塔式起重机传动机构设计

塔式起重机传动机构设计
塔式起重机传动机构设计

1.塔式起重机概述

在建筑安装工程中,能同时完成重物的垂直升降和水平移动的起重机很多,其中应用最广泛的是塔式起重机。塔式起重机具有其他起重机械难以相比的优点,如塔身高,起重臂长,有效作业面广,能同时进行起升,回转行走,变幅等动作,生产效率高;采用电力操纵,动作平衡,安全可靠;结构相对较为简单,运转可靠,保养维修业较为容易。因此,他是起重机已成为现代工业与民用建筑不可缺少的主要施工机械。

塔式起重机工作高度大,一般自升式塔机工作高度可在100m左右,特殊用途的可在300m以上。因此塔机的起升机构必须要有较大的容绳量。塔机起升起升机构的卷筒都采用多层缠绕的方式。塔机分为上回转塔机(本次设计题目)和下回转塔机两大类。其中前者的承载力要高于后者,在许多的施工现场我们所见到的就是上回转式上顶升加节接高的塔机。按能否移动又分为:行走式和固定式。固定式塔机塔身固定不转,安装在整块混凝土基础上,或装设在条形式X形混凝土基础上。在房屋的施工中一般采用的是固定式的。

塔机机械通常结构庞大,机构复杂。塔机的工作机构有五种:起升机构(本次设计题目)、变幅机构、小车牵引机构、回转机构和大车走行机构(行走式的塔机)。

2.专业课程设计的题目

上回转自升式塔式起重机起身机构设计

型号:QTZ200

起重力矩(Kn·m):2000

最大幅度/起重载荷(m/KN):40/35

最小幅度/起重载荷(m/KN):10/200

起升高度(m):162(附着式)55(固定式)

工作速度(m/min):6~80(2绳)3~40(4绳)

起重臂长(m):40

平衡臂长(m):20

3.塔式起重机起升机构设计

起重机起升机构用来实现物品的上升与下降。起升机构是任何起重机必须具备的,使物品获得升降运动的基本组成。起升机构工作的好坏将直接影响整台起重机的工作性能。塔式起重机起升机构具有一般起重机起升机构的组成特点。起升机构应具备起升高度大、制动平稳、慢速就位、就位准确、起升速度可调等特点。

起升机构的组成和工作原理

起身机构主要由驱动装置(原动机)、传动装置(减速器)、卷筒、滑轮组、取

物装置(吊钩组)和制动装置组成。此外,还可装设各种辅助装置,如起升高度限位器,力矩限制器,三圈保护等安全装置,特别是在中、大吨位起重机上,力矩限制器越来越重要。

其工作原理(如下图)是原动机经过减速器后驱动卷筒旋转,使钢丝绳卷进卷筒或由卷筒放下,从而使吊钩升降。

1.电动机

2.制动器

3.减速器

4.卷筒

5.滑轮

6.钢丝

7.吊钩

塔式起重机多采用单卷筒单轨式的起升机构,起升机构在工作时起动制动频繁,并且常带载起动,多采用专用电动机。起升机构的制动器必须是常闭式,这有利于塔机带载工作时的安全。升降吊钩时需要打开制动器使电机输出的动力经联轴器和减速器驱动起升卷筒旋转,收放钢丝绳带动吊钩升降;当升降到预定高度后则停止电机,同时制动器制动使传动轴减速停止,吊钩及重物就可以停止在空中完成起升运功。

起升机构的常见驱动及驱动方案的选择

起重机起升机构常见的驱动型式按动力装置的不同可分为内燃机驱动、电力驱动、复合驱动。

1.内燃机驱动

内燃机经由机械传动装置驱动起升卷筒,属于集中驱动。这种驱动方式的优点是具有自身独立的能源,机动灵活,适用于流动作业的流动式起重机。为保证各机构的独立运动,整机的传递系统复杂笨重。由于内燃机不能逆转,不能带载启动,需依靠传递环节的离合器实现启动和换向。这种驱动方式调速困难,操作麻烦,属于淘汰类型。目前只在现有少数履带起重机的铁路起重机上应用。

2.电动机驱动

电动机经机械传动装置驱动起升卷筒,属于分别驱动。直流电动机的机械特性适合起升机构工作要求,调速性能好,但获得直流电源较困难,机动性较差。在大型的工程起重机上,常用内燃机和直流电机实现直流传动。交流电动机驱动能直接从电网取得,操纵简单,维护容易,机组重量轻,工作可靠,在电动机起升机构中被广泛采用。常用于塔式起重机、桥式起重机、龙门起重机等。

3.复合驱动

常见有内燃机-电力复合驱动、内燃机-液压(液力)复合驱动。这种驱动型式兼有内燃机驱动和电力驱动二者的优点,常用于履带式和轮胎式起重机。

由于本次课程设计为上回转自升式塔式起重机QTZ200需要获得几个不同的起升速度,鉴于电动机驱动的调速可调性且调速范围大调速稳定等特点,且相对与复合驱动结构更简单,价格更低廉,故选用电动机驱动即可满足使用要求。

起重机起升机构的布置方案

起重机常见的布置有展开式布置、同轴线布置、其它布置等。

展开式布置

电动机与卷筒并列是大多数起重机的展开式布置型式。电动机通过二级标准齿轮减速器带动卷筒。

同轴线布置

电机与卷筒成同轴线布置,行星减速器安装于卷筒内。这种布置十分紧凑,便于机构的布置,但是维修稍微不便。

其它布置型式

起重机还有双卷筒式,采用液压油马达直联卷筒驱动等型式。但不多见于塔式起重机。

综合考虑本次课程设计的的各项参数需要获得不同速度且调速范围比较大且稳定故可选用展开式布置。为了获得较宽的调速可选用电动机驱动。电动机与减速器之间采用弹性柱销联轴器来补偿安装位置误差,且能弥补双电机排列结构位置过于紧凑的不足,使机构布置均匀美观。为了使制动器在制动时受到的扭矩比较小,使制动更加准确快速,故安装在减速器的高速轴上。同时为了美观可安装于减速去高速轴另一端的输出轴上。同时起重机起升机构的制动器既是制动装置又是安全装置,故应选用常闭制动器。

钢丝绳的穿绕

采用不同门数的滑轮组和不同的穿绕方式,可得到不同的起重滑轮组倍率。由于本次课题QTZ200起重机最大载荷为200kN(20t)故采用两门滑轮组,倍率为4以获得较合理的扩力比。(钢丝绳与滑轮组缠绕如下图)

卷筒与减速器的联接方式

起升卷筒与减速器的联结方式:卷筒轴的右端支承在球面滚动轴承上,其左端与末级开式齿轮传动的大齿轮通过螺栓和抗剪套筒联结起来。

4.起升机构的设计计算

起升机构的设计计算,是在根据总体设计的要求选择合理的结构型式和确定机构传动布置方案后,按给定的整机参数确定起升机构的参数(最大额定起重量、起升高度、起升速度等),进行动力装置的选择计算,确定或设计确定各起重零部件的类型和尺寸。

设计技术参数

型号:QTZ200

起重力矩(Kn·m):2000

最大幅度/起重载荷(m/KN):40/35

最小幅度/起重载荷(m/KN):10/200

起升高度(m):162(附着式)55(固定式)

工作速度(m/min):6~80(2绳)3~40(4绳)

起重臂长(m):40

平衡臂长(m):20

机构工作级别

塔式起重机的工作级别是设计人员进行结构、机构设计计算的依据。一台好的塔式起重机设计应充分考虑机器的使用条件,这样设计出来的机器在安全和寿命方面才有可能较为接近实际的要求。列出了我国《塔式起重机设计规范》(GB/T13752――1992)规定的塔式起重机工作级别的划分标准。从表中可以看出根据其使用条件中的两个最主要特征因素“载荷状态”(以名义载荷谱系数表征)和“利用级别”(以塔式起重机总的工作循环数表征)分为A1~A6共六个工作等级,目的是为了合理设计、制造和使用;塔式起重机,提高零部件的三化“水平”,以取得较好的经济指标。

利用等级

塔式起重机的“利用等级U”用来表明在其有效寿命期间使用的频繁程度。

表2-1 塔式起重机工作级别的分类

表2-2塔式起重机的利用等级

型号QTZ200塔式起重机起升机构一般可视为经常中等地使用,利用等级按表2-2可取为U5.

