汽车压力传感器需要做哪些环境试验

汽车压力传感器需要做哪些环境试验

广电计量—环境可靠性与电磁兼容试验中心https://www.360docs.net/doc/2d9642547.html,/

汽车压力传感器需要做哪些环境试验

汽车电子行业产品对可靠性要求非常高,汽车作为一个复杂的构成体,严苛的环境(运输过程、存放、工作中、气候...等等) 考验着汽车电子系统是否能够达到要求,为此广电计量为您介绍汽车压力传感器环境方面的实验都有哪些?

甲醇、乙醇、柴油、机油等

广州广电计量检测股份有限公司(简称GRGT)始建于1964年,是以计量校准、产品测试、产品认证、技术培训与咨询为主要业务,具有独立法人资格的第三方专业技术服务机构,是信息产业部军工电子602计量测试站、广东省导航产业创新平台校准与检测实验室,通过了国家实验室(CNAS)、国防实验室(DILAC)和总装军用实验室认可,以及中国计量认证(CMA),是广东省中小企业公共服务示范平台。

GRGT环境可靠性试验设备能按IEC、MIL、ISO、GB、GJB等各种标准或用户要求进行高温、低温、温度冲击(气态及液态)、浸渍、温度循环、低气压、高低温低气压、恒定湿热、交变湿热、高压蒸煮、砂尘、盐雾腐蚀、气体腐蚀、霉菌、淋雨、太阳辐射、光老化、随机振动、正弦振动、机械冲击、三综合、HALT、HASS等。

压力传感器在车轮压力方面

压力传感器在汽车轮胎压力检测的应用研究 摘要:在汽车行驶过程中轮胎过于膨胀或处于充气不足状态都会影响汽车安全性,如何对汽车运行中轮胎气压进行检测意义重大。汽车轮胎压力检测系统是用于汽车行驶过程中实时自动监测轮胎气压,对轮胎漏气和低气压进行报警。以保障行车安全的一种系统技术。通过对汽车轮胎压力检测系统工作原理及应用进行阐述使得含有此系统车辆的维修和运用具有实际价值。 关键词:压力传感器胎压检测汽车安全; 正文:环保,节能,安全是当今汽车发展的三大主题尤其是汽车安全是直接影响人民生命财产安全和国家经济命脉的重要因素。因此,国内外许多汽车公司都把汽车的安全性作为汽车设计的重要考虑因素。汽车轮胎气压保持正常值是车辆舒适性和行驶安全的保证。气压过高超过正常值时,与地面接触面积减少,摩擦系数降低,而容易导致车辆侧滑、颠簸、爆胎从而危及行驶安全。轮胎气压低于正常值时轮胎变软轮胎和路面接触面积增加摩擦系数成倍增长,导致轮胎温度急剧上升。如果车辆在高速行驶中热量就会很快聚集在一起,轮胎内部就会开 始分离,脱层,最后导致爆胎。即使车辆在低速状态下行驶也会因轮胎变形过大而伤胎。后一种情况潜伏期长、隐蔽性大更具有危险性,它为以后在高速公路行驶时产生爆胎埋下隐患。及时地了解和准确掌握轮胎的温度、压力状况,并据此采取相应的防范措施是避免爆胎,提高汽车安全行驶水平的有效途径。而轮胎压力检测系统Tire Pressure Monitoring System简称 TPMS恰好能解决这些问题。安装了TPMS驾驶者随时知道轮胎的气压状况,使汽车行驶于正常气压状态下,从而保证汽车的行驶安全。 1轮胎压力检测系统的基本概念和原理 1.1 轮胎压力检测系统的概念 TPMS主要用于汽车行驶时适时地对轮胎气压进行自动检测,对轮胎漏气造成低胎压和高温高胎压防爆胎进行预警,确保行车安全。车装胎压感测系统在汽车产业或者是电子产业中都获得相当程度的重视,主要是因为汽车在进行移动时,胎压感测系统能够在第一时间针对汽车轮胎的气压进行自动检测动作,或者是当汽车轮胎的胎压不足及出现漏气现象时,能够提供驾驶者实时讯息。 1.2 TPMS的组成 TPMS包括传感器、发射模块和接收模块三大部分传感器和发射模块连接在一起。发射模块包括处理器和发射器。接收模块包括接收器,处理器和显示器。内部电路图如图所示;

外太空环境模拟试验舱价格和厂家

外太空环境模拟试验舱 设备建议书 公司名称:上海和晟仪器科技有限公司 品牌:HESON/和晟 联系人:蒋和義

公司简介 本公司属台资企业在大陆设有工厂总部位于上海,在国内设有6家分公司,服务更便捷。有独立的生产中心,研发中心,质检中心和售后中心全国统筹调度。已成功入选上海造币厂,上汽股份,日本三菱,韩国三星电子,美国颇尔,美国库柏,德国博士工具,富士康等知名企业优质供应商名单。 品牌:和晟【HESON】 型号:HS-2P-ZQ 品名:热真空试验箱

浩瀚无垠的太空对人类来说既熟悉又陌生。熟悉,是因为载人航天活动已经开展了几十年,人进入太空已有数百次了;陌生,是因为太空环境如此复杂,以至于每次载人航天活动,仍充满着无数变数和巨大风险。面对复杂多变的载人航天环境,航天员只有在地面作好充分试验和训练准备,才能圆满完成载人航天飞行任务。 地面试验和训练离不开模拟技术、模拟设备。要了解模拟技术和模拟设备,首先要认识载人航天环境。 (1)真空环境及模拟 在载人航天器所处的500千米轨道高度上,空间真空度为10-6帕左右;在1000千米的轨道高度上,空间真空度为10-8帕左右。 在进行航天器和舱外航天服空间环境热模拟试验(主要是热真空试验和热平衡试验)时,关注的问题主要是真空环境对试件热特性的影响。真空度达到10-2帕以上时,辐射传热已经成为主要的传热形式,对流和传导传热的效应已经可以忽略。因此,空间模拟设备模拟的真空度达到10-3帕数量级,已经能够较为真实地模拟航天器飞行轨道真空环境的热交换效应,不必追求更高的真空度。只有一些特殊的试验,如真空干摩擦和冷焊试验等,才需要提供更高真空度的试验设备。 (2)太阳辐照环境及模拟

