实现图的邻接矩阵和邻接表存储

实现图的邻接矩阵和邻接表存储
实现图的邻接矩阵和邻接表存储

实现图的邻接矩阵和邻接表存储

1.需求分析

对于下图所示的有向图G,编写一个程序完成如下功能:

1.建立G的邻接矩阵并输出之

2.由G的邻接矩阵产生邻接表并输出之

3.再由2的邻接表产生对应的邻接矩阵并输出之

2.系统设计

1.图的抽象数据类型定义:

ADT Graph{

数据对象V:V是具有相同特性的数据元素的集合,称为顶点集

数据关系R:

R={VR}

VR={|v,w∈V且P(v,w),表示从v到w的弧,

谓词P(v,w)定义了弧的意义或信息}

基本操作P:

CreatGraph(&G,V,VR)

初始条件:V是图的顶点集,VR是图中弧的集合

操作结果:按V和VR的定义构造图G

DestroyGraph(&G)

初始条件:图G存在

操作结果:销毁图G

InsertVex(&G,v)

初始条件:图G存在,v和图中顶点有相同特征

操作结果:在图G中增添新顶点v

……

InsertArc(&G,v,w)

初始条件:图G存在,v和w是G中两个顶点

操作结果:在G中增添弧,若G是无向的则还增添对称弧

……

DFSTraverse(G,Visit())

初始条件:图G存在,Visit是顶点的应用函数

操作结果:对图进行深度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。

一旦Visit()失败,则操作失败

BFSTraverse(G,Visit())

初始条件:图G存在,Visit是顶点的应用函数

操作结果:对图进行广度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败

}ADT Graph

2.主程序的流程:

调用CreateMG函数创建邻接矩阵M;

调用PrintMatrix函数输出邻接矩阵M

调用CreateMGtoDN函数,由邻接矩阵M创建邻接表G

调用PrintDN函数输出邻接表G

调用CreateDNtoMG函数,由邻接表M创建邻接矩阵N

调用PrintMatrix函数输出邻接矩阵N

3.函数关系调用图:

3.调试分析

(1)在MGraph的定义中有枚举类型

typedef enum{DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向图,无向网}

赋值语句G.kind(int)=M.kind(GraphKind);是正确的,而反过来M.kind=G.kind则是错误的,要加上那个强制转换M.kind=GraphKind(G.kind);枚举类型enum{DG,DN,UDG,UDN}

会自动赋值DG=0;DN=1,UDG=2,UDN=3;可以自动从GraphKind类型转换到int型,但不会自动从int型转换到GraphKind类型

(2)算法的时间复杂度分析:

CreateMG、CreateMGtoDN、CreateDNtoMG、PrintMatrix、PrintDN的时间复杂度均为O(n2) n为图的顶点数,所以main:T(n)= O(n2)

4.测试结果

用需求分析中的测试数据

输入:

输出:

5、用户手册

(1)输入顶点数和弧数;

(2)输入顶点内容;

(3)按行序输入邻接矩阵,输入各弧相应权值

(4)回车输出邻接矩阵M、邻接表G和邻接矩阵N

6、附录

源程序:

#include

#include

#define MAX_VERTEX_NUM 20

typedef int VRType;

typedef int InfoType;

typedef int VertexType;

typedef enum{DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向图,无向网} typedef struct ArcCell{

VRType adj;//VRType是顶点关系类型,对无权图用1或0表示是否相邻;

//对带权图则为权值类型

InfoType *info;//该弧相关信息的指针

}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; typedef struct{

VertexType vexs[MAX_VERTEX_NUM];//顶点向量

AdjMatrix arcs;//邻接矩阵

int vexnum,arcnum;//图的当前顶点数和弧数

GraphKind kind;//图的种类标志

}MGraph;

void CreateMG(MGraph &M){

int i,j;

M.kind=DN;

printf("输入顶点数:");

scanf("%d",&M.vexnum);

printf("输入弧数:");

scanf("%d",&M.arcnum);

printf("输入顶点:\n");

for(i=0;i

scanf("%d",&M.vexs[i]);

printf("建立邻接矩阵:\n");

for(i=0;i

for(j=0;j

scanf("%d",&M.arcs[i][j].adj);

printf("输入相应权值:\n");

for(i=0;i

for(j=0;j

if(M.arcs[i][j].adj){

scanf("%d",&M.arcs[i][j].info);

}

}

typedef struct ArcNode{

int adjvex;//该弧所指向的顶点在数组中的下标

struct ArcNode *nextarc;

