计算机随机数模拟随机试验教学设计

计算机随机数模拟随机试验教学设计
计算机随机数模拟随机试验教学设计

山东省济宁市梁山一中高中数学《3.3.2均匀随机数的产生》教案设计 新人教A版必修3

3.3.2 均匀随机数的产生 整体设计 教学分析 本节在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用. 通过对本节例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识. 三维目标 1.通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯. 2.会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率.学习时养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力. 重点难点 教学重点:掌握[0,1]上均匀随机数的产生及[a,b]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率. 教学难点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中. 课时安排 1课时 教学过程 导入新课 思路1 在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生. 思路2 复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?这节课我们接着学习下面的内容,均匀随机数的产生. 推进新课 新知探究 提出问题 (1)请说出古典概型的概念、特点和概率的计算公式? (2)请说出几何概型的概念、特点和概率的计算公式? (3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢? (4)请你根据整数值随机数的产生,用计算器模拟产生[0,1]上的均匀随机数. (5)请你根据整数值随机数的产生,用计算机模拟产生[0,1]上的均匀随机数. (6)[a,b]上均匀随机数的产生. 活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导. 讨论结果: (1)在一个试验中如果

高二数学《整数值随机数的产生》教学设计

3.2.2 (整数值)随机数的产生 一、内容与解析 (一)内容:(整数值)随机数的产生 (二)解析:本节课要学的内容(整数值)随机数的产生,指的是利用计算器或计算机模拟实验去估计事件发生的概率,其核心模拟实验的思想,理解它关键就是要对整数值随机数的产生与随机事件的产生在某种程度上本质上是一样的.学生已经学习了随机数表和随机事件的概念,本节课的内容就是在此基础上的发展,是本学科的次要内容.教学的重点是掌握利用计算器或计算机EXCEL软件产生取整数值的随机数,解决重点的关键是设计和运用模拟方法近似计算概率 二、教学目标及解析 1.通过教学让学生了解产生(整数值)随机数的两种方法,并理解用计算器或计算机产生的(整数值)随机数的区别及用计算器或计算机产生(整数值)随机数的优点。 2.通过教师演示及学生亲自实践让学生掌握如何利用计算器或计算机EXCEL软件产生取整数值的随机数。 3.通过教学使学生学会设计和运用模拟方法近似计算概率,使学生体会现代科学技术对传统数学的影响。 三、问题诊断分析 在本节课的教学中,学生可能遇到的问题是如何构造实验模型,产生这一问题的原因是实验是通过计算机去完成的,与现实的实验有所不同,具有虚拟性。.要解决这一问题,就是要让学生明白随机数的产生与随机事件的发生之间的联系。 四、教学支持条件分析 在本节课的教学中,准备使用计算器和计算机,因为有利于操作给学生看,同时有利于学生掌握方法. 复习上节课相关知识→用计算器产生取整数值的随机数→用计算机软件产生取整数值的随机数→设计和运用模拟方法解决例6→课堂练习→课堂小结 五、教学过程 问题1.回顾古典概型的特点及古典概型的计算公式 问题2.产生随机数的方法有几种?传统的方法有什么缺点? 师生活动(小问题): 1.由试验产生随机数:例如产生1~10之间的随机整数,可以把10个完全相同的小球分别标上1,2,…,10,放入袋中,充分搅拌后从中摸出一个球,这个球上的数就是随机数。其优点是:产生的数是真正的随机数,一般当需要的随机数不是很多时,可以用此方法来产生;缺点是:当需要的随机数的量很大时,速度太慢,从面说明利用计算器(机)产生随机数的必要。 2.用计算器或计算机产生随机数:由计算器或计算机根据确定的算法产生随机数。优点是:速度比较快,适用于产生大量的随机数;缺点是:产生的随机数具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,称为伪随机数。这种用计算器或计算机模拟试验的方法,称为随机模拟方法或蒙特卡罗方法(Monte Carlo)

