向重叠,一般要求在60%以上。目的:保 证像片立体量测与拼接 4?旁向重叠:相邻航线的重叠称为旁向重叠,重叠度要求在24%以上 5?中心投影:投影光线会聚与一点 7?像主点:摄影机主光轴在框标平面上的垂足 &像底点:主垂线与像片面的交点 2 ?摄影测量常用的坐标系统有哪些? 像平面坐标系;像空间坐标系;像空间辅助坐标系;摄影测量坐标系;地面测量坐标系 3.对于一张航摄像片其内外方位元素为内外方位元素均为常数, 8?内方位元素:内方位元素是表示摄影中心与像片之间相关位置的参数,包括三个参数。即摄影中心 到像片的垂距(主距)f及像主点o在像框标坐标系中的坐标兀。,儿 9?外方位元素:在恢复内方位元素的基础上,确定摄影光束在摄影瞬间的空间位置与姿态的参数称为外方位元素, 外方位角元素:确定像空间坐标系的三轴在地面坐标系中的方向。 14 ?像点在像空间直角坐标系与像空间辅助坐标系的变换关系: U X坷a2 a3X V=R y—久b2伏y W-f°1 C2°3-f 13?同名像点:同名光线在左右相片上的构像 14 ?摄影基线:同一航线内相邻两摄站的连线 15?核线:核面与像片的交线,核线会聚于核点 16?核面:摄影基线与地而点所作平而 17.同名像点:地面上一点在相邻两张像片上的构像

摄影测量学复习资料(全)分析解析资料

一、名词解释 1、解析相对定向:根据同名光线对对相交这一立体相对内在的几何关系,通过量测的像点坐标,用解析计算方法解求相对定向元素,建立与地面相似的立体模型,确定模型点的三维坐标。 2、GPS辅助空中三角测量:将基于载波相位观测量的动态 GPS 定位技术获取的摄影中心曝光时刻的三维坐标作为带权观测值,引入光束法区域网平差中,整体求解影像外方位元素和加密点的地面坐标,并对其质量进行评定的理论和方法。 3、主合点:地面上一组平行于摄影方向线的光束在像片上的构像 4、核线:立体像对中,同名光线与摄影基线所组成核面与左右像片的交线。 5、航向重叠:同一条航线上相邻两张像片的重叠度。 6、旁向重叠:两相邻航带摄区之间的重叠。 7、影像匹配:利用互相关函数,评价两块影像的相似性以确定同名点 8、影像的内方元素:是描述摄影中心与像片之间相关位置的参数。 9、影像的外方元素:描述像片在物方坐标的位置和姿态的参数。 10、景深:远景与近景之间的纵深距离称为景深 11、空间前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。 12、空间后方交会:利用一定数量的地面控制点,根据共线条件方程或反求像片的外方位元素这种方法称为单张像片的空间后方交会。 13、摄影基线:相邻两摄站点之间的连线。 14、像主点:像片主光轴与像平面的交点。 15、立体像对:相邻摄站获取的具有一定重叠度的两张影像。 16、数字影像重采样:当欲知不位于采样点上的像素值时,需进行灰度重采样。 17、核面:过摄影基线与物方任意一点组成的平面。 18、中心投影:所有投影光线均经过同一个投影中心。 19、单模型绝对定向:相对定向所构建的立体模型经平移、缩放、旋转后纳入到地面坐标系中的过程相对定向:根据立体像对内在的几何关系恢复两张像片之间的相对位置和姿态,使同名光线对对相交,建立与地面相似的立体模型。即确定一个立体像对两像片的相对位置。 20、数字影像内定向:同一像点的像平面坐标与其扫描坐标不相等,需要加以换算,这种换算称为数字影像内定向。 21、像主点:摄影机主光轴在框标平面上的垂足 22、内部可靠性:一定假设条件下,平差系统所能发现的模型误差的下界值 22、外部可靠性:一定显著性水平和检验功效下,平差系统不能发现的模型误差对平差结果的影响。 23、摄影学:利用光学摄影机摄取相片,通过相片来研究和确定被摄物体的形状,大小,位置和相互关系的一门学科技术。 24、影像信息学:是一门记录、储存、传输、量测、处理、解译、分析和显示由非接触传感器影响获得的目标及其环境信息的科学技术和经济实体。