InfoType *info;//该弧相关信息的指针

}ArcNode;

typedef struct VNode{

VertexType data;//顶点信息

ArcNode *firstarc;//指向第一条依附该顶点的弧的指针

}VNode,AdjList[MAX_VERTEX_NUM];

typedef struct{

AdjList vertices;

int vexnum,arcnum;//图的当前顶点数和弧数

int kind;//图的种类标志

}ALGraph;

void PrintDN(ALGraph G){

int i;ArcNode *p;

printf("顶点:\n");

for(i=0;i

printf("%2d",G.vertices[i].data);

printf("\n弧:\n");

for(i=0;i

p=G.vertices[i].firstarc;

while(p){

printf("%d→%d(%d)\t",i,p->adjvex,p->info);

p=p->nextarc;

}

printf("\n");

}//for

}

void CreateMGtoDN(ALGraph &G,MGraph M){

//采用邻接表存储表示,构造有向图G(G.kind=DN)

int i,j;ArcNode *p;

G.kind=M.kind;

G.vexnum=M.vexnum;

G.arcnum=M.arcnum;

for(i=0;i

G.vertices[i].data=M.vexs[i];

G.vertices[i].firstarc=NULL;//初始化指针

}

for(i=0;i

for(j=0;j

if(M.arcs[i][j].adj==1){

p=(ArcNode*)malloc(sizeof(ArcNode));

p->adjvex=j;p->nextarc=G.vertices[i].firstarc;p->info=M.arcs[i][j].info;

G.vertices[i].firstarc=p;

}

}

void CreateDNtoMG(MGraph &M,ALGraph G){

int i,j;ArcNode *p;

M.kind=GraphKind(G.kind);

M.vexnum=G.vexnum;

M.arcnum=G.arcnum;

for(i=0;i

M.vexs[i]=G.vertices[i].data;

for(i=0;i

图的邻接矩阵和邻接表相互转换

图的邻接矩阵和邻接表相互转换 图的邻接矩阵存储方法具有如下几个特征:1)无向图的邻接矩阵一定是一个对称矩阵。 2)对于无向图的邻接矩阵的第i 行非零元素的个数正好是第i 个顶点的度()i v TD 。3)对于有向图,邻接矩阵的第i 行非零元素的个数正好是第i 个顶点的出度()i v OD (或入度 ()i v ID ) 。4)用邻接矩阵方法存储图,很容易确定图中任意两个顶点之间是否有边相连;但是,要确定图中有多少条边,则必须按行、按列对每个元素进行检测,所发费得时间代价大。 邻接表是图的一种顺序存储与链式存储相结合的存储方法。若无向图中有n 个顶点、e 条边,则它的邻接表需n 个头结点和2e 个表结点。显然,在边稀疏的情况下,用邻接表表示图比邻接矩阵存储空间。在无向图的邻接表中,顶点i v 的度恰好是第i 个链表中的结点数,而在有向图中,第i 个链表中结点个数是顶点i v 的出度。 在建立邻接表或邻逆接表时,若输入的顶点信息即为顶点的编号,则建立临接表的时间复杂度是)(e n O +;否则,需要通过查找才能得到顶点在图中位置,则时间复杂度为)*(e n O 。在邻接表上容易找到任意一顶点的第一个邻接点和下一个邻接点,但要判断任意两个顶点之间是否有边或弧,则需要搜索第i 个或第j 个链表,因此,不及邻接矩阵方便。 邻接矩阵和邻接表相互转换程序代码如下: #include #define MAX 20 //图的邻接表存储表示 typedef struct ArcNode{ int adjvex; //弧的邻接定点 char info; //邻接点值 struct ArcNode *nextarc; //指向下一条弧的指针 }ArcNode; typedef struct Vnode{ //节点信息 char data; ArcNode *link; }Vnode,AdjList[MAX]; typedef struct{ AdjList vertices; int vexnum; //节点数 int arcnum; //边数

邻接表存储结构建立无向图

//算法功能:采用邻接表存储结构建立无向图 #include #include #define OK 1 #define NULL 0 #define MAX_VERTEX_NUM 20 // 最大顶点数 typedef int Status; //函数的类型,其值是函数结果状态代码 typedef char VertexType; typedef int VRType; typedef int InforType; typedef struct ArcNode { int adjvex; //该边所指的顶点的位置 struct ArcNode *nextarc; //指向下一条边的指针 int weight; //边的权 }ArcNode; //表的结点 typedef struct VNode { VertexType data; //顶点信息(如数据等) ArcNode *firstarc; //指向第一条依附该顶点的边的弧指针}VNode, AdjList[MAX_VERTEX_NUM]; //头结点 typedef struct ALGraph { AdjList vertices; int vexnum, arcnum; //图的当前顶点数和弧数 }ALGraph; //返回顶点v在顶点向量中的位置 int LocateVex(ALGraph G, char v) { int i; for(i = 0; v != G.vertices[i].data && i < G.vexnum; i++) ; if(i >= G.vexnum) return -1;