汽车道路实验报告

汽车道路实验报告 班级:汽车服务工程1002班姓名:许超 学号:201023189067 组员:童芳、赵建宏、袁源、隆池、许超、许刘路 学院:汽车与交通工程学院 日期: 2013-6-4 2013年6月4日制

实验一 汽车滑行实验 1、滑行实验测试结果和记录 预定滑行初速度V 0=30 Km/h 实验记录 实测滑行速度V (Km/h ) 实测滑行距离S (m ) 滑行距离平均 值 实测滑行时间t (s ) 滑行时间平均值 往 返 往 返 往 返 30 30 0.00 0.00 0.00 0 0 0 24 24 120.44 41.02 80.73 15.19 4.96 10.08 18 18 210.50 80.40 145.45 29.66 10.36 20.01 12 12 269.56 204.66 237.11 43.12 32.24 37.68 6 6 349.52 240.54 295.03 73.28 41.82 57.55 0 0 382.64 289.02 335.83 108.72 72.09 90.41 2、根据测量数据,绘制速度—滑行时间、速度—滑行距离曲线 ⑴选取初速度30km/h 的数据,绘制速度—滑行时间曲线如下图

⑵选取初速度30km/h 的数据,绘制速度—滑行距离曲线如下图 3、计算往返两个方向滑行距离的平均值,见上表 4、根据实验数据,计算滑行平均速度v 、滑行减速度α、滑行阻力系数f 、滑行阻力R (1)求滑行平均速度v 解: v=360/t 2 (km/h ) 当滑行初速度为30km/h 时,查曲线图可得t 2=13s ,所以v=25km/h (2)求滑行减速度α 解:t2t1-t2111100) (-= t α 当滑行初速度V 0=30 km/h 时,由V —S 曲线图可读出试验车通过前50m 路段所对应 的车速约为 27.5km/h ,又由车速—滑行时间曲线图可读出V=27.5km/h 时所对应的滑行时间t 1≈6 s ;用同样方法可读出试验车通过前100m 路段所对应的滑行时间t 2≈13s ;分别将t 1、t 2代入求得α=0.18m/s 2。 (3)求滑行阻力系数f 解:f=α/9.8代入所求得的α可求得 当滑行初速度V 0=30 km/h 时的滑行阻力系数f=0.019

环境测试舱的结构及舱内实验条件

环境测试舱的结构及舱内实验条件 据统计,一个健康成年人每天呼吸的空气量约为12kg,远大于对食物和水的摄入量,故室内空气品质对人类的健康具有重要影响。目前,越来越多的空气品质实验都在自制的环境实验舱中进行。环境实验舱是测定室内材料和用品中VOC释放量以及释放和污染特性的基本设备,它是把被检测的物品放在舱内,在舱内模拟的环境条件下测定各种参数和释放量。相比于实际的室内环境,环境舱的舱内温湿度、换气次数更容易进行人为的控制,并且在密封条件下能够确保舱内实验过程不受室外环境污染影响。因此在空气品质测试中,许多标准都规定环境舱实验为仲裁方法。然而,各种标准和实验中的环境实验舱材料不同,大小不一,参数各异,始终没有统一的标准来规范环境舱的结构和相关测试参数,我们希望通过相关文献的研究和总结,建立一个更接近现实环境、更实用的环境实验舱,作为行业标准制定的基础。VOC及甲醛释放量环境测试舱 1、环境实验舱构造 环境实验舱舱体内壁全部采用电抛光不锈钢材料,各部分是通过在结合部采用连续焊接法固定在一起以及在承重框架处采用点焊焊死[4]。整个环境舱采用聚四氟乙烯等无吸附、低散发的密封条,并且采用聚亚胺酯泡沫绝缘保温。舱内保持正压以防止外部空气通过渗流等作用进入。环境舱的进气口和出气口均设置在顶部,空气均由一个散流器引入舱内,并且通过设置在舱内部顶上的风扇充分混合,保证采样点有害物的浓度能够实时代表舱内有害物浓度[5]。采样装置是将采样管伸进舱体中央进行采样,采样管的外层材质一般与舱体相同,大多为不锈钢,内衬聚四氟乙烯管以避免采样过程中气体样本收到污染或发生某些反应影响结果。舱外安装空调机组,其中有化学过滤器和中、高效空气过滤器净化舱内空气,空调系统控制舱内温湿度,可以模拟实际的室内空气环境。VOC及甲醛释放量环境测试舱 2、环境实验舱内实验条件 无论大型环境实验舱还是小型环境实验舱,VOC及甲醛释放量环境测试舱,舱内实验条件通常为:空气温度设定在23℃±2℃,空气相对湿度为50%±10%,空气交换率为0.03次/h左右,空气流速为0.1~0.3m/s[6]。对于小型环境实验舱,1立方VOC及甲醛释放量环境测试舱打开空气压缩机,通过调节空气流量控制空气交换率,通过空调和加温装置调节环境舱温度,通过调节进入起泡瓶的空气流量调节舱内相对湿度,使环境舱内各参数达到实验要求。对于大型环境实验舱,利用空调盘管控制送入舱内空气的温度,通过向空气系统加入一定温度的去离子水蒸气来控制相对湿度,并且在舱内放置一台温湿度测试仪以监测保证在实验期间的温湿度在设定的范围内;换气次数的控制是通过调节送风风机转速来实现的,并且利用示踪气体法核对校准。 东莞市环仪仪器科技有限公司