摄影测量学复习

1空中三角测量:利用航摄像片与所摄目标之间的空间几何关系,根据少量像片控制点,计算待求点的平面位置、高程和像片外方位元素的测量方法。 2像点位移:由于在实际航空摄影时,在中心投影的情况下,当航摄的飞行姿态出现较大倾斜即像片有倾斜,地面有起伏时,便会导致地面点在航摄像片上构像相对于在理想情况下的构像,产生了位置的差异,这一差异称为像点位移。 3摄影基线:航线方向相邻两个摄影站点间的空间距离。 4航向重叠:同一条航线上,相邻两张像片应有一定范围的影像重叠,称为航向重叠。 5旁向重叠:相邻航线相邻两像片的重叠度 6同名核线:同一核面与左右影像相交形成的两条核线,其中核面指物方点与摄影基线所确定的平面。 7像片的内方位元素:表示摄影中心与像片之间相互位置的参数,f,x0,y0 8像片的外方位元素:表示摄影中心和像片在地面坐标系中的位置和姿态的参数。 9相对定向:根据立体像对内在的几何关系恢复两张像片之间的相对位置和姿态,使同名光线对对相交,建立与地面相似的立体模型。即确定一个立体像对两像片的相对位置。 10绝对定向元素:描述立体像对在摄影瞬间的绝对位置和姿态的参数。 11单像空间后方交会:利用至少三个已知地面控制点的坐标,与其影像上对应三个像点的影像坐标,根据共线条件方程,反求该像片的外方位元素。 12空间前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。 13同名像点:同名光线在左右相片上的构像 1、4D 产品是指 DEM 、DLG 、DRG 、DOM 。 2、摄影测量按用途可分为地形摄影测量、非地形摄影测量。 3、摄影测量学的发展经过了模拟摄影测量、解析摄影测量、数字摄影测量三个阶段。 4、模拟摄影测量是利用光学/机械投影方法实现摄影过程的反转。 5、解析摄影测量以电子计算机为主要手段,通过对摄影像片的量测和解析计算方法的交会方式来研究和确定被摄物体的形状、大小、位置、性质及其相互关系,并提供各种摄影测量产品的一门科学。 6、像点坐标的系统误差改正主要包括底片变形改正,摄影机物镜畸变差改正,大气折光改正和地球曲率改正。 7、共线方程表达的是像点、投影中心与地面点之间关系。 8、立体摄影测量基础是共面条件方程。 9、把一条航线的航摄像片根据地物影像拼接起来,各张像片的主点连线不在一条直线上,而呈现为弯弯曲曲的折线,称航线弯曲。 10、航摄像片为量测像片,有光学框标和机械框标。 11、地图是地面的正射投影,像片是地面的中心投影。 12、在像空间坐标系中,像点的z 坐标值都为-f 。 13、一张像片的外方位元素包括:三个直线元素(Xs 、Ys 、Zs ):描述摄影中心的空间坐标值;三个角元素(?、ω、κ) ) :描述像片的空间姿态。 14、相对定向的理论基础、目的、标准是两像片上同名像点的投影光线对对相交。 15、双像解析摄影测量的任务是利用解析计算方法处理立体像对,获取地面点的三维空间信息。 16、在摄影测量中,一个立体像对的同名像点在各自的像平面坐标系的x 、y 坐标之差,分别称为左右视差、上下视差。 17、解析法相对定向的理论基础是同名光线对对相交于核面内。 18、解析绝对定向需要量测 2 个平高和 1 个高程以上的控制点,一般是在模型四个角布设四个控制点。 19、解析空中三角测量按数学模型分为航带法、独立模型法、光束法。 20、像底点上不存在投影差,但存在倾斜误差。倾斜航片上等比线上点的倾斜误差等于零。 21、立体模型空间相对定向时,连续像对的相对定向元素为 ,单独像对的相对定向元素为 。 22、某像点的像平面坐标为(x,y),摄影仪主距为f ,则该点在像空间坐标系中的坐标为(x ,y ,-f )。 23、摄影测量采用的五种常用坐标系中,地面测量坐标系是左手系。 24、恢复立体像对左右像片的相互位置关系依据的是共面条件方程。 222 v w b b φωκ、、、、22211ωκ?κ?、、、、

2013年摄影测量学复习题

2013年理工大学 摄影测量学考试资料整理 原题(80分) 一、名词解释 像片比例尺:把摄影像片当作水平像片,地面取平均高程,这时像片上的线段l与地面上相应线段的水平距离L的比值. 绝对航高:相对于平均海平面的行高,是指摄影物镜在摄影瞬间的真实海拔. 相对航高:摄影机物镜相对于某一基准面的高度. 像点位移:由于在实际航空摄影时,在中心投影的情况下,当航摄的飞机姿态出现较大倾斜或地面有起伏时,会导致地面点在航摄像片上的构象相对于理想情况下的构象所产生的位置差异. 摄影基线:航线方向相邻两个摄影站点间的空间距离. 航向重叠:同一航线相邻像片之间的影像重叠. 旁向重叠:两相邻行带像片之间的影像重叠. 像片倾角:摄影机的主光轴偏离铅垂线的夹角. 像片的方位元素:确定摄影瞬间摄影物镜与像片在地面设定的空间坐标系中的位置与姿态的参数. 像片的方位元素:表示摄影中心与像片之间相互位置的参数. 像片的外方位元素:标示摄影中心和像片在地面坐标系中的位置和姿态参数. 相对定向元素:确定一个立体像对两像片的相对位置的元素. 绝对定向元素:描述立体相对在摄影瞬间的绝对位置和姿态的参数. 单像空间后方交会:利用至少三个已知地面控制点的坐标,与其影响上对应三个像点的影像坐标,根据共线方程,反求该像片的外方位元素. 空间前方交会:由立体像对中两像片的、外方位元素和像点坐标来确定相应地面点的地面坐标. 双像解析摄影测量:按照立体像对与被摄物体的几何关系,以数学计算的方式,通过计算机解求被摄物体的三维空间坐标. 空中三角测量:利用计算的方法,根据航摄像片上所测的像点坐标以及少量的地面控制点求出地面加密点的物方空间坐标. POS:基于GPS和惯性测量装置IMU的直接测定影像外方位元素的现代航空摄影导航系统,可以获取移动物体的空间位置和三轴姿态信息. 影像的灰度:光学密度,D=lgO. 数字影像的重采样:当欲知不位于矩阵点上的原始函数g(x,y)的数值时就需进行插,此时称为重采样. 影像匹配:利用互相关函数,评价两块影响的相似性以确定同名点. 核线相关:沿核线寻找同名像点. 像片纠正:对原始的航摄像片或数字影像进行处理,获取相当于水平像片的影响或数字正射影像. 数字正射影像图:(DigitalOrthophotoMap)DOM 是以航摄像片或遥感影像(单色/彩色)为基础,经扫描处理并经逐像元进行辐射改正、微分纠正和镶 嵌,按地形图围裁剪成的影像数据,并将地形要素的信息以符号、线画、注记、公里格网、图廓(/外) 整饰等形式填加到该影像平面上,形成以栅格数据形式存储的影像数据库. 立体像对:摄影测量中,用摄影机在两摄站点对同一景物摄得的有一定重叠度的两像片. 立体正射影像对:为了从立体观测中获得只管立体感,为正射影像制作出一副立体匹配片,正射影像和相应的立体

