模型试验技术在海上浮式风电开发中的应用-2011-6页

模型试验技术在海上浮式风电开发中的应用-2011-6页
模型试验技术在海上浮式风电开发中的应用-2011-6页

图2BlueH-5MW 概念

Fig.2BlueH-5MW concept

图1BlueH -80kW 小样机Fig.1

BlueH -80kW prototype

收稿日期:2011-03-04;修回日期:2011-06-13

基金项目:国家自然科学基金资助项目((50979020);“111”计划资助项目(B07019)

作者简介:赵静(1983—),女,吉林长春人,博士,从事海上风力机基础设计与载荷预报及海上风能开发与利用技术研究。

E -mail :zhaojing20062007@https://www.360docs.net/doc/2e11714932.html,

在水深大于50m 的深水区域安装海上风电机组,固定式桩基础或导管架式基础的成本很高。而使用浮式结构作为海上风力机的基础平台,平台再用锚泊系统锚定于海床,其成本较低,且容易运输,因此开展海上浮式风电场建设的基础理论和试验技术的研究,为我国在更广阔的海域建设更大型风电场,实现节能减排的目标,具有重要的理论价值和长远的战略意义。

1海上浮式风电机组

目前,国际上对于海上浮式风电机组(FOWT )

的研究基本处于基础理论和实验研究阶段,真正投入建设并运行的只有2个样机,即英国的Blue H 风电机组[1]和挪威的Hywind 风电机组[2]。

1.1BlueH 风电机组

英国Blue H 公司于2008年夏研制出世界上首

第44卷

中国电力新能源

图4Hywind-5MW 模型试验

Fig.4Hywind-5MW experiment

1.2Hywind 风电机组

2009年春,挪威国家石油公司建成全尺度样机

Hywind (见图3)安装于水深200m 、离岸10km 处的

挪威西南部海域。该风力机为2.3MW 叶片风力机,带有压载物的Spar 浮体和3根固定于海底的强力锚链线,吃水100m ,适用水深为200~700m 。2006年,Hywind 概念就已经发展到5MW ,并据此进行了详细的数值模拟和模型试验研究(见图4)。

2海上浮式风电机组的概念形式

早在20世纪90年初期,各国学者就开展了海

上浮式风电机组的研究,提出了各种概念形式[3]。除上面提到的2个样机外,比较著名的海上浮式风力机概念还有:荷兰提出的框架式结构Tri-floater [4]

(见图5a ));挪威提出的半潜式结构WindSea [1](见

图5b ));TLP 与Spar 组合结构Sway [5]

(见图5c ));

美国提出的半潜式和垂荡板组合结构Minifloat [6]

(见图5d ));Windfloat

[1,7]

(见图5e ))以及TLP 与

Spar 组合的mini TLP 式[8](见图5f ))。

这些概念大多来源于海洋平台的结构形式或者经过改造后的再创造。单独考虑下部浮体的性能时,可参考海洋工程的实际经验(见表1)。但是海上浮

[9],主要表现为:结构相

图3Hywind-2.3MW 概念

Fig.3Hywind-2.3MW concept

图5

海上浮式风力机概念

Fig.5FOWT concept

表1

海上浮式风电机组的基础结构性能对比

Tab.1Performances of FOWT foundation structures

赵静等:模型试验技术在海上浮式风电开发中的应用

第9期新能源

对柔性、结构动力学支配设计、风载荷和浪载荷量级相当且都起主导作用及力和响应的关系复杂无关联等。所以,究竟何种结构形式具有最优的性能且适合于大规模海上浮式风电场建设,还有需要大量的理论分析和试验验证。

3海上浮式风电机组试验研究

国际上对于海上浮式风电机组的试验研究也

开始于20世纪90年代,最早从英国FLOAT 项目(见图6a ))开始,早期发展比较缓慢,最近几年随着海上风场的大规模开展,各国开始迅速投入此项研究。

3.1国外研究进展见

国外开展了各种形式海上浮式风电机组试验,比较有代表性的有表2和图6所示的几种。

由于海上浮式风电研究理论尚不成熟,模型试验研究更是没有公认的标准规则可循,已经开展的试验都是参考海洋工程试验进行简化模拟,主要研究风力机和浮体相互影响,测量风浪同向条件下系统的三自由度(纵荡、垂荡、纵摇)运动响应,某些试验还测量了塔架和叶片受力。虽然试验的数量比较有限,且有很多简化和不足之处,但是每项试验都在前人研究的基础上进行了独特的创新和探索,取得了许多有价值的结果(见表3)。