数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系

2007 C C C 语言的特点,简单的C 程序介绍,C 程序的上机步骤。1 、算法的概念2、简单的算法举例3、算法的特性4、算法的表示(自然语言、流程图、N-S 图表示) 1 、 C 的数据类型、常量与变星、整型数据、实型数据、字符型数据、字符串常量。2、 C 的运算符运算意义、优先级、结合方向。3、算术运算符和算术表达式,各类数值型数据间的混合运算。4、赋值运算符和赋值表达式。5、逗号运算符和逗号表达式。 1 、程序的三种基本结构。2、数据输入输出的概念及在C 语言中的实现。字符数据的输入输出,格式输入与输出。 1 、关系运算符及其优先级,关系运算和关系表达式。2、逻辑运算符及其优先级,逻辑运算符和逻辑表达式。3、if语句。if语句的三种形式,if语句的嵌套,条件运算符。4、switch 语句. 1 、while 语句。2、do/while 语句。3、for 语句。4、循环的嵌套。5、break 语句和continue 语句。1 、一维数组的定义和引用。2、二维数组的定义和引用。3、字符数组。4、字符串与字符数组。5、字符数组的输入输出。6、字符串处理函数1 、函数的定义。2、函数参数和函数的值,形式参数和实际参数。3、函数的返回值。4、函数调用的方式,函数的声明和函数原型。5、函数的嵌套调用。 6、函数的递归调用。 7、数组作为函数参数。 8、局部变量、全局变量的作用域。 9、变量的存储类别,自动变星,静态变量。1 、带参数的宏定义。2、“文件包含”处理。1 、地址和指针的概念。2、变量的指针和指向变量的指针变量。3、指针变量的定义

和引用。4、指针变量作为函数参数。5、数组的指针和指向数组的指针变量。6、指向数组元素的指针。7、通过指针引用数组元素。8、数组名作函数参数。9、二维数组与指针。 1 0、指向字符串的指针变星。字符串的指针表示形式,字符串指针作为函数参数。11 、字符指针变量和字符数组的异同。1 2、返回指针值的函数。1 3、指针数组。1 、定义结构体类型变星的方法。2、结构体变量的引用。3、结构体变量的初始化。4、结构体数组5、指向结构体类型数据的指针。6、共用体的概念,共用体变量的定义和引用,共用体类型数据的特点。typedef 1 、数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系。2、数据结构的两大类逻辑结构和常用的存储表示方法。3、算法描述和算法分析的方法,对于一般算法能分析出时间复杂度。 1 、线性表的逻辑结构特征。2、线性表上定义的基本运算。3、顺序表的特点,即顺序表如何反映线性表中元素之间的逻辑关系。4、顺序表上的插入、删除操作及其平均时间性能分析。5、链表如何表示线性表中元素之间的逻辑关系。6、链表中头指针和头结点的使用。7、单链表上实现的建表、查找、插入和删除等基本算法,并分析其时间复杂度。8、顺序表和链表的主要优缺点。9、针对线性表上所需的主要操作,选择时空性能优越的存储结构。 1 、栈的逻辑结构特点.栈与线性表的异同。2、顺序栈和链栈实现的进栈、退栈等基本算法。3、栈的空和栈满的概念及其判定条件。4、队列的逻辑结构特点,队列与线性表的异同。5、顺序队列(主要是循

邻接表存储表示

邻接表存储表示 Status Build_AdjList(ALGraph &G)//输入有向图的顶点数,边数,顶点信息和边的信息建立邻接表 { InitALGraph(G); scanf("%d",&v); if(v<0) return ERROR; G.vexnum=v; scanf("%d",&a); if(a<0) return ERROR; G.arcnum=a; for(m=0;mnextarc;q=q->nextarc); q->nextarc=p; } p->adjvex=j;p->nextarc=NULL; }//while return OK; }//Build_AdjList 邻接多重表存储表示 Status Build_AdjMulist(AMLGraph &G)//输入有向图的顶点数,边数,顶点信息和边的信息建立邻接多重表 { InitAMLGraph(G); scanf("%d",&v); if(v<0) return ERROR; //顶点数不能为负 G.vexnum=v; scanf(%d",&a); if(a<0) return ERROR; //边数不能为负 G.arcnum=a; for(m=0;m