摄影测量学知识点

第一章绪论 1、摄影测量学-----是对研究物体进行摄影、量测和解译所获得的影象,获取被摄物体的几何信息和物理信息的一门科学和技术。 摄影测量的特点 ?1、在影像上量测,无需接触物体本身,因此很少受自然地理等条件的限制。 ?2、影象是客观事物的真实反映,信息丰富,可选择需要的物体影象进行量测、处理、 研究,从影象上获得最新最全面的几何或物理信息。 ?3、摄影测量大部分工作在内业进行,有利于自动化、数字化、智能化,工作效率高。摄影测量分类 按摄影站的位置:航天摄影测量、航空摄影测量、地面摄影测量显微摄影测量、水下摄影测量 按研究对象不同:地形摄影测量、非地形摄影测量 按处理技术手段:模拟摄影测量、解析摄影测量、数字摄影测量 摄影测量学的三个发展阶段 ?模拟摄影测量阶段(1851-1970) ?解析摄影测量阶段(1950-1980) ?提出摄影测量新概念——数字投影代替物理投影 ?数字摄影测量阶段(1970-现在)

第二章摄影测量解析基础 中心投影的正片位置和负片位置 a)负片位置:投影平面和物点位在投影中心的两侧 b)正片位置:投影平面和物点位在投影中心同一侧 c)摄影时的位置是负片位置,解算时的位置是正片位置,为了解算的方便,像点 和物点之间的几何关系并没有改变; 摄影比例尺 d)摄影比例尺指摄影像片上一线段为l与地面上相应线段的水平距L之比 e)航摄比例尺----指水平像片,地面取平均高程时, 像片上的一线段Z与地面上相 应线段的水平距L之比 摄影仪摄影的要求 摄影方式 竖直摄影:摄影瞬间摄影机的主光轴近似与地面垂直 摄影航高:H=m?f 摄影重叠度 f)重叠摄影部分与整个像幅长的百分比称为重叠度 g)航向重叠p----同一条航线内相邻像片之间的影像重叠 h)旁向重叠q---相邻航线的重叠 P=60~65% q=30~35% 摄影比例尺特性 ? 1 )摄影比例尺愈大,则像片地面分辨率越高,有利影像的解译与提高成图的精度。 ?2) 摄影比例尺愈大,则摄影工作量增加, 摄影费用要增多,所以摄影比例尺要根据信息采集的精度确定。 量测用摄影机的特征 1.量测用摄影机的像距是一个固定的已知值 2.量测用摄影机承片框上具有框标 3.量测用摄影机的内方位元素值是已知的