3.2国内研究进展

我国的海上风电模型试验研究刚开始起步,哈

尔滨工程大学海洋可再生能源研究所首次开展了海上浮式风电模型试验研究。模型的基础结构选用新型4个浮筒半潜式平台形式(见图7),锚泊系统为9条锚链线对称分布,模型缩尺比采用1∶50。

表2

各国海上浮式风电机组模型试验技术参数

图6

海上浮式风力机模型试验

Fig.6FOWT model experiments

第44卷

中国电力新能源

图7新型半潜式海上风力机概念

Fig.7New semi-FOWT concept

表3海上浮式风电机组模型试验特点

Tab.3

Features of experimental models

模型实验在哈尔滨工程大学船模拖曳水池(108×7×4m 3)中进行。试验中将风力机-平台模型系泊在水池中,在选定典型海洋环境工况下进行规则波和不规则波模型运动性能测量试验。平台的运动采用无接触式光学六自由度三维运动测量系统测量。

4模型试验技术分析

尽管各国的浮式风电模型试验研究存在差

异性,但是也具有很多的共通性,可以为后续研究提供参考依据。下面针对各技术要点逐一展开分析。

4.1环境条件模拟4.1.1造风系统

陆上风力机的模型试验都在风洞中进行,但风

,无法满足海上风力机试

验要求。目前我国还没有专门针对海上风力机试验的水池,但是某些船舶稳性试验时在水池上建造风洞的方法为海上风机试验提供了参考。风洞大小应依据水池的长宽等实际情况而设计,洞口底部应与水平面齐平。

在不具备风洞条件下,可在水池中可使用风机矩阵造风。造风时应注意各种水池的区别。

(1)海洋工程水池中应采用风机矩阵的方式模拟风场,即将数十个风机组成一个阵列,利用风机产生的空气循环形成风场。须将试验区域布置在风机矩阵3m 以外,同时距离池壁也需要在2.5m 以外,才能保证试验风场的均匀性。

(2)船模拖曳水池的纵向长度较大,很难形成密闭空间造成稳定均匀风场,试验区域应布置在风机矩阵1m 以内,以保证风速的稳定。这类风机矩阵中风机的数量较少,按照品字形排列,目的是覆盖各风机之间的空隙(见图4和图6)。

4.1.2造波水池

造波水池应根据平台基础结构类型和设计水深

来确定。例如,TLP 式和Spar 式等深吃水平台,应选择海洋工程水池(水深5~35m ),半潜式和框架式平台建议选择船模拖曳水池(水深1.5~3.5m )。

4.1.3设计工况

海上浮式风电机组的组合工况数量繁多,模型试验可简化为2种工况:运行工况和生存工况。运行工况下,风速范围从切入风速到切出风速,波浪参数根据目标海域的作业海况选取;生存工况下,风力机顺桨停机,风速可取极限风速或切出风速,波浪参数取50年一遇或100年一遇极限海况。

赵静等:模型试验技术在海上浮式风电开发中的应用

第9期

新能源

4.2模型设置

4.2.1相似准数

海上浮式风电机组主要受到重力、惯性力和周

期性非定常流体力的作用,可参照海洋工程模型试

验,除保证几何相似之外,还应保证Froude数和

Strouhal数相等(两者均为流体力学相似准数,前者

是惯性力与重力量级比,后者是局部惯性力与对流

惯性力量级之比)。

4.2.2模型缩尺比

由于海上浮式风电机组的设计水深介于海洋平

台和船舶之间,应根据水池水深综合考虑缩尺比。海

洋工程试验推荐的最佳缩尺比为1∶60~1∶80;而船模

试验中只要能避开尺度效应的缩尺比就可以使用。

在海洋工程水池进行海上浮式风电机组模型试验可

选择较小的缩尺比;而在船模拖曳水池进行的可选

择较大的缩尺比(见表2)。

4.2.3风力发电机模拟

由于风力机的特性不同与海洋平台,在模型试

验中无法保证所有的相似准数准确模拟。模型试验

可以采用简化方法,将风电机组的重量等效为塔顶

处的集中质量。

运行工况下,风力机可等效为圆盘,塔架顶端

安装电动机带动金属棒旋转,以模拟风轮回转效应

(见图8a))。此外,叶片应带有配重以保证叶片重量

和惯性矩与原型风力机相似,同时发动机的转速与

原型风力机保证Froude数相等;生存工况下,风力

机停机,受风面积减少,模型可以等效为3根梁(见

图8b))。

等效原则为:风轮旋转产生的推力(F

风轮

)等于

盘面所受阻力(F

盘面

),即式(1)和式(2)相等,可求出

等效圆盘的直径。

F

风轮=

1

2

ρC

T

πD2

风轮

4

V2(1)