载荷状态

塔式起重机的“载荷状态”是表示塔式起重机受载的轻重繁忙程

可凭经验按表2-3中的说明选择一种合适的载荷状态级别。

表2-3塔式起重机的载荷状态

型号QTZ200塔式起重机有时起升额定载荷,一般起升中等载荷,因此载荷状态取为:Q2-中,名义载荷谱系数取为:Km=.机构的工作级别取为M5。

(1)吊具自重

表3-1 吊具自重与起重量的关系

型号QTZ200塔式起重机起升载荷在125~200Kn 之间,故吊具重

(2)电机接电持续率

塔式起重机起升机构电机接电持续率一般可取为JC%=50,每小时起动次数可取为Z=150次。

起升机构零部件的设计计算

吊钩的选择

起升吊钩的生产已标准化,塔式起重机吊钩规定采用20号钩,根据本次设计的用途和最大额定起重20000Kg ,选择吊钩的形式和规格为锻造长柱单钩。

起升机构滑轮组倍率及效率的确定

塔式起重机起升机构滑轮组倍率一般取为a=2

起升机构的倍率与额定起重量有一定的关系,参考下表

QTZ200型起重机最大额定起升重量为20t ,根据实际情况取a=4。

钢丝绳的选择

按正常工作状态选钢丝绳。

钢丝绳的最大静拉力: S m ax = η

×+a q P Q

Q P 为额定起重量:Q P =200Kn

q 为吊具重,由于最大起升高度为162m ,故钢丝绳的重量也应该计入,为简便计算故q=5Kn

滑轮组倍率a=4 滑轮组效率η=

所以S m ax =

2005

56.1()η40.97

Q P q Kn a ++==?? 根据最大静拉力选择钢丝绳,则有:

计算钢丝绳径:d rmin =max s c ×

C 为钢丝绳选择系数,按M5的工作级别查《机械设计手册》有: 机构工作级别: M5

所以d rmin =0.124()c mm =≈

故选用钢丝绳径不得小于上述计算值,所以选择钢丝绳规格为: 钢丝绳公称直径|d/mm: 24 型号为:6W19-24-175-I

滑轮组选择

滑轮组的倍率a=4

选用的滑轮计算直径为D 1min =h 2d 绳轮比系数h 2查表4-1

由起升机构工作级别为M5,查表得h 2=18 钢丝绳直径d=16mm

D 1min =h 2d=2024480()mm ?=

对滑轮组做适当的放大,查表取D 1=500mm

卷筒的主要尺寸选择计算

(a )卷筒的最小直径为:D 1min =h 1d 绳轮比系数h 1查表4-1得h 1=18 钢丝绳直径d=24mm

卷筒的最小直径为:D 1min =h 1d=2024480()mm ?=

由于塔式起重机起升高度大,于是将D 1min 放大到D 1min =500mm ,目的是为了减少卷筒长度。

(b )卷筒长度计算

卷筒长度L 按多层绕卷筒计算

)

()(1.110dm D m d

D z s H L +++=

ππα

起重机起升高度H=162m 滑轮组倍率a=4 附加安全圈数Z 0= 卷筒的计算直径D 1=

钢丝绳在卷筒上的卷绕层数m=7 钢丝绳直径d=

卷筒至吊臂端的距离s=60m 则

011.1(απ) 1.1(162460 1.5 3.140.5)0.024 1.325()π() 3.147(0.4760.0247)

H s z D d L m m D dm ++??++???===+??+?

(c )卷筒的强度校核

卷筒的壁厚可取为:d =δ 由于卷筒的长度和直径比D L 3≤,故为短卷筒,按短卷筒只校核压应力:

[]

c c t

S

A A σ≤δσmax 21=

多层卷绕系数A 1当卷绕层数为是4层或4层以上时A 1= 应力减少系数2A 一般取为,即2A = d =δ=24mm S max =

故max 1256100

σ 2.00.75129.86()δ2424

c S A A Mp t ==??=?

卷筒的材料为ZGD270-500,270S Mp σ= 所以[]

c σ= 2

270/2135()s Mp σ==

满足[]

c c σ≤σ,故校核合格。

起升机构传动装置的设计计

起升机构功率计算

塔式起重机起升机构满载稳定工作的静功率:)(η

60000KW v P N Q e =

0'v k v =

1

')

1(1e m k +

=λ 钢丝绳的卷绕层数m=7 λ取

卷筒槽底直径D= 钢丝绳直径d=

机构总效率η0.89=

计算得到η

60000v

P N Q e =

=59(KW )

根据相对结合律JC%=40选择电机: e N K N JC 电=

K 电是考虑起重机并不总是按最低载荷情况工作的折减系数,对于中级工作的塔式起重机起升机构,K 电=~,这里我们取为

故e 0.95953.1JC N K N KW ==?=电()

初选电机型号为:YZRDW280M

其参数如下: 极数:4/8

额定功率(Kw ) 55/55 额定电流(A ) 108/725 转速(r/min ) 1415/725 最大转矩位数

起升机构电动机的过载校核

对于起升机构的电动机,要求能在有电压损失,最大转差率时能起吊125%的额定起重

量,因此应按下式进行过载校核:)(η

60000λ≥KW Z v

HP N Q

最大起升载荷P Q =205000N 物品的起升速度v=24m/min 机构的总效率0.89η=

考虑电压损失,最大转差率时的系数H=(异步电动机) 机构的驱动电机数目Z=1

故:

44()55()λ60000η

Q HP v

KW N KW Z =≤=满足。

起升机构电动机的发热校核

电动机的容量选择要求在额定工况工作时,电动机不出现过热,按下式计算平均功率,校核S JC N N ≥:

Z

v

P G N Q S η60000=

静态负载平均系数G 对于工程起重机常取G= 其余系数同(2)中数值

Z

v P G

N Q S η60000==(KW )满足S JC N N ≥,故校核合格。

传动装置的传动比计算

起升机构的传动比按电动机的转速n 1和卷筒的转速n 2确定。卷筒转速为:

1

02D v n πα=

额定起升速度v 0=24m/min 卷筒的计算直径D 1= 滑轮组倍率4=α

起升机构总传动比为:α

π01121v n

D n n i ==

取四个起升速度分别为: v 0=24m/min v 1=16 m/min v 2=12 m/min v 3=32 m/min 分别计算: i 0=12 i 1=24 i 2=16 i 3=48

为了获得以上传动比,故可采用滑移齿轮来进行变速。滑移齿轮是在轴上可以移动的,它所传递的扭距是传到轴上的,用滑键或花键连接,齿轮啮合实现变速。由于卷筒通过开式齿轮与减速箱相连,开式齿轮的传动比i=3.故减速箱里齿轮传动比应满足: i 0=6 i 1=12 i 2=8 i 3=48

起动时间校核

起升机构起动时间校核按下式进行:

(

)

s m m s M M n t =375(+2

15.1m m D G )η

α2212i D P Q

电机转速n m =725r/min

电机额定转矩 1.595501181()m m N

M N m n =?=? 起升机构的静阻力矩1

864.72αη

Q s P D M i =

= )(m N ? 电动机的飞轮矩224880()m m m G D gJ N m ==?