经典代码之图 邻接表转换成邻接矩阵

运行结果是: 请输入节点数和弧数:3 3 第1 个节点信息:5 第2 个节点信息:6 第3 个节点信息:7 第1 条弧的弧尾和弧头的位置:1 2 第2 条弧的弧尾和弧头的位置:2 3 第3 条弧的弧尾和弧头的位置:1 3 图的邻接表表示为: [1,5]-->[3,7]-->[2,6]-->^ [2,6]-->[3,7]-->[1,5]-->^ [3,7]-->[1,5]-->[2,6]-->^ 交换后是:: 图的邻接矩阵表示为: 0 1 1 1 0 1 1 1 0 请按任意键继续. . . 代码是: #include #include #define MAXV 100 typedef struct { int no; int info; }vertextype; typedef struct { int num; int edges[MAXV][MAXV]; // vertextype vexs[MAXV]; }mgraph; struct arcnode { int adjvex; int info;

struct arcnode *nextarc; }; struct vexnode { int data; struct arcnode *firstarc; }; struct graph { int vexnum,arcnum; vexnode vexpex[100]; }; struct graph *creatgraph() { int i,s,d; struct graph *g; struct arcnode *p,*q; g = (struct graph *)malloc(sizeof(struct graph)); printf("请输入节点数和弧数:"); scanf("%d%d", &g->vexnum, &g->arcnum); for(i=1; i<=g->vexnum; i++) { printf("第%d 个节点信息:",i); scanf("%d", &g->vexpex[i].data); g->vexpex[i].firstarc = NULL; } for(i=1; i<=g->arcnum; i++) { p = (struct arcnode *)malloc(sizeof(struct arcnode)); q = (struct arcnode *)malloc(sizeof(struct arcnode)); printf("第%d 条弧的弧尾和弧头的位置:",i); scanf("%d%d",&s,&d); p->adjvex = d; p->info = g->vexpex[d].data; p->nextarc = g->vexpex[s].firstarc; g->vexpex[s].firstarc = p; q->adjvex = s; q->info = g->vexpex[s].data; q->nextarc = g->vexpex[d].firstarc; g->vexpex[d].firstarc = q;

实现图的邻接矩阵和邻接表存储

实现图的邻接矩阵和邻接表存储 1.需求分析 对于下图所示的有向图G,编写一个程序完成如下功能: 1.建立G的邻接矩阵并输出之 2.由G的邻接矩阵产生邻接表并输出之 3.再由2的邻接表产生对应的邻接矩阵并输出之 2.系统设计 1.图的抽象数据类型定义: ADT Graph{ 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集 数据关系R: R={VR} VR={|v,w∈V且P(v,w),表示从v到w的弧, 谓词P(v,w)定义了弧的意义或信息} 基本操作P: CreatGraph(&G,V,VR) 初始条件:V是图的顶点集,VR是图中弧的集合 操作结果:按V和VR的定义构造图G DestroyGraph(&G) 初始条件:图G存在 操作结果:销毁图G InsertVex(&G,v) 初始条件:图G存在,v和图中顶点有相同特征 操作结果:在图G中增添新顶点v …… InsertArc(&G,v,w) 初始条件:图G存在,v和w是G中两个顶点 操作结果:在G中增添弧,若G是无向的则还增添对称弧 …… DFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行深度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。

一旦Visit()失败,则操作失败 BFSTraverse(G,Visit()) 初始条件:图G存在,Visit是顶点的应用函数 操作结果:对图进行广度优先遍历,在遍历过程中对每个顶点调用函数Visit一次且仅一次。一旦Visit()失败,则操作失败 }ADT Graph 2.主程序的流程: 调用CreateMG函数创建邻接矩阵M; 调用PrintMatrix函数输出邻接矩阵M 调用CreateMGtoDN函数,由邻接矩阵M创建邻接表G 调用PrintDN函数输出邻接表G 调用CreateDNtoMG函数,由邻接表M创建邻接矩阵N 调用PrintMatrix函数输出邻接矩阵N 3.函数关系调用图: 3.调试分析 (1)在MGraph的定义中有枚举类型 typedef enum{DG,DN,UDG,UDN}GraphKind;//{有向图,有向网,无向图,无向网} 赋值语句G.kind(int)=M.kind(GraphKind);是正确的,而反过来M.kind=G.kind则是错误的,要加上那个强制转换M.kind=GraphKind(G.kind);枚举类型enum{DG,DN,UDG,UDN} 会自动赋值DG=0;DN=1,UDG=2,UDN=3;可以自动从GraphKind类型转换到int型,但不会自动从int型转换到GraphKind类型