摄影测量学考试题

1、地面摄影测量坐标系:x 轴沿着航线方向,z 轴沿铅垂线方向,y 轴符合右手定则。 2、4D 产品:DEM :数字高程模型 DLG :数字线划地图(矢量图) DRG :数字栅格地图(栅格图)DOM :数字正射影像图 3、摄影测量分类:①按距离远近分:航天、航空、地面、近景、显微;②按用途:地形、非地形;③按处理手段:模拟,解析,数字 4、摄影测量特点:①无需接触物体本身获得被摄物体信息②由二维影像重建三维目标③面采集数据方式④同时提取物体的几何与物理特性 5、航向重叠度:同一航线上,相邻两像片应有一定范围的影像重叠 6、摄影基线:航向相邻两个摄影站间的距离 7、摄影比例尺:摄影像片水平,地面取平均高程,像片上的线段l 与地面上相应的水平距L 之比 8、航片与地形图的区别:①比例尺:地图有统一比例尺,航片无统一比例尺;②表示方式:地图为线划图,航片为影像图;③表示内容:都地图需要综合取舍;④几何差异:航摄像片可组成像对立体观察 9、航摄像片中的重要点线面:点:S (摄影中心)o (像主点)O (地主点)n (像底点)N (地底点)c (等角点)C (地面等角点)i (主合点)j (主遁点);线:TT (迹线)SoO (主光线)SnN (主垂线)VV (摄影方向线)vv (主纵线)ScC (等角线)hihi (主合线)hoho (主横线)hchc (等比线);面:E (地面)P (像片面)W (主垂面)Es (真水平面) 10、摄影测量5个常用坐标系:①像平面直角坐标系②像空间直角坐标系③地面测量坐标系④像空间辅助坐标系⑤地面摄影测量坐标系 11、像片内方位元素:确定摄影物镜后节点与像片之间相互位置关系的参数(内方位元素(f y x 00,,)可恢复摄影光束) 12、像片外方位元素:确定摄影瞬间像片在地面直角坐标系中空间位置和姿态的参数 13、外方位线元素:描述摄影中心在地面空间直角坐标系中的位置 14、外方位角元素:描述像片在摄影瞬间的空间姿态 15、像片外方位角元素:?? ???(方位角)(像片旋角)(像片倾角)转角系统。轴为主轴以航向倾角)(像片旋角)(旁向倾角)转角系统。轴为主轴以(旁向倾角)(像片旋角)航向倾角)转角系统。轴为主轴以A Z X Y v v k k ~~A (''k 'w 'k ~'~w'w k (k ~w ~αα????

摄影测量学复习资料

摄影测量学复习资料 第一章绪论 1、摄影测量的定义、任务 定义:摄影测量与遥感就是从非接触成像与其她传感器系统,通过记录、量测、分析与表达等处理,获取地球及其环境与其她物体可靠信息的工艺,科学与技术。其中摄影测量侧重于提取几何信息,遥感侧重于物理信息。 任务:(1)测绘各种比例尺地形图。(2)建立数字地面模型(地形数据库)。 2、摄影测量学:就是对研究的对象进行摄影,根据所得的构象信息,从几何方面与 物理方面加以分析研究,从而对所摄对象的本质提供各种资料的一门学科。 3、解决的基本问题:几何定位与影像解译。 4、摄影测量的三个发展阶段及其特点。(了解) 5、摄影测量的分类方法及其分类(了解):(1)按距离远近可分为航天摄影测、航空 摄影测量、地面摄影测量、近景摄影测量与显微摄影测量;(2)按用途可分为地形摄影测量与非地形摄影测量;(3)按处理手段可分为模拟摄影测量、解析摄影测量与数字摄影测量;(4)根据摄影机平台位置的不同可分为航天摄影测量、航空摄影测量、地面摄影测量与水下摄影测量。 第二章影像的获取 1、航空影像与遥感影像的获取方式? 航空影像:飞机等航空平台搭乘航摄仪(或数码相机)摄影成像;一般航空影像分为专业航摄仪(航空摄影机)获取的标准航片与非量测摄影机(普通摄影机)获取的非

标准航片。 遥感影像:卫星等航天平台利用各类传感器(阵列扫描、推扫)获取遥感影像。例如SPOT、QB、TM、IKONOS、World View等影像。 2、量测摄影机与非量测摄影机的区别? (1)量测摄影机的主距就是一个固定的已知值(2)量测摄影机的承片框上具有框标,即固定不变的承片框上,四个边的中点各安置一个机械标志;框标,其目的就是建立像片的直角,框标坐标系。(3)量测摄影机的内方位元素就是已知值。 3、航向重叠:摄影时飞机沿相邻影像之间必须保持一定的重叠度。一般P=50%~65%;P值最小不能小于53%。 旁向重叠:完成一条航线的摄影后,飞机进入另一条航线进行测量摄影,相邻航线影像之间也必须有一定的重叠。一般q=30%~40%,最小不得小于15%。 第三章摄影测量基础知识(重点!!!) 1、航摄像片上特殊的点、线、面。 (1)像主点:摄影中心S在像片平面上的投影点。 (2)像底点:主垂线与像片面P的交点n称为像底点。 (3)等角点:倾角α的平分线与像片面交于点C称C点为等角点。 (4)主纵线:主垂面W与像平面P的交线称为主纵线W。 (5)等比线:过像主点平行于合线的直线称为等比线。 2、摄影测量常用的坐标系统,它们就是如何定义的? (1)像平面坐标系:就是以该像片的像主点为坐标原点的坐标系,用来表示像点在像片面上的位置,在实际应用中,常采用框标连线的交点为坐标原点,称为框标平面坐标系。X、y轴的方向按需要而定,常取与航线方向一致的连线为x轴,航线方向为正。 (2)像空间坐标系:以摄影中心S为坐标原点,X轴与Y轴分别与像平面直角坐标系的X轴与Y轴平行,Z轴与主光轴重合,向上为正,像点的像空间坐标系表示为(x、y、-f)。 (3)像空间辅助坐标系:其坐标原点就是摄影中心S坐标轴依情况而定,通常有三种方法:

摄影测量学复习资料(全)复习过程

摄影测量学复习资料 (全)

一、名词解释 1、解析相对定向:根据同名光线对对相交这一立体相对内在的几何关系,通过量测的像点坐标,用解析计算方法解求相对定向元素,建立与地面相似的立体模型,确定模型点的三维坐标。 2、GPS辅助空中三角测量:将基于载波相位观测量的动态 GPS 定位技术获取的摄影中心曝光时刻的三维坐标作为带权观测值,引入光束法区域网平差中,整体求解影像外方位元素和加密点的地面坐标,并对其质量进行评定的理论和方法。 3、主合点:地面上一组平行于摄影方向线的光束在像片上的构像 4、核线:立体像对中,同名光线与摄影基线所组成核面与左右像片的交线。 5、航向重叠:同一条航线上相邻两张像片的重叠度。 6、旁向重叠:两相邻航带摄区之间的重叠。 7、影像匹配:利用互相关函数,评价两块影像的相似性以确定同名点 8、影像的内方元素:是描述摄影中心与像片之间相关位置的参数。 9、影像的外方元素:描述像片在物方坐标的位置和姿态的参数。 10、景深:远景与近景之间的纵深距离称为景深 11、空间前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。 12、空间后方交会:利用一定数量的地面控制点,根据共线条件方程或反求像片的外方位元素这种方法称为单张像片的空间后方交会。 13、摄影基线:相邻两摄站点之间的连线。 14、像主点:像片主光轴与像平面的交点。 15、立体像对:相邻摄站获取的具有一定重叠度的两张影像。 16、数字影像重采样:当欲知不位于采样点上的像素值时,需进行灰度重采样。 17、核面:过摄影基线与物方任意一点组成的平面。 18、中心投影:所有投影光线均经过同一个投影中心。 19、单模型绝对定向:相对定向所构建的立体模型经平移、缩放、旋转后纳入到地面坐标系中的过程相对定向:根据立体像对内在的几何关系恢复两张像片之间的相对位置和姿态,使同名光线对对相交,建立与地面相似的立体模型。即确定一个立体像对两像片的相对位置。 20、数字影像内定向:同一像点的像平面坐标与其扫描坐标不相等,需要加以换算,这种换算称为数字影像内定向。 21、像主点:摄影机主光轴在框标平面上的垂足 22、内部可靠性:一定假设条件下,平差系统所能发现的模型误差的下界值 22、外部可靠性:一定显著性水平和检验功效下,平差系统不能发现的模型误差对平差结果的影响。 23、摄影学:利用光学摄影机摄取相片,通过相片来研究和确定被摄物体的形状,大小,位置和相互关系的一门学科技术。 24、影像信息学:是一门记录、储存、传输、量测、处理、解译、分析和显示由非接触传感器影响获得的目标及其环境信息的科学技术和经济实体。

最新摄影测量学试题(含答案)

摄影测量学 一、名词解释(每小题3分,共30分) 1摄影测量学2航向重叠 3单像空间后方交会4相对行高 5像片纠正6解析空中三角测量 7透视平面旋转定律8外方位元素 9核面10绝对定向元素 二、填空题(每空1分,共10分) 1摄影测量的基本问题,就是将_________转换为__________。 2物体的色是随着__________的光谱成分和物体对光谱成分固有不变的________、__________、和__________的能力而定的。 3人眼产生天然立体视觉的原因是由于_________的存在。 4相对定向完成的标志是__________。 5光束法区域网平差时,若像片按垂直于航带方向编号,则改化法方程系数阵带宽为_______,若按平行于航带方向编号,则带宽为_________。 三、不定项选择题(每小题2分,总计20分) 1、以下说法正确的是()。 同名像点必定在同名核线上 B.像点、物点、投影中心必在一条直线上 C.主合点为主纵线与核线的交点D.等角点在等比线上 2、以下为正射投影的为()。 A.框幅式相机拍摄的航片 B.地形图 C.用立体模型测绘的矢量图 D.数字高程模型 3、立体像对的前方交会原理能用于()。 A.相对定向元素的解求 B.求解像点的方向偏差 C.地面点坐标的解求 D.模型点在像空间辅助坐标系中坐标的解求 4、解析内定向的作用是()。 A.恢复像片的内方位元素 B.恢复像片的外方位角元素 C.部分消除像片的畸变 D. 恢复像片的外方位线元素 5、光学纠正仪是()时代的产品,其投影方式属于机械投影。 A.模拟摄影测量 B.解析摄影测量 C.数字摄影测量 D.数字投影 6、卫星与太阳同步轨道是指()。 A、卫星运行周期等于地球的公转周期 B、卫星运行周期等于地球的自传周期 C、卫星轨道面朝太阳的角度保持不变。 D、卫星轨道面朝太阳的角度不断变化。 7、以下()不是遥感技术系统的组分。

摄影测量学复习题及答案(全)