关于国内外汽车传感器方面的知识

关于国内外汽车传感器方面的知识

关于国内外汽车传感器方面的知识技术分类:汽车电子 | 2007-12-19 来源:新浪汽车 汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。目前,一辆普通家用轿车上大约安装几十到近百只传感器,而豪华轿车上的传感器数量可多达二百余只。据报道,2000年汽车传感器的市场为61.7亿美元(9.04亿件产品),到2005年将达到84.5亿美元(12.68亿件),增长率为6.5%(按美元计)和 7.0%(按产品件数计)。汽车传感器在汽车上主要用于发动机控制系统、底盘控制系统、车身控制系统和导航系统中。 发动机控制系统用传感器 发动机控制系统用传感器是整个汽车传感 器的核心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传感器等。这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,供ECU对发动机工作状况进行精确控制,

以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。 由于发动机工作在高温(发动机表面温度可达150℃、排气歧管可达650℃)、振动(加速度30g)、冲击(加速度50g)、潮湿(100%RH,-40℃- 120℃)以及蒸汽 、盐雾、腐蚀和油泥污染的恶劣环境中,因此发动机控制系统用传感器耐恶劣环境的技术指标要比一般工业用传感器高1-2个数量级,其中最关键的是测量精度和可靠性。否则,由传感器带来的测量误差将最终导致发动机控制系统难以正常工作或产生故障。 1.温度传感器 温度传感器主要用于检测发动机温度、吸入气体温度、冷却水温度、燃油温度以及催化温度等。温度用传感器有线绕电阻式、热敏电阻式和热偶电阻式三种主要类型。三种类型传感器各有特点,其应用场合也略有区别。线绕电阻式温度传感器的精度高,但响应特性差;热敏电阻式温度传感器灵敏度高,响应特性较好,但线性差,适应温度较低;热偶电阻式温度传感器的精度高,测量温度范围宽,但需要配合放大器和冷端处理一起使用。

汽车整车环境试验舱

汽车整车环境试验舱 适用范围: 汽车环境试验舱是依据整车(轿车、轻卡)环境试验性能测试的工作状态,经保温隔热处理后,采用适当的通风、空调设备以满足整车动力匹配,经济性能匹配,整车冷启动性能匹配,整车空调性能开发,整车低温适应性能,排放性能等试验要求。 仪器特征: 1.新风系统 在环境仓温度为 0 ℃~–40℃时风量大于700m3/h,在环境仓温度为20℃时风量大于2500m3/h,新鲜空气的送风机为变频式电机,新风机组具备手动开关及风量调节功能。 2.汽车尾气排放系统 提供不锈钢变频风机、由舱内到室外管路和排气背压调控装置,使在试验全过程中排气管出口处出的静压力不超过±1.25 kPa(满足GB18352.2-2001);最大排气抽气量,4000 m3/h。 3.舱体 ①整体结构 环境试验舱整体呈上下层立体布局,下层为环境舱体,上层为循环风道。 ②墙体构造 聚氨酯拼装库板,厚度140 mm,外表面采用喷塑彩色钢板(厚度1.5mm),内表面采用不锈钢板(SUS304 1.5mm)。 库板边缘带有绝热密封带,拼装完成后敷以硅酮密封胶,并用不锈钢板条覆盖将两块库板铆接。 ③地板构造 在设计结构上基本与墙体相同。另外增加了防滑层和受压盘。 防滑不锈钢材厚度≥3mm,地面承载能力1200kg/轮,冷却风机移动范围内有加强承重处理;设备基础构造满足转鼓设备保温的需要 ④测试仓内净尺寸:视实际使用情况而定 ⑤测试仓门:车辆通行门,带观察窗的人员通行门 ⑥观察窗:控制室观察窗;各扇门上的观察窗 技术参数: 型号ESR992

符合标准: 70/220/EEC 、715/2007/EC 和692/2008/EC EPA Tire1,NLEV 和Tire2 GB 18352.2、GB18352.3、HJ/T400-2007和HJ/T390-2007、国5法规 温 度 范 围 -40~+60℃ 温度变化速率 25℃←→-40℃,2.5小时,25℃←→60℃,2小时 (空载,全程平均) 温度控制精度 ±1℃ (控制点处测量、无热负荷变化时 温 度 偏 差 ±2℃ (无热负荷变化时) 制 冷 方 式 蒸汽压缩制冷 循 环 风 机 循环空气流量约为150,000 m 3/h 地 板 结 构 防滑不锈钢材厚度≥3mm,地面承载能力1200kg/轮 墙 体 结 构 聚氨酯拼装库板,厚度140 mm ,外表面采用喷塑彩色钢板(厚度1.5mm ),内表面采用不锈钢板 (SUS304 1.5mm)

汽车进气绝对压力传感器

对空燃比控制起决定性作用的传感器是空气计量系统。空气计量系统告诉ECU进多少空气ECU就配多少燃油,喷多少油作重要依据。所以说能导致汽车混合器漂移量过大非常大的就是空气计量系统问题。如果车喷油量偏差非常多一般就是空气流量传感器问题,因为一般其它传感器只是辅助没有权限控制那么大的喷油量,偏差也只是稍稍进行一些错误修正产生的。其它传感器做不到那么大的控制范围。控制程序中的喷油计算公式,进气量是主要决定因子,其它的只是修正因子。 全世界的所有发动机对混合器的需求都是一样的,区别不会太大。但是到故障诊断的时候要区分控制系统。 目前的汽车发动机电控系统主要分为两大类,即以空气流量计为代表的L型系统和以进气压力传感器为代表的D型系统。这两种系统的工作方式不同,故障现象不同。 空气流量计(L型)和进气压力传感器(D型)都属于空气计量装置,但是空气流量计属于直接测量进气量。进气压力传感器属于间接测量进气量。 空气流量计种类:(翼板式-基本淘汰)、(卡门涡旋式-使用率1%)、(热线热膜式-使用率99%)。 流量计和压力传感器的区别: 1、安装位置不同:空气流量计安装在空滤后面节气门前的管道中,进入进气管的空气都要 经过空气流量计。进气压力传感器安装在节气门后进气门前,靠检测进气管道中的气压力(负压、真空度检测为负值)间接判断空气流量。 2、反应速度不同:空气流量计响应速度快,因空气流量计的安装位置比较靠前。当空气进 入进气管后马上就能得出空气量。进气压力传感器反应相对较慢,因为当空气流量计得出测量结果的时候相对于进气压力传感器空气都还没有进入到节气门后面。 空气流量计 流量传感器优缺点:响应快,测量准。收油门时对进气量的测量没有进气压力传感器准确。价格昂贵一般400-20000.一般用在中高端车。 压力传感器优缺点:加油门的时候测量不准,反应较慢。但优点是收油门的时候测量节气门后的压力,判断空气流量比较准。价格相对便宜最多400,一般用在低端车。 有的车也有空气流量计和进气压力传感器同时安装的。如别克。但应该还是归为L型为主。因为L型控制精度更高。但有进气压力传感器的优点。 进气压力传感器 影响车在怠速时节气门后进气门前的进气管内的真空度的原因:点火时间,漏气,缸压,,,,,气门关闭不严,正时,排气背压,怠速电机,负荷,