实验十三 图的基本操作—邻接表存储结构

浙江大学城市学院实验报告 课程名称数据结构基础 实验项目名称实验十三图的基本操作—邻接表存储结构 学生姓名专业班级学号 实验成绩指导老师(签名)日期2015-1-15 一.实验目的和要求 1、掌握图的存储结构:邻接表。 2、学会对图的存储结构进行基本操作。 二.实验内容 1、图的邻接表的定义及实现:建立头文件AdjLink.h,在该文件中定义图的邻接表存储结构,并编写图的初始化、建立图、输出图、输出图的每个顶点的度等基本操作实现函数。同时在主函数文件test5_2.cpp中调用这些函数进行验证。 2、选做:编写图的深度优先遍历函数与广度优先遍历函数,要求把这两个函数添加到头文件AdjLink.h中,并在主函数文件test5_2.cpp中添加相应语句进行测试。 3、填写实验报告,实验报告文件取名为report13.doc。 4、上传实验报告文件report13.doc及源程序文件test5_2.cpp、AdjLink.h到Ftp服务器上自己的文件夹下。 三. 函数的功能说明及算法思路 (包括每个函数的功能说明,及一些重要函数的算法实现思路) 邻接表表示法的C语言描述: typedef struct Node { int adjvex; // 邻接点的位置 WeightType weight; //权值域,根据需要设立 struct Node *next; // 指向下一条边(弧) } edgenode; // 边结点 typedef edgenode *adjlist[ MaxVertexNum ];//定义图的邻接表结构类型(没包含顶点信息) typedef struct{ vexlist vexs; //顶点数据元素

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

学号: 姓名: 实验日期: 2016.1.7 实验名称: 图的存贮与遍历 一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 V0 V1 V2 V3 V4 三、附录: 在此贴上调试好的程序。 #include #include #include V0 V1 V4 V3 V2 ??? ? ??? ? ????????=010000000101010 1000100010A 1 0 1 0 3 3 4

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

图的邻接表存储方式.

图的邻接表存储方式——数组实现初探 焦作市外国语中学岳卫华在图论中,图的存储结构最常用的就是就是邻接表和邻接矩阵。一旦顶点的个数超过5000,邻接矩阵就会“爆掉”空间,那么就只能用邻接表来存储。比如noip09的第三题,如果想过掉全部数据,就必须用邻接表来存储。 但是,在平时的教学中,发现用动态的链表来实现邻接表实现时,跟踪调试很困难,一些学生于是就觉得邻接表的存储方式很困难。经过查找资料,发现,其实完全可以用静态的数组来实现邻接表。本文就是对这种方式进行探讨。 我们知道,邻接表是用一个一维数组来存储顶点,并由顶点来扩展和其相邻的边。具体表示如下图:

其相应的类型定义如下: type point=^node; node=record v:integer; //另一个顶点 next:point; //下一条边 end; var a:array[1..maxv]of point; 而用数组实现邻接表,则需要定义两个数组:一个是顶点数组,一个 是边集数组。

顶点编号结点相临边的总数s第一条邻接边next 此边的另一邻接点边权值下一个邻接边 对于上图来说,具体的邻接表就是: 由上图我们可以知道,和编号为1的顶点相邻的有3条边,第一条边在边集数组里的编号是5,而和编号为5同一个顶点的下条边的编号为3,再往下的边的编号是1,那么和顶点1相邻的3条边的编号分别就是5,3,1。同理和顶点3相邻的3条边的编号分别是11,8,4。如果理解数组表示邻接表的原理,那么实现就很容易了。 类型定义如下:

见图的代码和动态邻接表类似: 下面提供一道例题 邀请卡分发deliver.pas/c/cpp 【题目描述】

图的邻接表存储结构实验报告

《图的邻接表存储结构实验报告》1.需解决的的问题 利用邻接表存储结果,设计一种图。 2.数据结构的定义 typedef struct node {//边表结点 int adj;//边表结点数据域 struct node *next; }node; typedef struct vnode {//顶点表结点 char name[20]; node *fnext; }vnode,AList[M]; typedef struct{ AList List;//邻接表 int v,e;//顶点树和边数 }*Graph; 3.程序的结构图