摄影测量学复习题及答案(全) 一、名词解释 1、解析相对定向:根据同名光线对对相交这一立体相对内在的几何关系,通过量测的像点坐标,用解析计算方法解求相对定向元素,建立与地面相似的立体模型,确定模型点的三维坐标。 2、GPS辅助空中三角测量:将基于载波相位观测量的动态GPS 定位技术获取的摄影中心曝光时刻的三维坐标作为带权观测值,引入光束法区域网平差中,整体求解影像外方位元素和加密点的地面坐标,并对其质量进行评定的理论和方法。 3、主合点:地面上一组平行于摄影方向线的光束在像片上的构像 4、核线:立体像对中,同名光线与摄影基线所组成核面与左右像片的交线。 5、航向重叠:同一条航线上相邻两张像片的重叠度。 6、旁向重叠:两相邻航带摄区之间的重叠。 7、影像匹配:利用互相关函数,评价两块影像的相似性以确定同名点 8、影像的内方元素:是描述摄影中心与像片之间相关位置的参数。 9、影像的外方元素:描述像片在物方坐标的位置和姿态的参数。 10、景深:远景与近景之间的纵深距离称为景深 11、空间前方交会:由立体像对中两张像片的内、外方位元素和

像点坐标来确定相应地面点的地面坐标的方法,称为空间前方交会。 12、空间后方交会:利用一定数量的地面控制点,根据共线条件方程或反求像片的外方位元素这种方法称为单张像片的空间后方交会。 13、摄影基线:相邻两摄站点之间的连线。 14、像主点:像片主光轴与像平面的交点。 15、立体像对:相邻摄站获取的具有一定重叠度的两张影像。 16、数字影像重采样:当欲知不位于采样点上的像素值时,需进行灰度重采样。 17、核面:过摄影基线与物方任意一点组成的平面。 18、中心投影:所有投影光线均经过同一个投影中心。 19、单模型绝对定向:相对定向所构建的立体模型经平移、缩放、旋转后纳入到地面坐标系中的过程相对定向:根据立体像对内在的几何关系恢复两张像片之间的相对位置和姿态,使同名光线对对相交,建立与地面相似的立体模型。即确定一个立体像对两像片的相对位置。 20、数字影像内定向:同一像点的像平面坐标与其扫描坐标不相等,需要加以换算,这种换算称为数字影像内定向。 21、像主点:摄影机主光轴在框标平面上的垂足 22、内部可靠性:一定假设条件下,平差系统所能发现的模型误差的下界值

数字摄影测量学要点

数字摄影测量复习要点(2016.5) 1、摄影测量发展历程 模拟摄影测量(1851-1970) 模拟摄影测量主要是根据摄影过程的几何反转,反求地面点的空间位置。它所采用的仪器为光学投影器、机械投影器或光学-机械投影器模拟摄影过程,用光线交会被摄物体的空间位置。 解析摄影测量(1950-1980) 1957年,Helava提出用“数字投影代替”物理投影,数字投影就是利用电子计算机实时的进行共线方程的解算,从而交会出被摄物体的空间位置。 数字摄影测量(1970-现在) 利用数字影像相关技术,实现真正的自动化测图。 ?数字摄影测量与模拟、解析摄影测量的最大区别: 1)处理的原始信息主要是数字影像; 2)以计算机视觉代替人眼的立体观测。 2、数字摄影测量的任务、特点 主要任务:使用星载(机载)传感器所获取的可见光影像对地球陆地区域进行信息提取,具体包括:目标量测、影像解译、地形图测绘、正射影像图制作、数字高程模型生成。 特点:数据量大、计算机运算速度快、技术精度高。 3、数字摄影测量 定义:数字摄影测量是利用影像相关技术来代替人眼的目视观测,自动识别同名点,实现几何信息的自动提取。 主要内容:影像及特征点的识别、同名像点的自动相关和匹配、数字影像纠正技术、数字高程模型(DEM)的制作、数字摄影测量系统的完整操作和测绘产品的生产。 4、计算机辅助测图 计算机辅助测图(又称数字测图)是利用解析测图仪或具有机助系统的模拟测图仪,进行数据采集和数据处理,测绘数字地图,制作数字高程模型,建立测量数据库。计算机辅助测图系统所处理的依旧是传统像片,且对影像的处理仍然需要人眼的立体量测,计算机则起数据记录与辅助处理的作用,是一种