随机数生成器

随机数生成器 一、随机数 1.1随机数的概念 数学上是这样定义随机数的:在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称为随机数序列,其中每一个体称为随机数。单位均匀分布即[0,1]上的均匀分布。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 1.2随机数的分类 随机数一般分为伪随机数和真随机数。利用数学算法产生的随机数属于伪随机数。利用物理方法选取自然随机性产生的随机数可以看作真随机数。实用中是使用随机数所组成的序列,根据所产生的方式,随机数序列再可以分为两类: 1.伪随机数序列 伪随机数序列由数学公式计算所产生。实质上,伪随机数并不随机,序列本身也必然会重复,但由于它可以通过不同的设计产生满足不同要求的序列且可以复现(相同的种子数将产生相同的序列),因而得到广泛的应用。由伪随机数发生器所产生的伪随机数序列,只要它的周期足够长并能通过一系列检验,就可以在一定的范围内将它当作真随机数序列来使用。 2.真随机数序列 真随机数序列是不可预计的,因而也不可能出现周期性重复的真正的随机数序列。它只能由随机的物理过程所产生,如电路的热噪声、宇宙噪声、放射性衰变等。 按照不同的分类标准,随机数还可分为均匀随机数和非均匀随机数,例如正态随机数。 1.3随机数的衡量标准 在实际模拟过程中,我们一般只需要产生区间[0,1]上的均匀分布随机数,因为其他分布的随机数都是由均匀分布的随机数转化来的。 实用中的均匀随机数主要通过以下三个方面来衡量其随机性能的高低。 1.周期性 伪随机数序列是由具有周期性的数学公式计算产生,其本身也必然会表现出周期性,即序列中的一段子序列与另一段子序列相同。它的周期必须足够长,才能为应用提供足够多的可用数据。只有真随机数序列才能提供真正的、永不重复的随机数序列。 2.相关性 随机数发生器所产生的一个随机数序列中的各个随机数应该不相关,所产生的各个随机数序列中的随机数也应该不相关。真随机数序列自然地满足这种不相关性。对于伪随机数发生器,应该仔细地设计所用的数学公式,以尽量满足不相关的要求。 3.分布均匀性 包括蒙特卡洛计算在内的大多数应用都要求所采用的随机数序列服从均匀分布,即同一范围内的任一个数出现的概率相同。从均匀分布的随机数序列也很容易导出其它类型分布的

第三章_随机过程教案

第三章随机过程 本节首先介绍利用matlab现有的库函数根据实际需要直接产生均分分布和高斯分布随机变量的方法,然后重点讲解蒙特卡罗算法。 一、均匀分布的随机数 利用MATLAB库函数rand产生。rand函数产生(0,1)内均匀分布的随机数,使用方法如下: 1)x=rand(m);产生一个m×m的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 2)x=rand(m,n);产生一个m×n的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 3)x=rand;产生一个随机数。 举例:1、产生一个5×5服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5) 2、产生一个5×3服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5,3) 二、高斯分布的随机数 randn函数产生均值为0,方差为1的高斯分布的随机数,使用方法如下: 1)x=randn(m);产生一个m×m的矩阵,所含元素都是均值

为0,方差为1的高斯分布的随机数。 2)x=randn(m,n);产生一个m×n的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 3)x=randn;产生一个均值为0,方差为1的高斯分布的随机数。 举例:1、产生一个5×5的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5) 2、产生一个5×3的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5,3) 3、产生一个5×3的矩阵,所含元素都是均值为0,方差为4的高斯分布的随机数。 x=2×randn(5,3) 三、蒙特卡罗仿真 1、蒙特卡罗算法 蒙特卡罗估计是指通过随机实验估计系统参数值的过程。蒙特卡罗算法的基本思想:由概率论可知,随机实验中实验的结果是无法预测的,只能用统计的方法来描述。故需进行大量的随机实验,如果实验次数为N,以 N表示事件A发 A 生的次数。若将A发生的概率近似为相对频率,定义为 N N。 A 这样,在相对频率的意义下,事件A发生的概率可以通过重

VHDL产生伪随机数

Library IEEE ; use IEEE.std_logic_1164.all ; use IEEE.std_logic_arith.all ; entity lfsr is generic (data_width : natural := 8 ); port ( clk : in std_logic ; reset : in std_logic ; data_out : out UNSIGNED(data_width - 1 downto 0) ); end lfsr ; architecture rtl of lfsr is signal feedback : std_logic ; signal lfsr_reg : UNSIGNED(data_width - 1 downto 0) ; begin feedback <= lfsr_reg(7) xor lfsr_reg(0) ; latch_it : process(clk,reset) begin if (reset = '1') then lfsr_reg <= (others => '0') ;

elsif (clk = '1' and clk'event) then lfsr_reg <= lfsr_reg(lfsr_reg'high - 1 downto 0) & feedback ; end if; end process ; data_out <= lfsr_reg ; end RTL ; Reference URL:https://www.360docs.net/doc/2d2492521.html,/eda/edasrc/6153.html