几种重要的汽车传感器原理

几种重要的汽车传感器原理 一、传感器概述 传感器的概念:指能感受规定的物理量,并按照一定规律转换成可用输信号的器件或装置。简单的说,传感器即使把非电量转换成电量的装置。 汽车传感器的工作条件极为恶劣,因此,传感器能否精确可靠地工作至关重要。在该领域中,理论研究及材料应用发展迅速,半导体和金属膜技术研究及材料应用技术发展迅速,半导体和金属膜技术、陶瓷烧结技术等得到迅猛发展。智能化、集成化和数字化将是传感器的未来发展趋势。 传感器通常由敏感元件、转换元件及测量电路组成。敏感元件是指能直接感受被测量的部分。转换元件是指能将非电量转换成电量的部分。有些敏感元件可以直接输入电量。测量电路是指将转换元件输入的电量经过处理,以便进行显示、记录和控制的部分。测量电路中较多的使用电桥电路。比如后面要讲到的热线式空气流量计。 传感器的种类比较多,像我们一般碰到的传感器一般有: 温度传感器(冷却水温度传感器THW,进气温度传感器THA); 流量传感器(空气流量传感器,燃油流量传感器); 进气压力传感器MAP 节气门位置传感器TPS 发动机转速传感器 车速传感器SPD 曲轴位置传感器(点火正时传感器) 氧传感器 爆震传感器(KNK) 二、空气流量传感器 为了形成符合要求的混合气,使空燃比达到最佳值,我们就必须对发动机进气空气流量进行精确控制。下面我们来介绍一下几种常用的空气流量传感器。 1、卡门旋涡式空气流量计

涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。 众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。 同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。 卡门旋涡式空气流量计就是利用这种这种旋涡形成的原理,测量气体流速,并通过流速的测量直接反映空气流量。 对于一台具体的卡门旋涡式空气流量计,有如下关系式:qv=kf , qv为体积流量,f为单列旋涡产生的频率,k为比例常数,它与管道直径,柱状物直径等有关。由这个关系式可知,体积流量与卡门涡流传感器的输出频率成正比。利用这个原理,我们只要检测卡门旋涡的频率f,就可以求出空气流量。 根据旋涡频率的检测方式的不同,汽车用涡流式空气流量传感器分为超声波检测式和光学式检测式两种。例如,中国大陆进口的丰田凌志LS400型轿车和台湾进口的皇冠3.0型轿车采用了光电检测涡流式空气流量器;日本三菱吉普车、中国长风猎豹吉普车和韩国现代轿车采用了超声波检测涡流式空气流量传感器。 (1)光学式卡门旋涡空气流量计 现代物理学光的粒子说认为,光是一种具有能量的粒子流,当物体受到光照射时,由于吸收了光子能量而产生的效应,称为光电效应。光敏晶体管是一种半 导体器件,它的特点就是受到光的照射时,它们都会产生内光电效应的光生伏特现象,从而产生电流。 工作原理:在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,再由光敏晶体管输出调制过的频率信号,这种频率信号就代表了空气的流量信号。 (2)超声波式卡门旋涡式空气流量计 超声波是指频率高于20HZ,人耳听不到的机械波。它的特性就是方向性好,穿透力强,遇到杂质或物体分界面会产生显著的反射,譬如自然界里的蝙蝠,鲸鱼等动物都是通过超声波来进行方位定向的。利用这种物理特性,我们可以把一些非电量转换成声学参数,通过压电元件转换成电量。

详述环境模拟测试舱系统结构

详述环境模拟测试舱系统结构 环境模拟测试舱系统结构是由九个部分组成:测试舱体、制冷控湿系统、循环风系统、洁净空气处理系统、空气交换系统、舱内温控系统、电器控制系统、空气采样系统。 测试舱体: 用于测试舱内壁和舱内循环空气管道的材料为对甲醛呈惰性、无吸附性的不锈钢,表面光滑洁净,舱门开口处使用具有气密的无吸附作用的密封条进行密封。(在测试前,应用水进行有效清洁舱壁)。 制冷控湿系统: 系统为保证环境模拟测试舱全天候工作模式,采用对进入测试舱空气进行制冷处理,利用制冷达到控制空气湿度接近45%的技术要求,即控湿功能,制冷控湿系统控制温度为11~13度。 洁净空气处理系统: 采用有效吸附能力的活性碳,以及水浴机构(同制冷控湿系统合并一体),构成空气过滤装置,作为测试舱洁净空气提供的配备系统,具有提供甲醛最大含量不超过0.006mg/m3(0.006PPm)洁净空气的能力。 循环风系统: 测试舱工作室通过风机系统将进出通道空气循环起来。同时在均压腔的作用下,保证舱体内空气流速为0.1~0.3m/s,并且稳定均衡,气体流动的方向和测试样品表面平行。 换气系统: 环境模拟测试舱新风系统前端安装有空气泵,促使空气进入系统;在换气系统通道中,安装有具备计量流速的空气转子流量计,通过对进出舱体气路的转子流量计读数,调节管道阀门,控制洁净空气来替换测试舱内混合空气的空气交换率。 舱内温控系统: 在测试舱循环风道外布置有加热及制冷系统(水箱内制冷,用泵促使冷水循环),从而实现测试舱内升温、降温的功能。 电器控制系统: 采用智能仪表进行对温湿度传感器件的采集、以及对加热器和加湿的控制,实现将测试舱温度控制在23±1℃,相对湿度控制在45±5%内。 智能仪表采集位于舱内和其它部件内的温、湿度传感器的数据,并实时显示。采集的数据与给定值进行比较,根据比较数据,启停加热、制冷压缩机等器件。 空气采样系统: 在环境模拟测试舱舱体排气口处布置了气体采样阀门通道,通过所布置的取样孔,可采集到舱体被净化空气以及在舱体内充分混合的(含有试件挥发化学物质)空气,调节采样流量为2L/min。