4.函数的功能 1)建立无向邻接表 Graph Create1( )//建立无向邻接表{ Graph G; int i,j,k;

node *s; G=malloc(M*sizeof(vnode)); printf("输入图的顶点数和边数:"); scanf("%d%d",&G->v,&G->e);//读入顶点数和边数for(i=0;iv;i++)//建立顶点表 { printf("请输入图第%d个元素:",i+1); scanf("%s",&G->List[i].name);//读入顶点信息 G->List[i].fnext=NULL;//边表置为空表 } for(k=0;ke;k++)//建立边表--建立了2倍边的结点{ printf("请输入边的两顶点序号:(从0考试)"); scanf("%d%d",&i,&j);//读入边(Vi,Vj)的顶点对序号 s=(node *)malloc(sizeof(node));//生成边表结点 s->adj=j; s->next=G->List[i].fnext; G->List[i].fnext=s;//将新结点*s插入顶点Vi的边表头部s=(node *)malloc(sizeof(node)); s->adj=i;//邻接点序号为i s->next=G->List[j].fnext; G->List[j].fnext=s;// 将新结点*s插入顶点Vj的边表头部} return G;

数据结构实验 - 图的储存与遍历

一、实验目的 掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示,以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。 二、实验内容与实验步骤 题目1:对以邻接矩阵为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接矩阵为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接矩阵表示,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 题目2:对以邻接表为存储结构的图进行DFS 和BFS 遍历 问题描述:以邻接表为图的存储结构,实现图的DFS 和BFS 遍历。 基本要求:建立一个图的邻接表存贮,输出顶点的一种DFS 和BFS 序列。 测试数据:如图所示 三、附录: 在此贴上调试好的程序。 #include #include #include ????????????????=010******* 010101000100010A

#define M 100 typedef struct node { char vex[M][2]; int edge[M ][ M ]; int n,e; }Graph; int visited[M]; Graph *Create_Graph() { Graph *GA; int i,j,k,w; GA=(Graph*)malloc(sizeof(Graph)); printf ("请输入矩阵的顶点数和边数(用逗号隔开):\n"); scanf("%d,%d",&GA->n,&GA->e); printf ("请输入矩阵顶点信息:\n"); for(i = 0;in;i++) scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1])); for (i = 0;in;i++) for (j = 0;jn;j++) GA->edge[i][j] = 0; for (k = 0;ke;k++) { printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开):",k+1); scanf ("%d,%d,%d",&i,&j,&w); GA->edge[i][j] = w; } return(GA); } void dfs(Graph *GA, int v) { int i; printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;

将一个无向图的邻接表转换为邻接矩阵

#include #include #define max 20 #define digit 1 #define zero 0 typedef struct{ int num; char data; }Vertex; typedef struct{ int n; //顶点数 int e; //弧数 Vertex vexs[max]; int edges[max][max]; }MGraph; typedef struct node{ int adjvex; node *nextarc; char info; }ARCNODE; //邻接表的结点结构typedef struct{ char vexdata; ARCNODE *firstarc; }VEXNODE; //邻接表的表头结点typedef struct{ int vexnum,arcnum; //顶点数、弧数 VEXNODE ve[max]; }ALGraph; //邻接表类型 ALGraph *Creat_alg(){ //创建邻接表ALGraph *alg; int i,n,e,b,a; char ch; ARCNODE *AR; alg=(ALGraph *)malloc(sizeof(ALGraph)); printf("输入顶点数:"); scanf("%d",&n); printf("输入弧数:"); scanf("%d",&e); alg->vexnum=n; alg->arcnum=e; printf("输入顶点信息:\n"); for(i=0;ive[i].vexdata=ch; alg->ve[i].firstarc=NULL; } printf("输入弧的信息(弧的两端点):\n"); for(i=0;iadjvex=b; AR->info=alg->ve[b].vexdata; AR->nextarc=alg->ve[a].firstarc; alg->ve[a].firstarc=AR; AR=(ARCNODE *)malloc(sizeof(ARCNODE)); AR->adjvex=a; AR->info=alg->ve[a].vexdata; AR->nextarc=alg->ve[b].firstarc; alg->ve[b].firstarc=AR; } return alg; } void ALGout(ALGraph *alg){ //邻接表输出 int i,n1; ARCNODE *p; VEXNODE *q; n1=alg->vexnum; for(i=0;ive[i]; printf("%c",q->vexdata); p=q->firstarc; while(p!=NULL){ printf("─→"); printf("%c",p->info); p=p->nextarc; } printf("\n"); } } MGraph *ALG_change_MG(ALGraph *alg){ //将邻接表转换为邻接矩阵 MGraph *mg; int i,n1; mg=(MGraph *)malloc(sizeof(MGraph));