高中数学《第三章概率3.3几何概型3.3.2均匀随机数的产生》126教案教学设计讲

1 《均匀随机数的产生》教学设计 1.教学内容解析 (1)本课是必修3第三章《概率》的最后一节内容,是在学习了古典概型、(整数值)随机数的产生和几何概型的前提下,学习用计算器(机)产生均匀随机数的方法,通过例2的探究理解用频率估计概率的随机模拟思想,并将此随机模拟方法推广应用,如估计未知量等。 (2)均匀随机数的产生是对前面(整数值)随机数产生结果有限性的补充,实现有关几何概型问题的模拟。 教学重点:学习用计算器(机)产生均匀随机数,设计模型用随机模拟方法估计未知量。 2.教学目标设置 (1)知识目标:了解产生均匀随机数的意义,熟练掌握产生均匀随机数的方法,准备判断问题模型并用随机模拟方法预测未知量。 (2)能力目标:通过例题的探究,提高数据分析处理和问题解决的能力。 (3)思想目标:强化用频率估计概率及化归的思想。(4)情感目标:感受数学魅力,提高学习数学的热情,养成积极主动思考、勇于探索和不断创新进取的良好学习习惯

和品质。 3.学生学情分析 (1)学会用计算器(机)产生整数值随机数,掌握一定的技术基础,因此本节课在教师引导下学生可较快掌握任意区间内均匀随机数的产生; (2)学生已学习了两种概率模型及其计算公式,因此在例题探究学习中学生能在教师引导下较好地识别概率模型并计算其理论数值; (3)前面的抛硬币随机模拟试验中学生初步认识到离散型变量用频率估计概率的统计思想,但对连续型随机变量的概率估算准确转化随机模拟这是学生思维的一个难点。需在在教师案例探究和应用的引导中,通过小组合作探讨和个人实际操作对比试验中进一步体会概率统计思想。 教学难点:如何把未知量估计问题转化为随机模拟问题并设计合理的试验过程。 4.教学策略分析 本节课的重难点是设计模型用随机模拟方法估计未知量,体会频率估计概率的思想。为达到此教学效果,通过例2的展开探究,以教师引导、小组合作探究模式,类比学习方法,让学生横向与纵向对比试验结果发现规律,最后通过理论验证规律的可靠性和客观存在性,让学生具体经历完整试验过程。其中,教师设计“问题串”的形式,引导学生分析问题,

高中数学必修三《均匀随机数的产生》教学设计

3.3.2 均匀随机数的产生 教材分析 本节内容是数学必修三第三章 概率 3.3.2均匀随机数的产生, 本节课在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用. 通过对本节课例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识。 课时分配 本节内容用1课时的时间完成,主要讲解利用计算器(计算机)产生均匀随机数的方法;利用均匀随机数解决具体的有关概率的问题。 教学目标 重 点: 掌握[0,1]上均匀随机数的产生及[a,b ]上均匀随机数的产生。学会采用适当的随机模拟法去估算几何概率。 难 点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。 知识点:通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法。 能力点:利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率。 教育点:通过随机模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯,培养逻辑 思维能力和探索创新能力。 自主探究点:在信息技术环境下,通过算法解决大量重复模拟试验中的数据统计问题,得出问题的解的估计值,并由此进一步体会随机模拟方法、算法思想以及从特殊到一般的数学研究过程。 易错易混点:在计算器上用rand()产生(0,1)之间的随机数不是什么难事,但产生任意区间(a,b )上的 随机数涉及线性变换,这是学生不易处理的问题,容易出错。 教具准备 多媒体课件 一、引入新课 复习提问: (1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?(4)列举几个简单的几何概型例子? 【师生活动】 (1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. (3)几何概型的概率公式: P (A )=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A (4)几何概型例子:长3米的绳子被剪刀随机剪一次,问两段长度都不小于1米的概率?在这个几何概型中,随机剪绳子可以抽象成数学模型:从区间(0,3)中随机取一个数,由此引出今天的学习的内容,均匀随机数。