道路工程试验报告

试验一路面平整度检测 平整度是路面施工质量与服务水平的重要指标之一。它是指以规定的标准量规,间断地或连续地量测路表面的凹凸情况,即不平整度的指标。路面的平整度与路面各结构层次的平整状况有着一定的联系,即各层次的平整效果将累积反映到路面表面上,路面面层由于直接与车辆接触,不平整的表面将会增大行车阻力,将使车辆产生附加振动作用。这种振动作用会造成行车颠簸,影响行车的速度和安全及驾驶的平稳和乘客的舒适。同时,振动作用还会对路面施加冲击力,从而加剧路面和汽车机件损坏和轮胎的磨损,并增大油耗。而且,不平整的路面会积滞雨水,加速路面的破坏。因此,平整度的检测与评定是公路施工与养护的一个非常重要的环节。 平整度的测试设备分为断面类及反应类两大类。断面类实际上是测定路面表面凹凸情况的,如最常用的3m直尺及连续式平整度仪,还可用精确测定高程得到;反应类测定路面凹凸引起车辆振动的颠簸情况。反应类指标是司机和乘客直接感受到的平整度指标,因此它实际上是舒适性能指标,最常用的测试设备是车载式颠簸累积仪。现已有更新型的自动化测试设备,如纵断面分析仪,路面平整度数据采集系统测定车等。常见几种平整度测试方法的特点及技术指标比较见表8。国际上通用国际平整度指数IRI衡量路面行驶舒适性或路面行驶质量,可通过标定试验得出IRI与标准差σ或单向累计值VBI之间的关系。 平整度测试方法比较 (一)3m直尺法 3m直尺测定法有单尺测定最大间隙及等距离(1.5m)连续测定两种。两种方法测定的路面平整度有较好的相关关系。前者常用于施工质量控制与检查验收,单尺测定时要计算出测定段的合格率;等距离连续测试也可用于施工质量检查验收,要算出标准差,用标准差来表示平整程度。

压力传感器在汽车制造业中的应用

压力传感器是汽车中用得最多的传感器,主要用于检测气囊贮气压力、传动系统流体压力、注入燃料压力、发动机机油压力、进气管道压力、空气过滤系统的流体压力等。 比较常用的汽车压力传感器有电容式、压阻式、差动变压器式、声表面波式。电容式压力传感器主要用于检测负压、液压、气压,测量范围为20kpa~100kpa,其特点是输入能量高,动态响应特性好、环境适应性好;压阻式压力传感器的性能则受温度影响较大,需要另设温度补偿电路,但适应于大批量生产;差动变压器式压力传感器有较大的输出,易于数字输出,但抗干扰性差;声表面波式压力传感器具有体积小、质量轻、功耗低、可靠性高、灵敏度高、分辨力高、数字输出等特点,用于汽车吸气阀压力检测,能在高温下稳定地工作。 汽车用温度传感器主要用于检测发动机温度、吸人气体温度、冷却水温度、燃油温度以及催化温度等。温度传感器有热敏电阻式、线绕电阻式和热偶电阻式三种主要类型。这三种类型传感器各有特点,其应用场合也略有区别。热敏电阻式温度传感器灵敏度高、响应特性较好,但线性差、适应温度较低。 其中,通用型的测温范围为-50℃~30℃,精度为1.5%,响应时间为10ms;高温型为600℃~1000℃,精度为5%,响应时间为10ms;线绕电阻式温度传感器的精度高,但响应特性差;热偶电阻式温度传感器的精度高,测量温度范围宽,但需要配合放大器和冷端处理一起使用。其他已实用化的产品有铁氧体式温度传感器(测温范围为-40℃~120℃,精度为2.0%)、金属或半导体膜空气温度传感器(测温范围为-40℃~150℃,精度为2.0%,5%,响应时间约20ms)等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/2d9642547.html,/

路基路面实验报告

路基、路面实验报告 姓名: 学号: 专业: 土木工程学院道桥实验室 2015年10月

目录 实验一:路面回弹弯沉实验(贝克曼梁法).......................... 错误!未定义书签。实验二:路面平整度实验.. (4) 实验三:压实度实验 (7) 实验四:马歇尔稳定度实验(选做) (12)

实验一:路面回弹弯沉实验(贝克曼梁法) 日期: 学时:指导老师: 一、实验目的 弯沉试验是基于高速公路、桥梁隧道等路基施工的控制检测,通过对不同路段和不同土质的路基、路面进行贝克曼梁试验检测,判断路面的总体强度是否满足设计及规范要求。 二、实验仪器 贝克曼梁(5.4m)、百分表(量程1cm)、反力架和千斤顶(代替测试汽车)、皮尺 三、方法步骤 1、试验准备 (1)检查贝克曼梁是否完好,贝克曼梁前臂(接触路面)与后臂(装百分表) 长度比为2:1。 (2)在反力架上安装千斤顶,通过千斤顶的顶托作用,模拟汽车轴重。 (3)测定千斤顶的接地面积,精确至0.1cm2;。 (4)检查百分表的灵敏情况。 (5)记录测量时的路表温度。 (6)记录测试路基、路面的材料、结构、厚度、施工及养护等情况。 2、实验步骤 (1)在模拟测试路段布置测点,测点应布置尽量靠近千斤顶。 (2)将两套千斤顶并排使用,两千斤顶之间的缝隙对准测点后约3 ~ 5cm 处的位置上。 (3)将弯沉仪插入两千斤顶之间的缝隙处,梁臂不得碰到千斤顶,弯沉仪测头置于测点上,并安装百分表于弯沉仪的测定杆上,百分表调零,用手指轻轻