代入解得t s =在2-5s 之间满足。

制动时间校核

(a )制动器的选择

选择时应先计算机构所需的制动力矩M 。制动力矩按下式估算:

1.239550875.3m

N

M N m n η=?=?

制动力矩M M B β=

β是制动安全系数,塔式起重机起升机构可取为. 故β 1.5857.31313B M M N m ==?=?

查表选择电磁块式制动器,制动转矩

(b )制动时间校核

制动时间校核按下式进行:

)(375BS B B B M M n t =(

B B m m i D G η2

215.1+ )

ηα2

212i D P Q 制动轮转速n B =725r/min 制动力矩M B =1400N ·m

静载荷在制动时所需的制动力矩M BS =

1

7242αQ P D N m i

η=? 代入式子解得t B =在2-5s 之间满足。

参考文献

刘佩衡,塔式起重机使用手册,北京:中国机械工业出版社,2002 顾迪民,工程起重机,中国建筑工业出版社,1988

起重机设计手册编写组,起重机设计手册,机械工业出版社,1980

常见的几种机械传动方式

常见的几种机械传动方式 机械传动按传力方式分,可分为摩擦传动和啮合传动,摩擦传动又分为摩擦轮传动和带传动等,啮合传动可分为齿轮传动、涡轮蜗杆传动、链传动等等;按传动比又可分为定传动比和变传动比传动。 1.1皮带传动 皮带传动是由主动轮、从动轮和紧张在两轮上的皮带所组成。由于张紧,在皮带和皮带轮的接触面间产生了压紧力,当主动轮旋转时,借摩擦力带动从动轮旋转,这样就把主动轴的动力传给从动轴。 皮带传动分为平皮带传动和三角皮带传动$G 皮带传动的特点: 1)可用于两轴中心距离较大的传动。 2)皮带具有弹性、可缓冲和冲击与振动,使传动平稳、噪声小。3)当过载时,皮带在轮上打滑,可防止其它零件损坏。 4 )结构简单、维护方便。 5)由于皮带在工作中有滑动,故不能保持精确的传动比。 外廓尺寸大,传动效率低,皮带寿命短。\ 三角皮带的断面国家规定为O、A、B、C、D、E、F、T等8种,从O

到T皮带剖面的面积逐渐增大,传动的功率也逐渐增大。 在机械传动中常碰到传动动比的概念,什么是传动比呢?它是指主动轮的转速n1与从动轮的转速n2之比,用I表示:即I=n1/n2。由于皮带传动中存在“弹性滑动”现象,上述传动比公式只是个近似公式,那么皮带传动中这种“弹性滑动”现象是怎样表现的呢?概括如下:在主动轮处,传动带沿带轮的运动是一面绕进,一面向后收缩:在从动轮处,传动带沿带轮的运动是一面绕进,一面向前伸展。| 1.2齿轮传动 齿轮传动是由分别安装在主动轴及从动轴上的两个齿轮相互啮合而成。齿轮传动是应用最多的一种传动形式,它有如下特点 1)能保证传动比稳定不变。 2)能传递很大的动力。 3) 结构紧凑、效率高。+ 4)制造和安装的精度要求较高。 5)当两轴间距较大时,采用齿轮传动就比较笨重 齿轮的种类很多,按其外形可分为圆柱齿轮和圆锥齿轮两大类。 圆柱齿轮的外形呈圆柱形、牙齿分布在圆柱体的表面上,按照牙齿

机械原理课程设计-平台印刷机主传动机构说明书

机械原理课程设计说明书 ——平台印刷机主传动机构运动简图设计设计名称平台印刷机主传动机构运动简图设计 专业机械设计制造及其自动化 08622班 姓名 指导教师 时间2010-7-7

目录 一、设计题目 (3) 1、设计条件与要求 (3) 2、原理图 (3) 二、机械运动方案的选择 (3) 1、平台印刷机主要机构及功能 (3) 2、实现功能的方案 (4) 3、设计方案的拟定和比较及设计思路概述 (4) 4、平台印刷机设计数据 (5) 三、对选定机构的运动分析与设计 (5) 1、曲柄滑块机构综合分析 (5) (1)机构的运动几何关系 (5) (2) 参数选择 (6) 2、双曲柄机构的运动分析 (7) (1)曲柄滑块位移计算Ψ (7) (2)由Ψ1求Ψ3 (8) 3、曲柄滑块机构的位置分析 (8) 4、凸轮机构的设计 (9) (1)凸轮机构从动件运动规律的确定 (9) (2)绘制补偿凸轮轮廓 (10) 四、程序设计 (10) 1、所调用的子程序及功能 (10) 2、所编程序的框图 (11) 3、主程序如下 (13) 4、主程序子程序中主要参数说明 (16) 5、程序运行结果 (17) 6、版台位移,速度以及滚筒位移,速度曲线 (17) 五、总结 (17) 六、参考文献 (18)

一、设计题目 1、设计条件与要求 工作原理:平台印刷机的工作过程由输纸,着墨,压印和收纸四部分组成,主运动是压印,由卷有空白纸张的滚筒与镶着铅字的版台之间纯滚动来完成。滚筒与版台表面之间的滑动会造成字迹模糊,是不允许的。因此,对运动的主要要求是:其一,版台的移动速度严格等于滚筒表面的圆周速度;其二,为了提高生产率,要求版台的运动有急回特性。有一台电动机驱动。需设计满足上述两个要求的传动机构。执行件的运动为滚筒连续转动和版台往返移动。 2、原理图 图1 二、机械运动方案的选择 1、平台印刷机主要机构及功能 主要机构: 1) 传动机构I——从电动机到版台的运动链;