人教版高中数学必修3能力提升 3-3-2 均匀随机数的产生

一、选择题 1.用均匀随机数进行随机模拟,可以解决() A.只能求几何概型的概率,不能解决其他问题 B.不仅能求几何概型的概率,还能计算图形的面积 C.不但能估计几何概型的概率,还能估计图形的面积 D.最适合估计古典概型的概率 [答案] C [解析]很明显用均匀随机数进行随机模拟,不但能估计几何概型的概率,还能估计图形的面积,但得到的是近似值,不是精确值,用均匀随机数进行随机模拟,不适合估计古典概型的概率.2.给出下列关系随机数的说法: ①计算器只能产生(0,1)之间的随机数; ②我们通过RAND*(b-a)+a可以得到(a,b)之间的随机数; ③计算器能产生指定两个整数值之间的取整数值的随机数. 其中说法正确的是() A.0个B.1个 C.2个D.3个 [答案] C 3.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则() A.m>n B.m

4.在线段AB 上任取三个点x 1,x 2,x 3,则x 2位于x 1与x 3之间的概率是( ) A.12 B.13 C.14 D .1 [答案] B [解析] 因为x 1,x 2,x 3是线段AB 上任意的三个点,任何一个 数在中间的概率相等且都是13 . 5.设x 是[0,1]内的一个均匀随机数,经过变换y =2x +3,则x =12 对应变换成的均匀随机数是( ) A .0 B .2 C .4 D .5 [答案] C [解析] 当x =12时,y =2×12 +3=4. 6.把[0,1]内的均匀随机数分别转化为[0,4]和[-4,1]内的均匀随机数,需实施的变换分别为( ) A .y =-4x ,y =5-4 B .y =4x -4,y =4x +3 C .y =4x ,y =5x -4 D .y =4x ,y =4x +3 [答案] C 7.一个路口的红绿灯,红灯亮的时间为30 s ,黄灯亮的时间为5 s ,绿灯亮的时间为40 s ,当你到达路口时,事件A 为“看见绿灯”、事件B 为“看见黄灯”、事件C 为“看见不是绿灯”的概率大小关系为( ) A .P (A )>P ( B )>P ( C ) B .P (A )>P ( C )>P (B )

高中数学《均匀随机数的产生》公开课优秀教学设计

3.3.2均匀随机数的产生 教学设计 教材:人教A版必修3 第三章概率 3.3几何概型 教材地位分析 在现实生活中,很多随机问题无法用公式求得准确概率,于是在高中数学的概率模块学习中,新增了随机模拟这一重要内容。本课作为概率必修的章节的尾声,在掌握了概率定义,古典概型整数值随机数的产生及几何概型公式计算的基础上,学习均匀随机数的产生方法,并运用于随机模拟试验中,为解决现实生活中的随机问题,提供了另一个实用可操作的途径。 教学内容分析 本课教学的主要内容是:学习用计算器(机)产生均匀随机数的一般方法;探究例2,一方面用随机模拟的方法统计事件发生的频率,并估计为概率,另一方面用几何概型的公式计算得到准确的概率,并验证随机模拟结果的可靠性;最后通过例3圆周率的估计问题来巩固随机模拟的思想方法。 ●教学重点:学习用计算器(机)产生均匀随机数的一般方法;用随机模拟的方法解决例2的送报纸问题。 ●教学难点:随机模拟试验的设计过程。 教学目标设置 通过本课的学习,希望学生能达到以下三个层次的目标 ●知识目标:了解均匀随机数的特点;熟练掌握用计算器和计算机产生均匀随机数方法;通过例2和例3,学会设计随机模拟试验。 ●能力目标:提升数据处理能力,实践操作能力和归纳总结能力 ●思想目标:巩固和深化频率估计概率的随机模拟思想。

学生学情分析 本节课教学对象是高二学生,具备以下知识和能力: ●已学习概率的定义,理解随着试验次数的增加,频率会越来越接近概率; ●在古典概型的学习中,已初步接触了随机模拟试验; ●已经学习几何概型的公式计算方法,并基本能识别不同几何测度的概率问题; 教学策略分析 在高考中,随机模拟试验的内容较少涉及,传统授课中,例2送报纸问题常以几何概型公式计算的方法为教学重点。但在数学核心素养的培养中,数学建模与数据处理是重要的部分,而随机模拟是此能力培养的重点内容之一,教学中需提供大量实践操作的机会。故本课采用数学试验的教学策略,从试验原理的引入到试验工具的学习,从设计试验的方案到体验试验的操作,应用理论对试验结果进行论证,最后提炼出试验的主要思路,并加以巩固运用,让学生体验随机模拟试验的全过程。 由此,课前需做好以下教学准备:每个小组配备一台笔记本电脑,两个计算器,教师自制转盘教具,印制课堂学案。