叩打弯沉仪,检查百分表是否稳定回零。 (4)测定时先用千斤顶顶托反力架,加力大小从0增加到1kN,百分表随路面变形的增加而持续向前转动。当表针转动到最大值时,读取初读数L1。 (5)初读数读取完毕后千斤顶卸载至0.5kN,表针反向回转,待表针回转稳定后读取终读数L2。 四、数据处理 L T=(L1-L2)×2 式中:L T--在路面温度T时的回弹弯沉值(0.01mm); L1--车轮中心临近弯沉仪测头时百分表的最大读数(0.01mm); L2--汽车驶出弯沉影响半径后百分表的最终读数(0.01mm)。 五、实验记录 序号检测部位 初读数 (mm) 终读数 (mm) 弯沉值 (mm) 检测 点数 平均值 (mm) 代表值 (mm) 合格率

PM2.5环境模拟实验舱要求(上篇)

PM2.5环境模拟实验舱要求(上篇) PM2.5是空气动力学中直径小于2.5微米的颗粒物质,又称为细颗粒物。大部分有害元素和化合物都富集在细颗粒物上,而随着其粒径的减小,细颗粒物在大气中的存留时间和在呼吸系统的吸收率也随之增加,因此对人体健康的影响也越大。 技术参数: 1、本实验舱主要应用: a.用于模拟不同门窗结构、温湿度、通风条件下室内PM2.5浓度分布特性和室外PM2.5对室内环境影响的实验和研究。 b.模拟不同的温度、湿度和空气置换率条件,材料或家具的有害物质释放量和释放特性; C.用于研究袋子法检测汽车内饰件挥发性有害物质释放量和规律; D.用于检测空气净化器净化功能; 2、实验舱基本参数: 1.整舱内部大小:30?,D3000mm*W5000mm*H2000mm(实际尺寸根据现场情况确定); 2.整舱可分割成两内舱尺寸:I舱(模拟室内舱):D3000mm*W5000mm*H2000mm;O舱(模拟室外舱):D3000mm*W5000mm*H2000mm; 3.中间隔断上门窗尺寸:门:W900mm*H2000mm 窗:W500mm*H1100mm; 4.温度控制范围:+10~+90℃; 5.温湿度控制范围:30~80%(at+20~30℃) 6.温湿度控制波动:±0.5℃/±3%(无负荷、无试样) 7.温湿度均匀性: ±1℃/±2% (无负荷、无试样) 8.舱内空气流速可控制范围(0.1~1)m/s,控制精度±0.05m/s; 9.空气交换率可调范围(0.2~2)次/H,控制精度±3%; 10.设备密闭性:测试舱密闭性应满足在1kpa正压(表压)时,舱内空气泄漏率VL(0.5%x 舱容/min,或者舱内空气泄漏率VL(5%X供气率VS 11.舱内环境要求的显示精度:温度0.1℃;相对湿度1%;空气交换率0.01次/h。 12.测试舱内本底浓度:甲醛本低浓度<0.006㎎/?,TVOC本底浓度<0.5㎎/?,单体VOC 本底浓度<0.005㎎/?,直径大于0.5μm的微粒浓度的有效检测报告。 13.设备运行时,测试舱内相对于外界压力:10±5PA; 14.环境舱稳定时间:测试舱内温湿度稳定时间不超过2h 15.工作电压:AC:380V,运行功率不大于20KW. 以上环仪环境模拟实验舱要求讲述部分资料仅提供参考,如需了解更多详情请这些我司相关工作人员 东莞市环仪仪器科技有限公司

汽车用压力传感器标准

汽车用压力传感器标准 第1部分:发动机润滑油压力传感器制定编制说明 一、任务来源 本次标准的制定计划是经全国汽车标准化技术委员会提出并上报,国家发展和改革委员会工业司和国家标准化管理委员会批准下达的,安徽金海达汽车电子有限公司、浙江汽车仪表有限公司、江苏金榆汽车电子有限公司、合肥邦立电子有限公司负责第1部分的制定起草工作。 二、制定目标 为适应我国车用仪表行业快速发展,促进本行业产品质量水平的提高,规范和指导企业生产,引领产业技术进步而制定本标准,新制定的产品标准基本与国际同类产品标准同步。 三、制定标准的指导思想 汽车上使用的压力传感器多种多样,由于其使用环境和功能特点存在着较大差异,因此汽车用压力传感器标准适合分部分发布。我国汽车仪表行业经过多年的发展,生产企业的格局已经发生了新的变化,出现了一批传感器专业生产企业,本次制定的发动机润滑油压力传感器作为汽车仪表指示系统的一部分,老的仪表标准中只对指示系统提出了误差要求,而没有对指示器和传感器误差进行分配,造成了仪表生产企业和传感器生产企业配合上的不协调,甚至互相推诿,而且仪表和传感器的实际工况也存在着较大差异,老的仪表标准已不能适应企业生产需要。各生产企业要求将仪表和传感器标准分开,而新的仪表标准QC/T 727已不包含对传感器的要求,市场迫切需要有发动机润滑油压力传感器行业标准来规范和指导生产。 新制定标准首先要满足国内产品缺少标准指导生产和市场流通的需要。根据GB1.1的要求,并参照行业相关标准,充分考虑到国内生产企业的技术现状和产品的实际需求进行了本部分的制定工作。