《机械设计基础》试题库

《机械设计基础》试题库 一、填空题 (机械原理部分) 1.牛头刨床滑枕往复运动的实现是应用了平面四杆机构中的机构。 2.机构具有确定运动的条件是数目与数目相等。 3.平面四杆机构的压力角愈,传力性能愈好。 4.平面四杆机构的传动角愈,传力性能愈好。 5.有些平面四杆机构是具有急回特性的,其中两种的名称是机构、机构。6.在平面四杆机构中,用系数表示急回运动的特性。 7.摆动导杆机构中,以曲柄为原动件时,最大压力角等于度,最小传动角等于度。 8.在摆动导杆机构中,若导杆最大摆角φ= 30°,则其行程速比系数K的值为。9.四杆机构是否存在止点,取决于是否与共线。 10.在铰链四杆机构中,当最短杆和最长杆长度之和大于其他两杆长度之和时,只能获得机构。 11.平面四杆机构中,如果最短杆与最长杆的长度之和小于其余两杆的长度之和,最短杆为机架,这个机构叫__ 机构。 12.平面连杆机构急回特性系数K____1时,机构有急回特性。 13.以滑块为主动件的曲柄滑块机构有____个止点位置。 14.凸轮机构主要由、、和三个基本构件组成。 15.盘形凸轮的基圆,是指以凸轮的轮廓的值为半径所作的圆。 16 .在凸轮机构中,从动件的运动规律完全由来决定。 17.据凸轮的形状,凸轮可分为凸轮、凸轮和移动凸轮。 18.凸轮机构的压力角是指的运动方向和方向之间所夹的锐角。 19.在实际设计和制造中,一对渐开线外啮合标准斜齿圆柱齿轮的正确啮合条件是 相等、相等、且相反。20.在实际设计和制造中,一对渐开线标准直齿圆柱齿轮的正确啮合条件是、 。 21.一对渐开线标准直齿圆柱齿轮的连续传动条件是。 22.在标准齿轮的分度圆上,与数值相等。

传动零件的设计计算

第4章传动零件的设计计算 传动零件是传动系统中最主要的零件,它关系到传动系统的工作性能、结构布置和尺寸大小。此外,支承零件和联接零件也要根据传动零件来设计或选取。因此,一般应先设计计算传动零件,确定其材料、主要参数、结构和尺寸。 各传动零件的设计计算方法,均按《机械设计》或《机械设计基础》课程所述方法进行,本书不再重复。下面仅就传动零件设计计算的内容和应注意的问题作简要说明。 第一节减速器外部传动零件的设计计算 传动系统除减速器外,还有其他传动零件,如带传动、链传动和开式齿轮传动等。通常先设计计算这些零件,在这些传动零件的参数确定后,外部传动的实际传动比便可确定。然后修改减速器内部的传动比,再进行减速器内部传动零件的设计计算。这样,会使整个传动系统的传动比累积误差更小。 在课程设计时,对减速器外部传动零件只须确定其主要参数和尺寸,而不必进行详细的结构设计。 一、普通V带传动 设计普通V带传动须确定的内容是:带的型号、长度、根数,带轮的直径、宽度和轴孔直径,中心距,初拉力及作用在轴上之力的大小和方向以及V带轮的主要结构尺寸等。 设计计算时应注意以下几个方面的问题: (1)设计带传动时,应注意检查带轮尺寸与传动系统外廓尺寸的相互协调关系。例如,小带轮外圆半径是否小于电动机的中心高,大带轮半径是否过大而造成带轮与机器底座相干涉等。此外,还要注意带轮轴孔尺寸与电动机轴或减速器输入轴尺寸是否相适应。 (2)设计带传动时,一般应使带速v控制在5~25m/s的范围內。若v过大,则离心力大,降低带的使用寿命;反之,若v过小,传递功率不变时,则所需的V带的根数增多。 (3)为了使每根V带所受的载荷比较均匀,V带的根数Z不能过多,一般取Z=3~6根为宜,最多不超过8根。 (4)一般情况下,带传动的最大有效拉力与主动带轮上的包角 α成正比,为了保证V 1 带具有一定的传递能力,在设计中一般要求主动带轮上的包角 α≥120°。 1 (5)为了延长带的使用寿命,带轮的最小直径应大于或等于该型号带轮所规定的最小直径,且为直径系列值。带轮直径确定后,应根据该直径和滑动率计算带传动的实际传动比和从动轮的转速,并以此修正减速器所要求的传动比和输入转矩。 二、链传动 设计链传动须确定的内容是:链的型号、节距、链节数和排数,链轮齿数、直径、轮

多轴专用汽车转向传动机构的设计

多轴专用汽车转向传动机构的设计 1 前言 大型专用汽车的转向轴多在二轴以上,有的甚至多达五轴,其转向性能 的好坏直接影响车辆行驶的灵活性、操纵稳定性、经济性和轮胎的使用寿命,而且车轴越多,转向对车辆行驶影响越大。作为转向系统的转向梯形机构,文献运用参数方程对转向梯形机构进行了建模和分析、研究,但对转向传动机构分析和计算的几何法就十分不便,特别是结构复杂的独立悬架的传动机构计算更为不便。本文运用参数方程法,对转向传动机构的各点用坐标参数来表示,建立参数方程求解、分析,提出了一种可运用于多轴转向的传动机构优化设计的计算方法,达到各轴转向协调的目的,提高车辆行驶的灵活性、操纵稳定性和经济性。 2 转向时各转向桥的理想转角关系 图1为某前双桥转向底盘转向时各转向轴内外转向轮的理想转角关系,由于不研究转向梯形机构,只讨论转向传递关系,所以只分析内侧的车轮的转角关系。 3 一桥传动机构传动模型 多轴转向汽车一般通过连杆机构来保证同一侧车轮在转向时绕同一瞬心作圆周运动。下面以常用的连杆机构中第一轴摇臂的摆角与车轮转向臂转角的对应为例,说明连杆机构的运动关系(如图2)。

图2中:A1为车轮转向节臂初始位置;Al′为车轮转动角a1转向节臂位置;B1为一桥传动摇臂初始位置;B1′为车轮转动a1′角一桥传动摇臂位置。 4 一桥梯形机构传动模型 根据文献的梯形机构的建模方式,将梯形机构简化为平面机构,则一桥梯形机构得一桥外轮转角a1′与一桥内轮转角a1之间关系(如图3)。

图3中:A1为内轮转向节臂初始位置;A1′为内轮转动a1角转向节臂位置;El为外轮转向节臂初始位置;E1′为外轮转动a1′角一桥传动摇臂位置。 一桥至二桥之间的传动模型

机构二级传动设计

项目:二级传动设计系部:机电工程系 班级:11级机电4班学号:20110103159 姓名:黄建军 指导老师:刘光浩

目录 一设计卷扬机传动装置 (3) 二设计传动装置中带传动 (8) 三设计减速箱的齿轮 (10) 四轴的结构设计 (15) 五计算轴承的寿命 (23) 六附图 (24)

机构设计任务2 一、设计卷扬机传动装置。 由已知条件可得: (1)、确定工作机需要的功率Pw和卷扬机的转速Nw P W =F V/1000nw=4.2kw n w =60 1000V/∏D=24.92r/min (2)、初定电动机的类型和转速 初估系统的总效率为0.8≈0.9,需要电动机的功率为 P d =P w /n=4.67≈5025kw 根据P ed ≥P d ,则可以选用的电动机有Y-132M2-6、Y-132S-4、 Y132S1-2,以这三种方案做一个比较表,综合考虑传动装置的传动比、重量、价格三方面的因素,拟选用电动机的型号为: (3)功能分析 总传动比i=n d /n w=38.46 根据总传动比的大小,可采取二级减速传动。每一级传动又有很多种传动方案:

各种传动的方案 从可行方案中初选四个较佳的方案,传动示意图如附件1所示:方案一:A1+B2 方案二:A3+B4 方案三:A4+B5 方案四:A5+B3 由四种传动方案的简图可知,完成同一个任务的机器,改变减速传动装置,其设计方案可有多种形式,若改变机器的工作原理,则设计方案还会更多。 分析上述四种传动方案。 方案四:传动效率高,结构紧凑,使用寿命长。当要求大启动力矩时,制造成本较高。 方案三:能满足传动比要求,但要求大启动力矩时,链传动的抗冲击性能差,噪音大,链磨损快寿命短,不易采用。 方案二:传动效率高,使用寿命长,但要求大启动力矩时,启动冲击大,使用维护较方便。 方案一:采用V带传动与齿轮传动的组合,即可满足传动比要