matlab产生随机数的方法

matlab 产生随机数的方法 第一种方法是用 random 语句,其一般形式为 y = random (' 分布的英文名 ',A1,A2,A3,m,n ) , 表示生成m 行n 列的m x n 个参数为(A1 , A2 , A3 ) 的该分 布的随机数。 例如: (1) R = random ('Normal',0,1,2,4): 生成期 望为 0, 标准差为 1 的(2 行 4 列)2 x 4个正态随机数 (2) R = random ('Poisson',1:6,1,6): 依次 生成参数为 1 到 6 的(1 行 6 列 )6 个 Poisson 随机数 第二种方法是针对特殊的分布的语句: 一. 几何分布随机数 R = geornd(P) R = geornd(P,m) (下面的 P , m 都可以是矩阵) (生成参数为 P 的几何随机数) (生成参数为 P 的 x m 个几何随机数) 1 R = geornd (P,m,n ) (生成参数为 P 的 m 行 n 列的 m x n 个几何随 机数) 例如 ⑴ R = geornd (1./ 2八(1:6))(生成参数依次为 1/2,1/2A 2,至U 1/2A 6 的 6 个几 何随机数 ) ⑵ R = geornd (0.01,[1 5])( 生成参数为0.01的(1行5列)5个几何随 机数). 二. Beta 分布随机数 R = betarnd(A,B) R = betarnd(A,B,m) 生成 m 行 n 列的 m x n 个数为 A,B 的 Beta 随 三.正态随机数 R = normrnd (MU, SIGMA ) (生成均值为 MU,标准差为SIGMA 的正态随机数) R = normrnd (MU , SIGMA,m ) (生成 1x m 个正态随机数) R = normrnd(MU , SIGMA,m,n) (生成 m 行 n 列的 m x n 个正态随机数) 例如 (1) R = normrnd(0,1,[1 5]) 生成 5 个正态 (0,1) 随机数 (2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为 [1,2,3;4,5,6], 方 差为 0.1 的 2x 3 个正态随机数. 生成参数为 A,B 的 Beta (生成 x m 个数为 A,B 随机数) 的 Beta 随机数) R = betarnd(A,B,m,n) 机数) .

简单随机抽样(教学设计)

《简单随机抽样》教学设计 一.设计思想 对中职幼师班学生,但若直接照本宣科,学生在知识水平与学习能力还有学习兴趣方面都会不如人意,所以通过对教材的重新处理,重新设计问题情景,同时在教学中注重实验的可操作性及让学生动手的机会,引导学生积极主动的参与问题的讨论与探索。本设计可通过设计笑话调节气氛,让学生在笑过后能进一步思考,让学生深刻体会到抽样调查的必要性;通过设计抓阄等游戏尽可能的让学生动手操作、体验,并激发学生积极思考,再利用多媒体中随机数生成器等进行随机抽样,让学生感受样本得到的随机性;通过生活中的几个典型实例,不仅让学生感悟到身边处处有数学,还引导学生对社会热点与形势的关注,加深对社会主义核心价值观的理解。 二、教材背景与内容分析 本节内容是中等职业教育课程改革国家规划新教材《数学》(基础模块)下册第十章抽样的第一课时。本节课在学生掌握了算法的基本思想,同时在小学与初中已接触过简单初步的统计知识后在中职阶段安排的一章内容,使学生对统计知识的理解与掌握呈螺旋性上升一个台阶。教材通过实例引出抽样的必要性,抽样时所应考虑到问题,样本的质量(代表性)和所推断的结论之间的关系,然后介绍最常用、最基础的随机抽样——简单随机抽样,具体介绍抽签法与随机数表法。 三、学情分析 虽然是学中职教材的内容,但幼师班学生基础普遍较差,逻辑思维能力较差,对与实际问题的简单应用比较感兴趣,参与实际操作有热情,同时对操作后在思维水平上还没有上升到理性认识。 四、教学目标 1.知识与技能 (1)使学生了解学习统计的意义,能够通过生活的具体实例从实际问题中提出统计问题。理解随机抽样的必要性和重要性。 (2)通过对著名案例的分析,理解样本的代表性与统计推断结论的可靠性之间的关系。 (3)掌握简单随机抽样的两种方法(抽签法和随机数法)的一般步骤。 2.过程与方法 以探究问题为导向,在对选取的实例解决过程中,让学生通过游戏与自己操作实践,引入简单随机抽样的概念,在解决统计问题的过程中,分别学会用简单随机抽样中的抽签法和随机数表法从总体中抽取样本. 3.情感态度与价值观