邻接表转换成邻接矩阵

请输入节点数和弧数:3 3 第1 个节点信息:5 第2 个节点信息:6 第3 个节点信息:7 第1 条弧的弧尾和弧头的位置:1 2 第2 条弧的弧尾和弧头的位置:2 3 第3 条弧的弧尾和弧头的位置:1 3 图的邻接表表示为: [1,5]-->[3,7]-->[2,6]-->^ [2,6]-->[3,7]-->[1,5]-->^ [3,7]-->[1,5]-->[2,6]-->^ 交换后是:: 图的邻接矩阵表示为: 0 1 1 1 0 1 1 1 0 请按任意键继续. . . 代码是: #include #include #define MAXV 100 typedef struct { int no; int info; }vertextype; typedef struct { int num; int edges[MAXV][MAXV]; // vertextype vexs[MAXV]; }mgraph; struct arcnode { int adjvex; int info; struct arcnode *nextarc; }; struct vexnode { int data; struct arcnode *firstarc; }; struct graph

{ int vexnum,arcnum; vexnode vexpex[100]; }; struct graph *creatgraph() { int i,s,d; struct graph *g; struct arcnode *p,*q; g = (struct graph *)malloc(sizeof(struct graph)); printf("请输入节点数和弧数:"); scanf("%d%d", &g->vexnum, &g->arcnum); for(i=1; i<=g->vexnum; i++) { printf("第%d 个节点信息:",i); scanf("%d", &g->vexpex[i].data); g->vexpex[i].firstarc = NULL; } for(i=1; i<=g->arcnum; i++) { p = (struct arcnode *)malloc(sizeof(struct arcnode)); q = (struct arcnode *)malloc(sizeof(struct arcnode)); printf("第%d 条弧的弧尾和弧头的位置:",i); scanf("%d%d",&s,&d); p->adjvex = d; p->info = g->vexpex[d].data; p->nextarc = g->vexpex[s].firstarc; g->vexpex[s].firstarc = p; q->adjvex = s; q->info = g->vexpex[s].data; q->nextarc = g->vexpex[d].firstarc; g->vexpex[d].firstarc = q; } return g; //return graph! } void changeto(graph *G, mgraph &g) { int i,j; arcnode *m; g.num = G->vexnum; for(i = 1; i<=G->vexnum; i++) for(j = 1; j<=G->vexnum; j++) g.edges[i][j] = 0;

数据结构 图的存储、遍历与应用 源代码

实验四图的存储、遍历与应用姓名:班级: 学号:日期:一、实验目的: 二、实验内容: 三、基本思想,原理和算法描述:

四、源程序: (1)邻接矩阵的存储: #include #include #define INFINITY 10000 //定义最大值无穷大 #define MAX_VERTEX_NUM 20 //最大顶点个数 typedef int AdjMatrix[MAX_VERTEX_NUM ][MAX_VERTEX_NUM ]; typedef struct{ int vexs[MAX_VERTEX_NUM ]; //顶点向量 AdjMatrix arcs; //邻接矩阵 int vexnum,arcnum; //图的当前顶点数和弧或边数 }MGraph; void CreatGragh(MGraph G) //用邻接矩阵构造图 { int i,j,k,w; printf("请输入顶点个数和边数:\n"); scanf("%d %d",&G.vexnum,&G.arcnum); printf("请按顺序输入顶点中间用‘空格’间隔\n"); for(i=0;i #include

实验六 图的邻接表存储及遍历

实验六图的邻接表存储及遍历 一、实验学时 2学时 二、背景知识 1.图的邻接表存储结构 在图的邻接表中,图中每个顶点都建立一个单链表,第i个单链表中的结点数为顶点i的出度。(逆邻接表中,第i个单链表中的结点数为顶点i的入度) 邻接表的数据结构描述为: struct node { int vertex; struct node *nextnode; }; typedef struct node *graph; struct node head[vertexnum]; 2.图的遍历 深度优先遍历(DFS)法: 算法步骤: 1)初始化: (1)置所有顶点“未访问”标志; (2)打印起始顶点; (3)置起始顶点“已访问”标志; (4)起始顶点进栈。 2)当栈非空时重复做: (1)取栈顶点; (2)如栈顶顶点存在未被访问过的邻接顶点,则选择第一个顶点做: ①打印该顶点; ②置顶点为“已访问”标志; ③该顶点进栈; 否则,当前栈顶顶点退栈。 3)结束。 广度优先遍历(BFS)法: 算法步骤: 1) 初始化: (1)置所有顶点“未访问”标志; (2)打印起始顶点; (3)置起始顶点“已访问”标志; (4)起始顶点入队。 2)当队列非空时重复做: (1)取队首顶点; (2)对与队首顶点邻接的所有未被访问的顶点依次做: ①打印该顶点; ②置顶点为“已访问”标志; ③该顶点入队; 否则,当前队首顶点出队。 3) 结束。