机构传动方案设计

机构传动方案设计 设计方案要发散思维,参考资料文献关于机构传动方案设计知道怎么做吗?下面是小编为大家整理了机构传动方案设计,希望能帮到大家! 这种方法是从具有相同运动特性的机构中,按照执行构件所需的运动特性进行搜寻。当有多种机构均可满足所需要求时,则可根据上节所述原则,对初选的机构形式进行分析和比较,从中选择出较优的机构。 常见运动特性及其对应机构 连续转动定传动比匀速平行四杆机构、双万向联轴节机构、齿轮机构、轮系、谐波传动机构、摆线针轮机构、摩擦轮传动机构、挠性传动机构等变传动比匀速轴向滑移圆柱齿轮机构、混合轮系变速机构、摩擦传动机构、行星无级变速机构、挠性无级变速机构等非匀速双曲柄机构、转动导杆机构、单万向连轴节机构、非圆齿轮机构、某些组合机构等往复运动往复移动曲柄滑块机构、移动导杆机构、正弦机构、移动从动件凸轮机构、齿轮齿条机构、楔块机构、螺旋机构、气动、液压机构等往复摆动曲柄摇杆机构、双摇杆机构、摆动导杆机构、曲柄摇块机构、空间连杆机构、摆动从动件凸轮机构、某些组合机构等

间歇运动间歇转动棘轮机构、槽轮机构、不完全齿轮机构、凸轮式间歇运动机构、某些组合机构等间歇摆动特殊形式的连杆机构、摆动从动件凸轮机构、齿轮-连杆组合机构、利用连杆曲线圆弧段或直线段组成的多杆机构等间歇移动棘齿条机构、摩擦传动机构、从动件作间歇往复运动的凸轮机构、反凸轮机构、气动、液压机构、移动杆有停歇的斜面机构等预定轨迹直线轨迹连杆近似直线机构、八杆精确直线机构、某些组合机构等曲线轨迹利用连杆曲线实现预定轨迹的多杆机构、凸轮-连杆组合机构、行星轮系与连杆组合机构等特殊运动要求换向双向式棘轮机构、定轴轮系等超越齿式棘轮机构、摩擦式棘轮机构等过载保护带传动机构、摩擦传动机构等…………利用这种方法进行机构选型,方便、直观。设计者只需根据给定工艺动作的运动特性,从有关手册中查阅相应的机构即可,故使用普遍。 任何一个复杂的执行机构都可以认为是由一些基本机构组成的,这些基本机构具有下图所示的进行运动变换和传递动力的基本功能。

齿轮齿条传动机构设计说明

齿轮齿条传动机构的设计和计算 1. 齿轮1,齿轮2与齿轮3基本参数的确定 由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即 ,/5003s mm V =又()160 d 3 33n V π= ,取,25,25.3202131mm B B mm m Z Z =====,由此可 得()265d 31mm mZ d ===,由(1)与(2)联立解得min /r 147n 32==n ,取4i 12=则由4i 2 1 1212=== n n z z 得80min,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定 齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径 mm mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ 齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为 mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=??? ? ????+=??? ??+===παπ

金属带式汽车无级变速器传动机构设计

摘要 在具有广阔的发展前景和市场空间的汽车行业中,车辆技术也得到较快的发展。金属带式无级变速器是一种新型的机械摩擦式无级变速器,具有承载能力强、效率高、平稳性好、环保节能等优良的传动特性,特别适用于需要传递中大功率而又需无级调速的场合。 本设计是基于现代人们对汽车性能的更高要求,鉴于国内外专家对无级变速器的研究与分析,结合金属带式无级变速器的现状和发展趋势、基本结构、传动原理、性能特点,主要以其在轿车中的应用,设计金属带式无级变速器的传动机构,根据对设计参数的分析,对整个无级变速器的各级传动部分的传动方式进行详细的设计,包括主、从动带轮;主、从动锥盘;中间减速机构,使其与传统的变速器相比,耐用性能、加速性能、燃油性能以及排放性能都得到改善。 关键词:金属带;无级变速器;传动机构;机械摩擦式;主、从动锥盘;中间减速机构

ABSTRACT In a broad development prospects and market space in the auto industry, vehicle technology has also been developed quickly. Metal belt type variator is a new type of mechanical friction type variator, high bearing ability, high efficiency, energy saving and steadiness, good environment protection fine transmission characteristics, especially suitable for high power and in need to pass to stepless speed regulation occasion. This design is based on the modern people to an automobile performance higher request, in view of the fact that the domestic and foreign experts to variator's research and the analysis,combined with the metal belt type continuously variable transmission of the status and development trends, the basic structure, transmission principle, performance characteristics.According to its application in cars, completed the design of metal belt CVT transmission, based on the design variable's analysis, the transmission part at all levels of detail design transmission mode, , including master, driven pulleys; Lord, driven cone-disk; intermediate deceleration institutions and compared with the traditional transmission, durable performance, and accelerating performance, fuel performance and emission performance is improved. Keywords:Metal belt;Contiuously Variable Transmission;transmission;a type of mechanical friction; lord, driven cone-disk; ntermediate deceleration institutions

机械传动系统设计实例

机械传动系统设计实例 设计题目:V带——单级斜齿圆柱齿轮传动设计。 某带式输送机的驱动卷筒采用如图14-5所示的传动方案。已知输送物料为原煤,输送机室内工作,单向输送、运转平稳。两班制工作,每年工作300天,使用期限8年,大修期3年。环境有灰尘,电源为三相交流,电压380V。驱动卷筒直径350mm,卷筒效率0.96。输送带拉力5kN,速度2.5m/s,速度允差±5%。传动尺寸无严格限制,中小批量生产。 该带式输送机传动系统的设计计算如下:

例9-1试设计某带式输送机传动系统的V 带传动,已知三相异步电动机的额定功率P ed =15 KW, 转速n Ⅰ=970 r/min ,传动比i =2.1,两班制工作。 [解] (1) 选择普通V 带型号 由表9-5查得K A =1.2 ,由式 (9-10) 得P c =K A P ed =1.2×15=18 KW ,由图9-7 选用B 型V 带。 (2)确定带轮基准直径d 1和d 2 由表9-2取d 1=200mm, 由式 (9-6)得 ()6.41102.012001.2)1(/)1(12112=-??=-=-=εεid n d n d mm , 由表9-2取d 2=425mm 。 (3)验算带速 由式 (9-12)得 11π970200π 10.16100060100060 n d v ??= ==?? m/s , 介于5~25 m/s 范围内,合适。 (4)确定带长和中心距a 由式(9-13)得