均匀随机数的产生 说课稿 教案 教学设计

均匀随机数的产生 教学目标: 1.通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯. 2.会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率.学习时养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力. 教学重点: 掌握[0,1]上均匀随机数的产生及[a,b]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率. 教学难点: 利用计算器或计算机产生均匀随机数并运用到概率的实际应用中. 教学方法: 讲授法 课时安排 1课时 教学过程: 一、导入新课 1、复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么? 2、在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生. 二、新课讲授: 提出问题 (1)请说出古典概型的概念、特点和概率的计算公式? (2)请说出几何概型的概念、特点和概率的计算公式? (3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢? (4)请你根据整数值随机数的产生,用计算器模拟产生[0,1]上的均匀随机数. (5)请你根据整数值随机数的产生,用计算机模拟产生[0,1]上的均匀随机数. (6)[a,b]上均匀随机数的产生. 活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导. 讨论结果: (1)在一个试验中如果 a.试验中所有可能出现的基本事件只有有限个;(有限性) b.每个基本事件出现的可能性相等.(等可能性) 我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型. 古典概型计算任何事件的概率计算公式为:P(A)= 基本事件的总数数 所包含的基本事件的个 A . (2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,

《几何概型》教学设计及反思

《几何概型》教学设计及反思 一、授课对象 本节课教授的是竹溪二中高二(6)理科班的学生,基础比较薄弱,学习习惯不太好,学习方法不好或者没有,但思维比较灵活,经激发后也有一定的思辨能力。 二、教材分析 本节课是在学生按照《几何概型》的导学案自学预习了一节课以后,进一步对与长度有关的几何概型、与面积有关的几何概型、与体积有关的几何概型中D测度和d测度的确认方法进行讨论。几何概型是新课改以后新加入的内容,是与以往教材安排上的最大的不同之处。这充分体现了新课改强调的数学与实际生活的紧密关系,是学生思维从有限到无限的自然延伸。同时它在概率论中有非常重要的作用.本节课有利于学生动手试验、合作探究能力的提升,有助于提高学生发现问题、解决问题的能力,有助于增强学生数学知识在实际问题中的应用。《普通高中数学课程标准》对几何概型的教学要求指出:介绍几何概型主要是为了更广泛地满足随机模拟的需要,对几何概型的要求仅限于初步体会几何概型的意义。历年高考说明中要求:了解几何概型的意义。可见大纲、考纲对几何概型的教学要求都比较低。教科书中选的例题也是比较简单的。但是执教过几何概型这部分内容的教师,却有这样的感受:“几何概型”这一概念的教学比较抽象,学生理解起来困难,遇到具体问题时,时常出错,主要是对题目的理解上出现问题。 三、教学目标 知识与技能目标: 1.能说出几何概型与古典概型的区别。 — 2.能记住几何概型的定义及其特点。 过程与方法目标: 1.会用几何概型的概率公式解决与长度、面积、体积等有关的概率问题。 2.培养学生的阅读能力,通过仔细辨析题目中间每句话,以至于每个字的含义,提升学生理解分析题目的能力。 情感态度与价值观目标: 1.通过本节课数形结合,比较辨析的方法,希望能使学生认识到数学学习并不是完全呆板的,体会到学习数学的乐趣,提高学习数学的兴趣。 2.了解均匀随机数产生的方法与意义,理解模拟试验估计概率,会用模拟试验估计几何概型的概率。 四、教学重难点 、 重点:体会随机模拟中的统计思想;用样本估计总体。 难点:把求未知量转化为几何概型求概率的问题。 五、教学过程 (一)教材梳理 1.几何概型的定义与特点 (1)定义:每个事件发生的概率只与构成该事件区域的成比例,则称这样的概率模型为几何概率模型,简称几何概型。 (2)特点:①可能出现的结果是;②每个结果发生的可能性。2.几何概型中事件A的概率的计算公式() P A= 。 |

高中数学:均匀随机数的产生 (28)

[核心必知] 1.预习教材,问题导入 根据以下提纲,预习教材P135~P136,回答下列问题. (1)教材问题中甲获胜的概率与什么因素有关? 提示:与两图中标注B的扇形区域的圆弧的长度有关. (2)教材问题中试验的结果有多少个?其发生的概率相等吗? 提示:试验结果有无穷个,但每个试验结果发生的概率相等. 2.归纳总结,核心必记 (1)几何概型的定义与特点 ①定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. ②特点:(ⅰ)可能出现的结果有无限多个;(ⅱ)每个结果发生的可能性相等. (2)几何概型中事件A的概率的计算公式 P(A)= 构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) . [问题思考] (1)几何概型有何特点? 提示:几何概型的特点有: ①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等. (2)古典概型与几何概型有何区别? 提示:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的. [课前反思] 通过以上预习,必须掌握的几个知识点: (1)几何概型的定义:;