摄影测量学期末复习资料

摄影测量学:摄影测量学是对研究的对象进行摄影,根据所获得的构像信息,从几何方面和物理方面加以分析研究,从而对所摄对象本质提供各种资料的一门学科。 光圈号数:物镜焦距与有效孔径之比,也是相对孔径的倒数。 景深:远景与近景之间的纵深距离。 超焦点距离:当调焦为某一距离时,能刚好使无穷远处的景物构像清晰,这一调焦距离就被称为超焦点距离。 视场:将物镜对光于无穷远时,在焦面上会看到一个照度不均匀的明亮圆,此圆范围即为视场。 视场角:物镜像方主点与视场直径所张的角。 像场:在视场面积内能获得清晰影像的区域。 像场角:物镜像方主点与像场直径所张的角。 航向重叠:供测图使用的航摄像片沿飞行方向上相邻像片所摄地面需要有一定的重叠区,称为航向重叠。 旁向重叠:为测图需要两相邻航带摄区之间应有一定的重叠,称为旁向重叠。 摄影基线:相邻像片摄影站(投影中心)之间的空间连线,称为摄影基线。 内方位元素:确定物镜后节点与像片面相对位置的数据,称为像片的内方位元素。包括(像主点在像片框标坐标系中的坐标X0,Y0,像片主距f) 外方位元素:确定摄影瞬间摄影机或像片的空间位置的数据,称为像片的外方位元素。包括(投影中心在所取空间直角坐标系中的坐标X s,Y s,Z s;摄影方向(摄影机轴)相对空间坐标轴的两个角度和像片绕摄影方向的旋转角度)倾斜误差:像片倾斜所引起的像点位移。 像片纠正:消除像片倾斜引起的像点位移,并限制消除地形起伏引起的像点位移,将影像归化为成图比例尺。 投影差:地形起伏所引起的像点位移。 摄影比例尺:航摄像片上某一线段构像的长度与地面上相应线段的水平距离之比。 像片控制点:测定了地面坐标的像点称为像片控制点。 左右视差:在摄影测量中,一个立体像对的同名像点在像平面坐标系中的X坐标之差。 上下视差:在摄影测量中,一个立体像对的同名像点在像平面坐标系中的Y坐标之差。 核点:基线延长线与左右像片的交点。 核线:核面与像片的交线称为核线。 核面:过摄影基线与地面任一点所做的平面。 投影基线:立体摄影测量中,利用立体像对的两张像片进行投影建立地面几何模型时,按实长恢复像片外方位三个元素几乎不可能,因此将摄影基线B缩小为若干分之一作为投影基线。 像片基线:相邻两张像片主点之间的连线,是摄影基线在像片上的反映。 解析空中三角测量:是将建立的投影光束、单元模型或航带模型以至区域模型的数学模型,根据少量地面控制点,按最小二乘原理进行平差计算,解救出各加密点的地面坐标。 空间后方交会:利用地面控制点的已知坐标推算像片外方位元素的方法。 空间前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定该点的物方坐标的方法。 绝对定向元素:描述立体像对在摄影瞬间的绝对位置和姿描述立体像对在摄影瞬间的绝对位置和姿态的参数称绝对定向元素。通过将相对定向模型进行缩放、平移和旋通过将相对定向模型进行缩放、平移和旋转,使其达到绝对位置。 DEM(数字高程模型):在高斯投影平面上规则格网点平面点坐标及高程的数据集 DOM(数字正射影像):是利用数字高程模型对扫描处理的数字化的航空像片,经逐个象元进行投影差改正,再按影像镶嵌,根据图幅范围剪裁生成的影像数据。 DLG(数字线划地图):是现有地形图要素的矢量数据集,保存各要素间的空间关系和相关的属性信息,全面地描述地表目标。 DRG(数字栅格地图):是根据现有纸质、胶片等地形图经扫描和几何纠正及色彩校正后,形成在内容、几何精度和色彩上与地形图保持一致的栅格数据集 摄影测量需要解决的基本问题是什么? 1.将中心投影的像片转换为正射投影的地形图 2.从影像中提取几何信息与物理信息。 摄影测量经历了哪几个发展阶段? 模拟摄影测量、解析摄影测量、数字摄影测量。 摄影机物镜的焦距和摄影机主距有什么不同?