四、制定过程 为做好本次标准的制定起草工作,安徽金海达汽车电子有限公司、浙江汽车仪表有限公司、江苏金榆汽车电子有限公司、合肥邦立电子有限公司与一些传感器专业制造企业和仪表生产企业进行了大量交流,进行了大量的数据采集,参照QC/T727标准和国外相关企业标准,制定了相关的试验项目和性能指标,并根据现有的设备条件,对制定的基本误差、高低温、湿度、振动等试验项目进行了验证工作,起草了征求意见稿。

汽车道路试验工岗位工作总结汇报报告范文模板

××单位××单位 汽车道路试验工岗位……………………………………………………………个人工作总结报告汇报……………………………………………………………ANNUAL PERSONAL JOB SUMMARY …………………………………………………………… 部门:XXXX-XX XX XXXX-XX 岗(职)位:XXXX-XX XX XXXX-XX 姓名:XXXX-XX XX XXXX-XX (共5100字,可删改) 20XX年XX月XX日

目录 目录 (2) 一、岗位履职履责情况 (3) 1.1日常工作 (3) 1.2协助管理 (4) 1.3新建工作 (5) 二、出勤与团队建设 (5) 2.1出勤情况 (5) 2.2思想情况 (6) 2.3团队合作 (6) 三、学习与个人成长情况 (6) 3.1业务理论学习 (6) 3.2管理能力提升 (7) 3.3实践本领提高 (7) 四、不足与改进 (8) 4.1不足之处 (9) 4.2整顿整改建议 (9) 五、展望与规划 (10) 5.1总结回顾 (10) 5.2近期目标 (11) 5.3远期目标 (11) 5.4工作打算 (12)

20XX年度个人工作总结 充实而又忙碌的一年过去了,作为XX单位(部门)的一名汽车道路试验工,在丰富自我阅历的同时,工作战果也得到了进一步的提升。20XX年,我在XX单位(部门)领导及各位同事的支持与帮助下,严格要求自己,按照XX单位(部门)的要求,较好地完成了自己作为一名汽车道路试验工的本职工作。 通过一年来的学习与工作,我在工作模式上有了新的突破,工作方式有了新的改进,在负责XX工作时能以公正、公开、公平的原则做好服务和管理。现根据自身工作的实际情况,我对自己的工作做出分析评定,总结经验教训,提出改进方法,以便使自己在今后的工作中能惩前毖后,扬长补短,为今后不断改进工作方法,提高工作效率提供依据,以期使自己成为一名更优秀的汽车道路试验工,为XX单位(部门)做出更大的贡献。个人总结如下: 一、岗位履职履责情况 1.1日常工作 今年工作主要是XXXX和XXXX。通过几个月的努力,我和同事们一起完成了XXXX项目,解决了多年积累下的问题。

整车VOC环境测试舱

汽车车内挥发性有机物和醛酮类物质测试环境舱(100m3) 一、用途 该环境舱主要用于汽车材料和产品及整车污染物释放率和释放特性的测试,符合中华人民共和国环境保护行业标准HJ/T 400-2007《车内挥发性有机物和醛酮类物质采样测定方法》 二、工作条件: 温度(-10-40)℃的范围内; 相对湿度不大于80%; 周围无震动、无腐蚀性介质和无较强磁场干扰的环境中; 电源电压380伏三相五线制,波动范围不应超过额定电压的±10%;额定功率60千瓦。 在稳固的基础上水平安装。 四、技术指标 4.1 环境舱 4.1.1工作室尺寸(内胆):6000mm×4200mm×4000mm(长×宽×高) (可按用户要求设计) 4.1.2门的尺寸: 3500mm×3500mm(高×宽),配有两个观察窗(600mm×400mm (宽×高))。 4.1.3工作室:采用镜面不锈钢无缝焊接,圆弧过渡,焊缝表面抛光处理,无死角、无泄露、无橡胶类和胶粘剂等对检测有干扰的材料,密封材料、管线、接头和其它与工作室内空气接触的器件,均不吸附有机物和甲醛。工作室内不结露或水珠凝聚。 4.1.4管路:选用不锈钢管、铜管,采用螺纹硬连接,供气输送的整个过程全部为金属材料,不接触有机材料。 4.1.5电路:照明灯等需要供电设备的电线少量出现在测试舱内的情况,均采用不锈钢套管穿管处理,并加以密封。 4.1.6保温材料:聚氨酯夹芯板,厚度:150mm 4.1.7人员出入门: 900mm×1900mm(宽×高),其材料与舱体的材料一致,保证密闭、隔热和隔音,带有观察窗(600mm×400mm(宽×高))。

4.1.8环境舱内照明灯照度不低于300lux,采用专用灯具; 4.1.9密封性:1KPa相对压强下,泄漏率≤1×10-3m3/min; 4.1.10地面荷载:7.5t/m2,车道部分强度加强; 4.1.12 舱门:双层铰链门,多点紧压式,内嵌可调; 4.1.13 气体采样点:舱内设计6个气体采样点。 4.2环境舱温度和湿度控制精度 4.2.1温度 (1)调节范围:(20~60)℃ (2)调节精度:±1℃(波动) (3)测量精度:±0.1℃ 4.2.2相对湿度 1)调节范围:(30~70)%RH. (温度20-30℃时) 2)调节精度:±10%R.H. 3)测量精度:±1%R.H. 4.2.3 温度、湿度控制通过夹套式方式处理。 4.3气体过滤系统 4.3.1通风量 4.3.1.1调节范围:20m3~1000m3/h(换气率0.2~10次/小时) 4.3.1.2调节精度:通风量±5% 4.3.1.3测量精度:±0.1m3/h 4.3.2气流速度:水平方向与竖直方向的,空气水平速率均保持在0.1~0.3m/s,精度≤0.05m/s。 4.3.3工作室内相对于外界压力:≥5Pa正压 4.3.4新进气体本底浓度:甲苯≤0.02mg/m3,甲醛≤0.02mg/m3 4.4.5过滤器:处理风量: 4800m3/h,处理后,舱内气体要求:甲苯≤0.02mg/m3,甲醛≤0.02mg/m3 4.4 安全与报警系统 4.4.1电源供电保护及计算机稳压系统:系统具有自我保护系统,供电保护装置具有防止因突发性断电而损坏设备的能力。