(2)几何概型的特点: ; (3)几何概型的计算公式: . 某班公交车到终点站的时间可能是11∶30-12∶00之间的任何一个时刻. 往方格中投一粒芝麻,芝麻可能落在方格中的任何一点上. [思考1] 这两个试验可能出现的结果是有限个,还是无限个? 提示:无限多个. [思考2] 古典概型和几何概型的异同是什么? 名师指津:古典概型和几何概型的异同 如表所示: 名称 古典概型 几何概型 相同点 基本事件发生的可能性相等 不同点 ①基本事件有限个 ①基本事件无限个 ②P (A )=0?A 为不可能事件 ②P (A )=0A 为不可能事件 ③P (B )=1?B 为必然事件 ③P (B )=1 B 为必然事件 讲一讲 1.取一根长为5 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2 m 的概率有多大? [尝试解答] 如图所示. 记“剪得两段绳长都不小于2 m ”为事件A .把绳子五等分,当剪断位置处在中间一段上 时,事件A 发生.由于中间一段的长度等于绳长的15 , 所以事件A 发生的概率P (A )=15 . 求解与长度有关的几何概型的关键点 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D

随 机 数 生 成 器

使用python实现伪随机数生成器 在前两天学习了使用python实现伪随机数的方法,今天是时候来做一个总结了。 首先要说明的是什么是随机数,真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。产生这些随机数的方法有很多种,而这些产生随机数的方法就称为随机数生成器。像前面说的由物理现象所产生的随机数发生器叫做物理性随机数发生器,它们的缺点是技术要求比较高。 但是在我们的实际生活中广泛应用的是伪随机数生成器,所谓的“伪”就是假的的意思,也就是说并不是真正的随机数。那么这些随机数是怎么实现的呢?这些数字是由固定的算法实现的,是有规律可循的,并不能实现真正的“随机”,但是它们具有类似于随机数的统计特征。这样的发生器叫做伪随机数发生器。 实现伪随机数的方法有很多种,如:平方取中法,线性同余法等方法。 下面主要介绍的是线性同余法,如C的rand函数和JAVA的java.util.Random类就是使用该方法实现的,其公式为:rNew = (a*rOld + b) % (end-start) 其中, a称为乘数,b称为增量,(end-start)称为模数,它们均为常数。 然后设置rOld = rNew,一般要求用户指定种子数rOld(也称为

seed),当然也可以自由选择a和b,但是两个数如果选择不好,可能会影响数字的随机性,所以一般令: a=32310901 这样使得生成的随机数最均匀。下面我是用的将种子自定义设为999999999。代码如下: def myrandint( start,end,seed=999999999 ): a=32310901 #产生出的随机数最均匀 rOld=seed m=end-start while True: #每调用一次这个myrandint函数,才生成一次随机数所以要惰性求值 rNew = (a*rOld+b)%m yield rNew rOld=rNew #模拟使用20个不同的种子来生成随机数 for i in range(20): r = myrandint(1,10000, i) #每个种子生成10个随机数 print('种子',i,'生成随机数') for j in range(10): print( next(r),end=',' ) 运行结果是使用20个不同的种子生成的随机数。

在excel中产生随机数

用excel产生随机数 统计软件提供的随机数发生器可以使我们对抽样分布进行计算机模拟,对抽样分布有更加直观的理解。Excel的分析工具库中有一个“随机数发生器”模块,可以产生服从大部分常用分布的模拟数据,但没有提供直接产生随机数的函数。在SPSS中产生随机数的函数在“Randomnumbers”类别中,相应的函数都是以Rv 开头的。 1 样本均值抽样分布的随机模拟 假总体的均值为μ,标准差为σ,则统计理论表明,不论总体的分布如何,只要样本容量n足够大,样本均值的分布总会趋向于正态分布,且均值为μ,标 准差为。 例题:假设总体为均匀分布,模拟样本均值的抽样分布。 假设总体的分布为0-1区间上的均匀分布,则总体的均值为0.5,方差等于 1/12,标准差等于0.288675。现在,我们从总体中抽取1000个样本容量为2的样本(有放回抽样),计算每个样本的样本均值,然后观察样本均值的分布状况。 新建一个Excel工作簿,单击“工具”“数据分析”“随机数发生器”,在弹出的对话框中把变量个数设为2,随机数个数为1000,选择0-1区间的均匀分布,结果放在新工作表中(图1)。把输出结果的每一行看作一个容量为2的样本,共有1000个样本。在C列中计算每个样本的均值。接下来我们就可以分析这1000个样本均值的分布状况了。由于SPSS的直方图工具更为方便,我们把相应的数据复制到SPSS中作直方图,结果如图2,抽样分布的均值为0.5097,标准差为 0.20345,理论值等于0.288675/ 2 =0.20412,两者差异不大。 图1 随机数发生器对话框