摄影测量学复习题

一、名词解释 1.像片比例尺:把摄影像片当作水平像片,地面取平均高程,这时像片上的线段l与地面上相应线段的水平距离L的比值. 2.绝对航高:相对于平均海平面的行高,是指摄影物镜在摄影瞬间的真实海拔. 3.相对航高:摄影机物镜相对于某一基准面的高度.它是相对于被摄区域内地面平均高程基准面的设计航高。 4.像点位移:由于在实际航空摄影时,在中心投影的情况下,当航摄的飞机姿态出现较大倾斜或地面有起伏时,会导致地面点在航摄像片上的构象相对于理想情况下的构象所产生的位置差异. 5.摄影基线:航线方向相邻两个摄影站点间的空间距离. 6.航向重叠:同一航线内相邻像片之间的影像重叠. 7.旁向重叠:两相邻行带像片之间的影像重叠. 8.数字纠正——通过解求对应像元素的位置,然后进行灰度的内插与赋值运算。 9.像片的方位元素:确定摄影瞬间摄影物镜与像片在地面设定的空间坐标系中的位置与姿态的参数. 10.像片的内方位元素:表示摄影中心与像片之间相互位置的参数. 11.像片的外方位元素:标示摄影中心和像片在地面坐标系中的位置和姿态参数. 12.相对定向立体像对的相对定向就是要恢复摄影时相邻两影像摄影光束的相互关系,从而使同名光线对对相交。 13.相对定向元素:确定一个立体像对两像片的相对位置的元素. 14.绝对定向元素:描述立体相对在摄影瞬间的绝对位置和姿态的参数. 15.单像空间后方交会:利用至少三个已知地面控制点的坐标,与其影响上对应三个像点的影像坐标,根据共线方程,反求该像片的外方位元素. 16.空间前方交会:由立体像对中两张像片的内、外方位元素和像点坐标来确定相应地面点的地面坐标. 17.双像解析摄影测量:按照立体像对与被摄物体的几何关系,以数学计算的方式,通过计算机解求被摄物体的三维空间坐标. 18.空中三角测量:利用计算的方法,根据航摄像片上所测的像点坐标以及少量的地面控制点求出地面加密点的物方空间坐标. 19.POS:基于GPS和惯性测量装置IMU的直接测定影像外方位元素的现代航空摄影导航系统,可以获取移动物体的空间位置和三轴姿态信息. 20.影像的灰度:光学密度,D=lgO. 21.数字影像的重采样:当欲知不位于矩阵点上的原始函数g(x,y)的数值时就需进行内插,此时称为重采样. 22.影像匹配:利用互相关函数,评价两块影响的相似性以确定同名点. 23.核线相关:沿核线寻找同名像点. 24.像片纠正:对原始的航摄像片或数字影像进行处理,获取相当于水平像片的影响或数字正射影像. 25.数字正射影像图:(DigitalOrthophotoMap)DOM是以航摄像片或遥感影像(单色/彩色)为基础,经扫描处理并经逐像元进行辐射改正、微分纠正和镶嵌,按地形图范围裁剪成的影像数据,并将地形要素的信息以符号、线画、注记、公里格网、图廓(内/外)整饰等形式填加到该影像平面上,形成以栅格数据形式存储的影像数据库.26.立体像对:摄影测量中,用摄影机在两摄站点对同一景物摄得的有一定重叠度的两张像片. 27.立体正射影像对:为了从立体观测中获得只管立体感,为正射影像制作出一副立体匹配片,正射影像和相应的立体匹配片共同称为立体正射影像对. 28.数字摄影测量:是将摄影测量的基本原理与计算机视觉相结合,从数字影像中自动(半自动)提取所摄对象用数字方式表达的几何与物理信息。 29.空中摄影:采用竖直摄影方式,即摄影瞬间摄影机物镜主光轴近似与地面垂直。

摄影测量学复习资料简述

摄影测量学:利用光学摄影机摄取像片,通过像片来研究和确定被摄物体的形状、大小、位置和相互关系。 ○1、摄影测量的按摄影机平台位置不同:航天摄影测量、航空摄影测量、地面摄 影测量、水下摄影测量; ○2、按摄影机平台与被摄目标距离的远近:航天摄影测量、航空摄影测量、地面 摄影测量、近景摄影测量、显微摄影测量; ○3、按用途:地形摄影、非地形摄影; 摄影测量学的发展三个阶段:模拟摄影测量(1900~1960)、解析摄影测量(1950~1980)、数字摄影测量(1980~2000)。 框标装置:在固定不变的承片框上,四个边的中点各安置一个机械标志。 主光轴:组成物镜的各个透镜的光学中心位于同一直线上。 物方空间:以两平面来等价物镜组,则两平面将空间分为两个部分,物体所处空间即为物方空间。 像方空间:构像所处的空间。 摄影机主距:航空摄影机物镜中心至底片面的距离是固定值。用f表示 视场:光线通过物镜后,焦面上照度不均匀的光亮圆。 像场:影像相当清晰的一部分视场内的光亮圆。 视场角:由物镜后节点向视场边缘射出的光线所张开的角,用2a 表示 像角:由镜头后节点向像场边缘射出的光线所张开的角。 摄影比例尺:航摄像片上一段为l 的影像与地面上相应线段的水平距离L之比,即1/m=l/L。 绝对航高:摄影瞬间摄影机物镜中心相对于平均海水面的航高。 相对航高:相对于其他某一基准面或某一点的高度。 摄影比例尺越大,像片地面的分辨率越高,有利于影像的解译与提高成图精度,但摄影比例尺过大,增加工作量及费用。 空中摄影过程,实质上是将地球表面上的地物,地貌等信息,穿过大气层,进入摄影机物镜,到达航摄胶片上形成影像的传输过程。 摄影基线:航线方向相邻两摄站点间的空间距离。 航向重叠:在同一条航线上,相邻两像片应有一定的范围的影像重叠。 旁向重叠:相邻航线也应有足够的重叠。 像片倾角,在摄影瞬间摄影机轴发生了倾角,摄影机轴与铅直方向的夹角a 一般要求倾角不大于2度,最大不超过3度。 内方位元素:描述摄影中心与像片之间相关位置的参数。(包括三个参数,既摄影中心S到像片的垂距(主距f)及像主点O在框标坐标系中的坐标X0、Y0) 外方位元素:在恢复内方位元素的基础上,确定摄影光束在摄影瞬间的空间位置和姿态的参数。 正射投影:若投影光线相互平行且垂直于投影面。 中心投影:若投影光线会聚于一点。 数字影像内定向:根据像片的框标和相应的摄影机检定参数,恢复像片与摄影机的相关位置。 相对定向:确定一个立体像对两像片的相对位置。

相关文档
最新文档