)(2)(7.021021d d a d d +≤≤+, )425200(2)425200(7.00+≤≤+a , 所以有12505.4370≤≤a 。初定中心距a 0=800 mm , 由式(9-14)得带长 2 122 1004)()(2 2a d d d d a L -+++=π, 2 (425200)2800(200425)2597.62 4800 π -=?+ ++ =?mm 。 由表9-2选用L d =2500 mm ,由式(9-15)得实际中心距 2.7512/)6.25972500(8002/)(00=-+=-+=L L a a d mm 。 (5)验算小带轮上的包角1α 由式(9-16)得 012013.57180?--=a d d α 000042520018057.3162.84120,751.2 -=-?=> 合适。 (6)确定带的根数z 由式(9-17)得 00l α ()c P z P P K K = +?, 由表9-4查得P 0 = 3.77kW,由表9-6查得ΔP 0 =0.3kW;由表9-7查得K a =0.96; 由表9-2查得K L =1.03, 47.403 .196.0)3.077.3(18 =??+= z , 取5根。 (7)计算轴上的压力F 0 由表9-1查得q =0.17kg/m,故由式(9-18)得初拉力F 0 2c 0α 500 2.5 (1)P F qv zv K = -+

机械传动与常用机构

机械传动与常用机构 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第四章机械传动与常用机构4-1.试比较说明链传动与带传动的特点。 答:带传动: 优点:具有弹性和挠性,噪声小;可用于两轴中心距较大的传动;能防止机器其他部件的破坏;结构简单,便于维修。 缺点:有滑动现象,不能保证准确的传动比;传动效率低。 链传动: 优点:摩擦损耗小,效率高,结构紧凑,能保证准确的平均传动比。 缺点:只能在中、低速下工作,瞬时传动比不均匀,有冲击噪声。 4-2.齿轮传动有什么特点 答:优点:适用范围广,效率高,传动比准确,使用寿命长,工作可靠性较高,可实现平行轴、任意角相交轴和任意角交错轴之间的传动。 缺点:成本高;不适宜远距离两轴之间的传动。 4-3.简述齿轮传动的主要类型 答:两轴线相互平行的圆柱轴线齿轮传动,两轴线相交的圆锥齿轮传动,两轴线交错在空间既不平行也不相交的螺旋齿轮传动。 4-4.轮齿的主要失效形式有哪几种 答:(1)轮齿折断(2)齿面磨损(3)齿面点蚀(4)齿面交合 4-5.涡轮传动有哪些特点 答:(1)传动比大,且准确 (2)传动平稳,无噪声

(3)可以实现自锁 (4)传动效率比较低 (5)有较严重的摩擦磨损,引起发热,使润滑情况恶化。 4-6.连杆结构有哪些优缺点 答:优点:1)能够实现多种运动形式的转换,如它可以将原动件的转动转变为从动件 的转动、往复移动或摆动。反之也可将往复移动或摆动转变为连续地转动。 2)平面连杆机构的连杆作平面运动,其上各点的运动轨迹曲线有多种多样,利用这些轨迹曲线可实现生产中多种工作要求。 3)平面连杆机构中,各运动副均为面接触,传动时受到单位面积上的压力较小,且有利于润滑,所以磨损较轻,寿命较长。另外由于接触面多为圆柱面或平面,制造比较简单,易获得较高的精度。 缺点: 1)难以实现任意的运动规律。 2)惯性力难平衡(构件作往复运动和平面运动),易产生动载荷。 3)积累误差(低副间存在间隙),效率低。 4-7.凸轮机构有哪些优缺点 答:优点:通过设计凸轮轮廓线,可以很容易实现几乎任意要求的从动件的运动规律。缺点:凸轮廓线与从动件之间是点和线接触的高副,易于磨损。 4-8.试述棘轮机构的特点和应用场合。 答:结构简单,制作容易,便于实现调节,但精度低,工作时噪声和冲击大,磨损快。因此,该机构多用于运动速度和精度不高,传递动力不大的分度、计数、供料和制动等场合。 4-9.槽轮机构有哪几种基本形式 答:槽轮机构有外啮合槽轮和内啮合槽轮两种基本形式。

机械原理课程设计包装机推包机构运动简图与传动系统设计说明

西北工业大学 机械原理课程设计说明书 --包装机推包机构运动简图与传动系统设计 指导老师: 班级: 学生: 学号: 组员: 目录

一、设计题目和要求 (3) 二、设计方案的选定 (3) 三、机构的尺寸设计 (8) 1、曲柄滑块结构的尺寸计算 (8) 2、凸轮尺寸设计 (9) 四、电动机的选择及传动方案的设计 (10) 1、电动机的选择 (10) 2、传动方案的设计 (10) 3、总装配件图 (11) 五、设计小结 (12) 六、参考资料 (13) 七、组员任务分配 (13)

一、设计题目和要求 现需要设计某一包装机的推包机构,要求待包装的工件1(见图1-1)先由输送带送到推包机构的推头2的前方,然后由该推头2将工件由a处推至b处(包装工作台),再进行包装。为了提高生产率,希望在推头2结束回程(由b至a)时,下一个工件已送到推头2的前方。这样推头2就可以马上再开始推送工作。这就要求推头2在回程时先退出包装工作台,然后再低头,即从台面的下面回程。因而就要求推头2按图示的abcde线路运动。即实现“平推—水平退回—下降—降位退回—上升复位”的运动。 设计数据与要求: 要求每5-6s包装一个工件,且给定:L=100mm,S=25mm,H=30mm。行程速比系数K在1.2-1.5围选取,推包机由电动机推动。 在推头回程中,除要求推头低位退回外,还要求其回程速度高于工作行程的速度,以便缩短空回程的时间,提高工效。至于“cdea”部分的线路形状不作严格要求。 图 1-1 运动要求图 二、设计方案的选定 1.方案1 用偏置滑块机构与凸轮机构的组合机构,偏置滑块机构与往复移动凸轮机构的组合(图2-1)。在此方案中,偏置滑块机构可实现行程较大的往复直线运动,且具有急回特性,同时利用往复移动凸轮来实现推头的小行程低头运动的要求,这时需要对心曲柄滑块机构将转动变换为移动凸轮的往复直线运动。

三角带传动机构设计与加工毕业设计

专业综合能力考核(论文) 题目:三角带传动机构设计与加工 所属系部:机械装备系 专业班级: 09数控01班 学生姓名: 指导教师: 2011 年10 月30 日

摘要 本次毕业设计的内容是介绍三角带传动模拟和自顶向下的造型设计方法以及有关本次毕业设计的各种零件。自顶向下的设计方法是指在上下文设计中进行装配。上下文设计是指在一个部件中定义几何对象时引用其他部件的几何对象。例如,在一组件中定义孔时需要引用其他组件中的几何对象进行定位。 自顶向下的装配方法有两种。1.建立装备配结构,此时没有任何的几何对象;2.使其中一个组件成为工作部件;3.在该组建中建立几何对象;4.依次使其余组件成为工作部件并建立几何对象。该方法首先要建立装配结构即装备配关系,但不建立几何模型,然后使其中的组件成为工作部件,并在其中建立几何模型,即在上下文中进行设计,边设计边装配。 带传动是一种柔性体零件的机械,零件形状相互依赖、相关,不容易独立地在零件图中绘制出草图形状,用自顶向下方法设计,先在装配图中绘制包含各种零件形状、位置的布局草图,然后转到零件图中详细绘制零件,是一种比较好的方法。 本次通过三角带传动模拟设计,详细介绍了自顶而下设计方法的第一种方法。在仿真模拟部分,介绍了如何用耦合的方法,使得两个或多个带轮之间实现给定传动比传动, 关键词:带传动;自顶向下造型设计;零件三维造型;数控加工。