图2 样本均值的抽样分布,样本容量=2 2 样本比例抽样分布的随机模拟 样本比例实质上就是指标数值只能取0和1时的样本均值。由于在这种情况下总体的分布为0-1分布,因此在重复抽样的条件下样本均值抽样分布的理论分布是二项分布。中心极限定理表明当样本用量足够大(能够保证np≥5,nq≥5)时二项分布可以用正态分布来近似。 [例] 假设有大批零件,不合格率p为0.2。随机模拟从总体中抽取样本容量分别为5,20,50的2000个样本,分析样本比例p? 的抽样分布。 新建一个工作表,在单元格中输入图5-10左上角所示的信息作为总体:总体中取值为1(不合格)的概率为0.2,取值为0(合格)的概率为0.8。 图3 二项分布的随机模拟

人教版高中数学必修三练习 均匀随机数的产生

第三章 3.3 3.3.2 一、选择题 1.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( ) A .m >n B .m

A .y =-4x ,y =5-4 B .y =4x -4,y =4x +3 C .y =4x ,y =5x -4 D .y =4x ,y =4x +3 [答案] C 6.如图所示,在墙上挂着一块边长为16 cm 的正方形木块,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm ,某人站在3 m 之外向此板投镖,设镖击中线上或没有投中木板时不算,可重投, 记事件A ={投中大圆内}, 事件B ={投中小圆与中圆形成的圆环内}, 事件C ={投中大圆之外}. (1)用计算机产生两组[0,1]内的均匀随机数,a 1=RAND ,b 1=RNAD. (2)经过伸缩和平移变换,a =16a 1-8,b =16b 1-8,得到两组[-8,8]内的均匀随机数. (3)统计投在大圆内的次数N 1(即满足a 2+b 2<36的点(a ,b )的个数),投中小圆与中圆形成的圆环次数N 2(即满足4

第3章 随机数的产生与模拟

第三章随机数的产生与模拟目录 ?随机数的产生与模拟 ?§3.1均匀随机数的产生 ? 3.1.1线性同余法(LCG)的递推公式 ? 3.1.2反馈位移寄存器法(FSR) ? 3.1.3组合发生器 ?§3.2非均匀随机数的产生 ?§3.3 Monte Carlo方法在解确定性问题中的应用 ? 3.3.1计算定积分 ? 3.3.1.1随机投点法 ? 3.3.1.2平均值估计法 ? 3.3.1.3重要抽样法 ? 3.3.1.4分层抽样法 ? 3.3.2 计算多重积分 ? 3.3.2.1 随机投点法 ? 3.3.2.2 平均值估计法 ? 3.3.3应用实例 ?§3.4 随机模拟方法在随机服务系统中的应用 ?§3.5 随机模拟方法在理论研究中的应用

随机数的产生与模拟 用随机模拟方法解决实际问题时,首先要解决的是随机数的产生方法,或称随机变量的抽样方法。

随机数的产生与模拟 伪随机数: 在计算机上用数学方法产生均匀随机数是指按照一定的计算方法而产生的数列,它们具有类似于均匀随机变量的独立抽样序列的性质,这些数既然是依照确定算法产生的,便不可能是真正的随机数,因此常把用数学方法产生的随机数称为伪随机数。

随机数的产生与模拟 均匀分布随机数: 定理:设)(x F是连续且严格单调上升的分布函数,它的反函数存在,且记为)(1x F-, 1、若随机变量ξ的分布函数为)(x F,则)1,0(~)(U Fξ; 2、若随机变量)1,0(~U F-的分布函数为)(x F R,则)(1R

随机数的产生与模拟 均匀分布随机数: 该定理说明了任意分布的随机数均可由均匀分布的随机数变换得到。常简称的随机数为均匀分布随机数。 )1,0(U )1,0(U

相关文档
最新文档