三、目的要求 1.掌握图的基本存储方法; 2.掌握有关图的操作算法并用高级语言实现; 3.熟练掌握图的两种搜索路径的遍历方法。 四、实验内容 1.编写程序实现下图的邻接表表示及其基础上的深度和广度优先遍历。 五、程序实例 图的邻接表表示法的C语言描述: #include #include struct node /* 图形顶点结构定义 */ { int vertex; /* 顶点 */ struct node *nextnode; /* 指下一顶点的指针 */ }; typedef struct node *graph; /* 图形的结构重定义 */ struct node head[6]; /* 图形顶点结构数组 */ /*----------建立图形--------*/ void creategraph(int *node,int num) { graph newnode; /* 新顶点指针 */ graph ptr; int from; /* 边线的起点 */ int to; /* 边线的终点 */ int i; for ( i = 0; i < num; i++ ) /* 读取边线的回路 */ { from = node[i*2]; /* 边线的起点 */ to = node[i*2+1]; /* 边线的终点 */ /* 申请存储新顶点的内存空间 */ newnode = ( graph ) malloc(sizeof(struct node)); newnode->vertex = to; /* 建立顶点内容 */ newnode->nextnode = NULL; /* 设定指针初值 */ ptr = &(head[from]); /* 顶点位置 */ while ( ptr->nextnode != NULL ) /* 遍历至链表尾 */ ptr = ptr->nextnode; /* 下一个顶点 */ ptr->nextnode = newnode; /* 插入结尾 */ } }

数据结构图的存储结构及

数据结构图的存储结构及基本操作

1.实验目的 通过上机实验进一步掌握图的存储结构及基本操作的实现。 2.实验内容与要求 要求: ⑴能根据输入的顶点、边/弧的信息建立图; ⑵实现图中顶点、边/弧的插入、删除; ⑶实现对该图的深度优先遍历; ⑷实现对该图的广度优先遍历。 备注:单号基于邻接矩阵,双号基于邻接表存储结构实现上述操作。 3.数据结构设计 逻辑结构:图状结构 存储结构:顺序存储结构、链式存储结构 4.算法设计 #include #include #include #define MAX_VERTEX_NU M 20 typedef struct ArcNode { int adjvex; struct ArcNode *nextarc;

}ArcNode; typedef struct VNode { char data[2]; //顶点就设置和书上V1等等一样吧 ArcNode *firstarc; }VNode,AdjList[MAX _VERTEX_NUM]; typedef struct { AdjList vertices; int vexnum,arcnum; }ALGraph; typedef struct { int data[MAX_VERTEX_ NUM+10]; int front; int rear; }queue; int visited[MAX_VERTE X_NUM]; queue q; int main() { ALGraph G; int CreateUDG(ALGraph &G); int DeleteUDG(ALGraph &G); int InsertUDG(ALGraph &G); void BFSTraverse(ALGrap h G, int (*Visit)(ALGraph

分别以邻接矩阵和邻接表作为图的存储结构

分别以邻接矩阵和邻接表作为图的存储结构,给出连通图的深度优先 遍历的递归算法 算法思想: (1)访问出发点vi,并将其标记为已访问过。 (2)遍历vi的的每一个邻接点vj,若vi未曾访问过,则以vi为新的出发点继续进行深度优先遍历。 算法实现: Boolean visited[max]; // 访问标志数 void DFS(Graph G, int v) { // 算法7.5从第v个顶点出发递归地深度优先遍历图G int w; visited[v] = TRUE; printf("%d ",v); // 访问第v个顶点for (w=FirstAdjVex(G, v); w>=0; w=NextAdjVex(G, v, w)) if (!visited[w]) // 对v的尚未访问的邻接顶点w递归调用DFS DFS(G, w); } /*****************************************************/ /*以邻接矩阵作为存储结构*/ DFS1(MGraph G,int i) {int j; visited[i]=1; printf("%c",G.vexs[i]); for(j=1;j<=G.vexnum;j++) if(!visited[j]&&G.arcs[i][j]==1) DFS1(G,j); } /*以邻接表作为存储结构*/ DFS2(ALGraph G,int i) {int j; ArcPtr p; visited[i]=1; printf("%c",G.vertices[i].data); for(p=G.vertices[i].firstarc;p!=NULL;p=p->nextarc) {j=p->adjvex; if(!visited[j]) DFS2(j); } }

相关文档
最新文档