沈阳职业技术学院专业综合能力考核说明书第 II 页 目录 摘要 ....................................................................................................................................... I 目录 ......................................................................................................................................II 第1章绪论 (1) 第2章毕业综合能力考核内容 (2) 2.1三角带传动机构的装配与绘制 (2) 2.1.1主动轮、从动轮、三角带的计算二维绘图 (2) 2.1.2带传动三维造型 (4) 2.2编制零件机械加工工艺规程 (4) 2.2.1轴实体图 (4) 2.2.2拟定机械加工工艺规程 (5) 2.2.3计算和填写机械加工工艺卡片 (5) 2.3数控加工(手工编程) (6) 2.3.1手工编制车削加工程序及VNUC仿真软件模拟加工 (6) 2.3.2数控加工(自动编程)零件图 (12) 2.4 装配体爆炸图 (16) 2.5 典型铣削零件的自动编程 (17) 2.5.1三维立体造型 (17) 2.5.2利用UG加工 (20) 参考文献 (28) 致谢 (29)

机械传动装置的总体设计

第2章机械传动装置的总体设计 机械传动装置总体设计的任务是选择电动机、确定总传动比并合理分配各级传动比以及计算传动装置的运动和动力参数,为下一步各级传动零件设计、装配图设计作准备。 设计任务书一般由指导教师拟定,学生应对传动方案进行分析,对方案是否合理提出自己的见解。传动装置的设计对整台机器的性能、尺寸、重量和成本都有很大的影响,因此应当合理地拟定传动方案。 2.1 拟定传动方案 1.传动装置的组成 机器通常由原动机、传动装置和工作装置三部分组成。传动装置位于原动机和工作机之间,用来传递运动和动力,并可用以改变转速、转矩的大小或改变运动形式,以适应工作装置的功能要求。传动装置的传动方案一般用运动简图来表示。 2.合理的传动方案 当采用多级传动时,应合理地选择传动零件和它们之间的传动顺序,扬长避短,力求方案合理。常需要考虑以下几点: 1)带传动平稳性好,能缓冲吸振,但承载能力小,宜布置在高速级; 2)链传动平稳性差,且有冲击、振动,宜布置在低速级; 3)蜗杆传动放在高速级时蜗轮材料应选用锡青铜,否则可选用铝铁青铜; 4)开式齿轮传动的润滑条件差,磨损严重,应布置在低速级; 5)锥齿轮、斜齿轮宜放在高速级。 常见机械传动的主要性能见表2-1。 对初步选定的传动方案,在设计过程中还可能要不断地修改和完善。

表2-1 常见机械传动的主要性能 2.2 减速器的类型、特点及应用 减速器是原动机和工作机之间的独立的封闭传动装置。由于减速器具有结构紧凑、传动效率高、传动准确可靠、使用维护方便等特点,故在各种机械设备中应用甚广。 减速器的种类很多,用以满足各种机械传动的不同要求。其主要类型、特点及应用如表2-2所示。为了便于生产和选用,常用减速器已标准化,由专门工厂成批生产。标准减速器的有关技术资料,可查阅减速器标准或《机械设计手册》。因受某些条件限制选不到合适型号的标准减速

机械传动与常用机构

第四章机械传动与常用机构 4-1.试比较说明链传动与带传动的特点。 答:带传动: 优点:具有弹性和挠性,噪声小;可用于两轴中心距较大的传动;能防止机器其他部件的破坏;结构简单,便于维修。 缺点:有滑动现象,不能保证准确的传动比;传动效率低。 链传动: 优点:摩擦损耗小,效率高,结构紧凑,能保证准确的平均传动比。 缺点:只能在中、低速下工作,瞬时传动比不均匀,有冲击噪声。 4-2.齿轮传动有什么特点? 答:优点:适用范围广,效率高,传动比准确,使用寿命长,工作可靠性较高,可实现平行轴、任意角相交轴和任意角交错轴之间的传动。 缺点:成本高;不适宜远距离两轴之间的传动。 4-3.简述齿轮传动的主要类型? 答:两轴线相互平行的圆柱轴线齿轮传动,两轴线相交的圆锥齿轮传动,两轴线交错在空间既不平行也不相交的螺旋齿轮传动。 4-4.轮齿的主要失效形式有哪几种? 答:(1)轮齿折断(2)齿面磨损(3)齿面点蚀(4)齿面交合 4-5.涡轮传动有哪些特点? 答:(1)传动比大,且准确 (2)传动平稳,无噪声 (3)可以实现自锁 (4)传动效率比较低 (5)有较严重的摩擦磨损,引起发热,使润滑情况恶化。 4-6.连杆结构有哪些优缺点? 答:优点: 1)能够实现多种运动形式的转换,如它可以将原动件的转动转变为 从动件的转动、往复移动或摆动。反之也可将往复移动或摆动转变为连续地转动。 2)平面连杆机构的连杆作平面运动,其上各点的运动轨迹曲线有多种多样,利用这些轨迹曲线可实现生产中多种工作要求。 3)平面连杆机构中,各运动副均为面接触,传动时受到单位面积上的压力较小,且有利于润滑,所以磨损较轻,寿命较长。另外由于接触面多为圆柱面或平面,制造比较简单,易获得较高的精度。 缺点: 1)难以实现任意的运动规律。

机械传动与常用机构

机械传动与常用机构精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

第四章机械传动与常用机构 4-1.试比较说明链传动与带传动的特点。 答:带传动: 优点:具有弹性和挠性,噪声小;可用于两轴中心距较大的传动;能防止机器其他部件的破坏;结构简单,便于维修。 缺点:有滑动现象,不能保证准确的传动比;传动效率低。 链传动: 优点:摩擦损耗小,效率高,结构紧凑,能保证准确的平均传动比。 缺点:只能在中、低速下工作,瞬时传动比不均匀,有冲击噪声。 4-2.齿轮传动有什么特点? 答:优点:适用范围广,效率高,传动比准确,使用寿命长,工作可靠性较高,可实现平行轴、任意角相交轴和任意角交错轴之间的传动。 缺点:成本高;不适宜远距离两轴之间的传动。 4-3.简述齿轮传动的主要类型? 答:两轴线相互平行的圆柱轴线齿轮传动,两轴线相交的圆锥齿轮传动,两轴线交错在空间既不平行也不相交的螺旋齿轮传动。 4-4.轮齿的主要失效形式有哪几种? 答:(1)轮齿折断(2)齿面磨损(3)齿面点蚀(4)齿面交合 4-5.涡轮传动有哪些特点? 答:(1)传动比大,且准确 (2)传动平稳,无噪声 (3)可以实现自锁

(4)传动效率比较低 (5)有较严重的摩擦磨损,引起发热,使润滑情况恶化。 4-6.连杆结构有哪些优缺点? 答:优点:1)能够实现多种运动形式的转换,如它可以将原动件的转动转变为 从动件的转动、往复移动或摆动。反之也可将往复移动或摆动转变为连续地转动。 2)平面连杆机构的连杆作平面运动,其上各点的运动轨迹曲线有多种多样,利用这些轨迹曲线可实现生产中多种工作要求。 3)平面连杆机构中,各运动副均为面接触,传动时受到单位面积上的压力较小,且有利于润滑,所以磨损较轻,寿命较长。另外由于接触面多为圆柱面或平面,制造比较简单,易获得较高的精度。 缺点: 1)难以实现任意的运动规律。 2)惯性力难平衡(构件作往复运动和平面运动),易产生动载荷。 3)积累误差(低副间存在间隙),效率低。 4-7.凸轮机构有哪些优缺点? 答:优点:通过设计凸轮轮廓线,可以很容易实现几乎任意要求的从动件的运动规律。 缺点:凸轮廓线与从动件之间是点和线接触的高副,易于磨损。 4-8.试述棘轮机构的特点和应用场合。 答:结构简单,制作容易,便于实现调节,但精度低,工作时噪声和冲击大,磨损快。因此,该机构多用于运动速度和精度不高,传递动力不大的分度、计数、供料和制动等场合。 4-9.槽轮机构有哪几种基本形式? 答:槽轮机构有外啮合槽轮和内啮合槽轮两种基本形式。