道路工况测试报告

平遥------银川线路考察报告 (危险源、危险道路排查) 被考察车辆:xxxx 考察方式:随车耗时:33H全程:634km平均时速:65km/h 操作判定:合格车辆状况:良好重载量:20吨 我司车辆运行线路,平遥至银川线路由东向西,途经两省九市,为确保车辆在 途的安全性及货物到达的时效性,公司物流部对该线路做了详细的线路勘查, 确保我司车辆在该路段行驶的安全性。以下为该路程的详细说明: (平遥-银川)道路路况危险源说明 路形名称隧道路环形路桥梁坡形路维修路市区路段限高数量12 6 23 14 1 2 2 速度60 40 70 60 40 40 40 危险度★★★★★★★★★★★★★★★★★★★★ 通过上述我们可以发现本线路勘查为:丘陵、山区道路较多,虽为高速公路,但是本路段全程为两车道,道路工况一般(主要由于重型车辆较多导致路面坑洼),根据我司车辆毛重20吨左右装载量,其实际百公里油耗达到:26L上坡路段与下坡路段成正比。 1、下面我们重点说明下危险度在4星的路面以及驾驶注意事项:

1、环形路面特点: 高速公路的环形路面主要出现的位置:匝道(辅导)、盘山路面及高速连接处. 1、环形道路存在的危险: 1.1)、车速过快导致车辆侧翻及侧面发生碰撞. 1.2)、前车压道行车,导致后面车辆无法顺利通过而发生追尾、侧碰等. 1.3)、转入高速连接路面变道会与直行车辆发生碰撞. (平遥-银川)道路路况危险源说明 路形名称 隧道路 环形路 桥梁 坡形路 维修路 市区路段 限高 数量 12 6 23 14 1 2 2 速度 60 40 70 60 40 40 40 危险度 ★★ ★★★★ ★★ ★★★★ ★★ ★★★★ ★★ 2、环形道路注意事项: 2.1)、按照道路交通标识指示行车,提前开启转向灯,减速慢行. 2.2)、谨慎驾驶,与前车要保持足够的行车距离,注意避让小型车辆。 2.3 )、高速公路连接线、延长线一定要在转弯时提前减速、开启转向灯示意后车,请勿强行变道或挤压侧面车辆. 3环形道路驾驶要领:3.1)、窄路弯道通过时,驾驶员应该提前减速并鸣喇叭。当汽车开至视线受阻的地方时,要尽量靠右侧行驶,以免妨碍其他车辆正常通过。 3.2)、雾霾、风沙天气通过时,一定要打开近光灯和防雾灯,并且勤按喇叭,尽可能地引起行人和车辆的注意。减速慢行,做到心中有数,随时做好停车的准备。 3.3)、雨雪冰道路通过时,驾驶员应尽早降低车速,避免急刹车和猛打方向盘。如果遇到弯 路况 说 明

压力传感器大学物理

一、实验目的 1. 了解应变压力传感器的组成、结构及工作参数。 2. 了解非电量的转换及测量方法——电桥法。 3. 掌握非平衡电桥的测量技术。 4. 掌握应变压力传感器灵敏度及物体重量的测量。 5. 了解多个应变压力传感器的线性组成、调整与定标。 二、实验原理 压力传感器是把一种非电量转换成电信号的传感器。弹性体在压力(重量)作用下产生形变(应变),导致(按电桥方式联接)粘贴于弹性体中的应变片,产生电阻变化的过程。 压力传感器的主要指标是它的最大载重(压力)、灵敏度、输出输入电阻值、工作电压(激励电压)(VIN)、输出电压(VOUT)范围。 压力传感器是由特殊工艺材料制成的弹性体、电阻应变片、温度补偿电路组成;并采用非平衡电桥方式联接,最后密封在弹性体中。 弹性体: 一般由合金材料冶炼制成,加工成S 型、长条形、圆柱型等。为了产生一定弹性,挖空或部分挖空其内部。 电阻应变片: 金属导体的电阻R 与其电阻率ρ、长度L 、截面A 的大小有关。 A L R ρ= (1) 导体在承受机械形变过程中,电阻率、长度、截面都要发生变化,从而导致其电阻变化。 A A L L R R ?-?+?=?ρρ (2) 这样就把所承爱的应力转变成应变,进而转换成电阻的变化。因此电阻应变片能将弹性体上应力的变化转换为电阻的变化。 电阻应变片的结构:电阻应变片一般由基底片、敏感栅、引线及履盖片用粘合剂粘合而成。 电阻应变片的结构如图1所示: 1-敏感栅(金属电阻丝) 2-基底片 3-覆盖层 4-引出线 图1 电阻丝应变片结构示意图 敏感栅:是感应弹性应变的敏感部分。敏感栅由直径约0.01~0.05毫米高电阻系数的细丝弯曲成栅状,它实际上是一个电阻元件,是电阻应变片感受构件应变的敏感部分.敏感栅用粘合剂固定在基底片上。b ×l 称为应变片的使用面积(应变片工作宽度,应变片标距(工作基长)l ),应变片的规格一般以使用面积和电阻值来表示,如3×10平方毫米,350欧姆。 基底片:基底将构件上的应变准确地传递到敏感栅上去.因此基底必须做得很薄,一般为0.03~0.06毫米,使它能与试件及敏感栅牢固地粘结在一起,另外它还具有良好的绝缘性、抗潮性和耐热性.基底材料有纸、胶膜和玻璃纤维布等。 引出线的作用是将敏感栅电阻元件与测量电路相连接,一般由0.1-0.2毫米低阻镀锡钢丝制成,并与敏感栅两输出端相焊接,覆盖片起保护作用.

相关文档
最新文档