带式输送机传动机构设计

目录 一、设计任务 (3) 二、传动方案拟定 (4) 三、电动机的选择 (5) 四、计算总传动比及分配各级的传动比 (6) 五、运动参数及动力参数计算 (7) 六、传动零件的设计计算 (8) 七、轴的设计计算 (16) 八、滚动轴承的选择及校核计算 (26) 九、键联接的选择及计算 (28) 十、联轴器的选择 (29) 十一、润滑与密封 (29) 十二、参考文献 (30) 十三、附录(零件及装配图) (30)

一、设计任务 1、带式输送机的原始数据 输送带拉力F/kN 4 输送带速度v/(m/s) 2.0 滚筒直径D/mm 450 2、工作条件与技术要求 1)输送带速度允许误差为:±5%; 2)输送效率r :0.96; 3)工作情况:两班制,连续单向运转,载荷较平稳; 4)工作年限:8年; 5)工作环境:室内,灰尘较大,环境最高温度35℃; 6)动力来源:电力,三相交流,电压380V , 7)检修年限:四年一大修,两年一中修,半年一小修; 8)制造条件及生产批量:一般机械厂制造,小批量生产。 3、设计任务量: 1) 减速器装配图一张(A0); 2) 零件工作图(包括齿轮、轴的A3图纸); 3)设计说明书一份。

二、传动方案拟定 方案一: 1、结构特点: 1)外传动机构为带传动; 2)减速器为一级齿轮传动。 2、该方案优缺点: 优点:适用于两轴中心距较大的传动;、带具有良好的挠性,可缓和冲击,吸收振动;过载时打滑防止损坏其他零部件;结构简单、成本低廉。 缺点:传动的外廓尺寸较大;、需张紧装置;由于打滑,不能保证固定不变的传动比;带的寿命较短;传动效率较低。 方案二: 1、结构特点:

常用机械传动系统的主要类型和特点

常用机械传动系统的主要类型和特点 2H310000 机电工程技术 2H311000 机电工程专业技术 2H311010 机械传动与技术测量 ――2H311011 掌握传动系统的组成 一、常用机械传动系统的主要类型和特点 机械传动的作用:传递运动和力; 常用机械传动系统的类型:齿轮传动、蜗轮蜗杆传动、轮系;带传动、链传动; (一)齿轮传动 1、齿轮传动的分类 (1)分类依据:按主动轴和从动轴在空间的相对位置形成的平面和空间分类 两平行轴之间的传动――平面齿轮传动(直齿圆柱齿轮传动、斜齿圆柱齿轮传动、人字齿轮传动;齿轮齿条传动) 用于两相交轴或交错轴之间的传动――空间齿轮传动(圆锥齿轮传动、螺旋齿轮传动(交错轴)) 用于空间两垂直轴的运动传递――蜗轮蜗杆传动 (2)传动的基本要求: 瞬间角速度之比必须保持不变。 (3)渐开线齿轮的基本尺寸: 齿顶圆、齿根圆、分度圆、模数、齿数、压力角等 2、渐开线齿轮的主要特点: 传动比准确、稳定、高效率; 工作可靠性高,寿命长; 制造精度高,成本高; 不适于远距离传动。

3、应用于工程中的减速器、变速箱等 (二)蜗轮蜗杆传动 1、用于空间垂直轴的运动传递――蜗轮蜗杆传动 2、正确传动的啮合条件――蜗杆的轴向与蜗轮端面参数的相应关系蜗杆轴向模数和轴向压力角分别等于蜗轮端面模数和端面压力角。 3、蜗轮蜗杆传动的主要特点: 传动比大,结构紧凑; 轴向力大、易发热、效率低; 一般只能单项传动。 (三)带传动 1、带传动――适于两轴平行且转向相同的场合。 带传动组成:主动轮、从动轮、张紧轮和环形皮带构成 2、带传动特点: 挠性好,可缓和冲击,吸振; 结构简单、成本低廉; 传动外尺寸较大,带寿命短,效率低; 过载打滑,起保护作用; 传动比不保证。 切记:皮带打滑产生一正一负的作用: 即过载打滑,起保护作用; 打滑使皮带传动的传动比不保证。 (四)链传动 1、链传动――适于两轴平行且转向相同的场合。 链传动组成:主动链轮、从动链轮、环形链构成

机械传动装置总体设计方案

?更多资料请访问.(.....) c:\iknow\docshare\data\cur_work\.....\ ?更多资料请访问.(.....)

一. 设计任务 题目:设计一个用于带式运输机上的二级圆柱斜齿轮减速器. 给定数据及要求:已知带式运输机驱动卷筒的圆周力(牵引力)F=2500N,带速 v=1.5m/s,卷筒直径D=450mm,三相交流电源,有粉尘,工作寿命15年(设每 年工作300天)两班制,单向运转,载荷平稳,常温连续工作,齿轮精度为7 级。 二.机械传动装置总体设计方案: 一、拟定传动方案 1.减速器类型选择:选用展开式两级圆柱齿轮减速器。 2.特点及应用:结构简单,但齿轮相对于轴承的位置不对称,因此要求轴有较大的刚度。高速级齿轮布置在远离转矩输入端,这样,轴在转矩作用下产生的扭转变形和轴在弯矩作用下产生的弯曲变形可部分地互相抵消,以减缓沿齿宽载荷分布不均匀的现象。 3.具体传动方案如下: 图示:传动方案为:电动机-皮带轮-高速齿轮-低速齿轮-联轴器-工作机。 辅助件有:观察孔盖,油标和油尺,放油螺塞,通气孔,吊环螺钉,吊耳和吊钩, 定位销,启盖螺钉,轴承套,密封圈等。 二、选择电动机 1.选择电动机的类型 按已知的工作要求和条件,选用Y型(IP44)全封闭笼型三相异步电动机。

2.选择电动机的容量 工作机要求的电动机输出功率为: 其中 且,, 则 由电动机至传送带的传动总功率为: 式中,是带传动的效率,是轴承传动的效率,是齿轮传动的效率,是联轴器传动的效率,是卷筒传递的效率。其大小分别为 则 即 由《机械设计课程设计》附录九选取电动机额定功率p=5.5kw。 3.确定电动机的转速 卷筒轴工作转速为: 由《机械设计课程设计》表3-1推荐的常用传动比范围,初选V带的传动比,单级齿轮传动比,两级齿轮传动比,故电动机转速的可选范围为: 由《机械设计课程设计》附录九可知,符合这一范围的同步转速有:1500r/min、3000r/min。 综合考虑,为使传动装置机构紧凑,选用同步转速1500r/min的电机,型号为Y132S1-4。所选电动机(Y132S1-4)的主要性能和外观尺寸见表如下: 电动机(型号Y132S1-4)的主要外形尺寸和安装尺寸

相关文档
最新文档