F

盘面=

1

2

ρC

D

πD2

盘面

4

V2(2)

式中:C

T 为风力发电机的推力系数;C

D

为等效盘面

的阻力系数;V为风速。4.2.4锚泊系统模型

目前设计的海上浮式风电机组的锚泊系统多选为悬链线形式(见图9a)),锚链系统模型应按照几何相似,单位长度重量相似和弹性系数相似进行模拟。作用在锚泊系统的外力主要为流载荷,所以悬链线可以简化为水平和竖直分布的线性锚泊线(见图9b))。当不考虑流作用时,可以忽略锚链线在竖直方向的刚度,则锚泊系统可进一步简化为水平方向的线性弹簧(图中K为弹簧的刚度系统)。

4.3技术路线

目前我国对于海上风力机的研究重点还集中在固定式基础形式,未开展过实验研究,对于浮式风电的研究更是刚刚起步,尚处于使用国外数值模型进行理论研究的阶段。但我国在此领域依然具有一定的理论基础和技术条件。

首先,我国已经成功运营2处海上风电场,并已在潮间带和滩涂地区规划建设更大规模的海上风电场。这些海上风电场的成功都为我国自主设计研发海上风力机积累了设计经验,奠定了理论基础。

此外,国内的哈尔滨工程大学和上海交通大学等多所科研院所都建有船模拖曳水池和海洋工程水池,可以进行各种基础形式的海上风力机模型模拟。

同时,我国的风洞试验技术已经达到世界先进水平,将此技术与水池试验技术结合,可以推动我国的海上风电模型试验研究向更加深入方向发展。

结合以上的实际情况,我国浮式海上风电研究可按照如下技术路线进行开展:

(1)基于水动力学和空气动力学的基本理论建立风力机-平台-锚泊系统动力学数学模型,开展载荷及运动预报方法研究;

(2)在数值分析的基础上,研制海上浮式风力机基本模型,在风浪水池中开展典型工况下模型运动性能测量试验,获得实验数据,为理论预报方法的建立和数值计算结果验证提供可靠的依据;

(3)在模型试验的基础上,设计建造一个浮式风力机样机,在沿海某地区进行海上试验,

图8风力机受风盘面模型

Fig.8disk model for attracting wind loads

图9锚泊系统模型Fig.9mooring system model

第44卷

中国电力新能源

Application of model experiment technology to floating offshore wind farm development

ZHAO Jing 1,ZHANG Liang 2,YE Xiao -rong 3,WU Hai -tao 4

(Institute of Ocean Renewable Energy System,Harbin Engineering University,Harbin 150001,China )

Abstract:With energy demand increasing gradually,offshore wind turbines of 5MW or bigger are required in offshore wind farms.The fixed foundation structure cannot meet the requirements,and development of the floating offshore wind turbines (FOWTs )becomes the new trend.The general characteristics of two FOWT prototypes were presented.The features of different floating foundations were compared.Performences of model experiments were analyzed and the key technologies involved are investigated.Some suitable suggestions on theoretical and experimental researches of floating wind turbines in China were provided.The theoretical foundation for constructions of large -scale offshore wind farms in China was offered.

Key words:wind power;offshore wind power;foundation structure;floating platform;model experiment

据,完善理论模型,最终研发出性能优良适于大规模风场建设的浮式风力机。

5结语

随着全球能源危机的日益严重,国际市场上的

风电机组正在趋于大型化,固定式基础已经无法承载5MW 以上的海上风力机,各国都在加紧研发适于更大功率的浮式风电机组方案,我国政府也在不断加大对于海上风电开发的投入,科研工作者应汲取国外研究经验,充分利用现有条件,自主研发,开发出适用于我国海域条件的浮式风电机组,促进我国风电产业的可持续发展。

参考文献:

[1]RODDIER D ,CERMELLI C,WEINSTEIN A.Windfloat:a floating

foundation for offshore wind turbines (part I ):design basis and qualification process (OMAE 2009-79229)[C ]//Proceedings of the 28th International Conference on Ocean Offshore and Arctic Engineering.Honolulu,Hawaii,USA,2009:1-9.

[2]NIELSEN F G,HANSON T D,SKAARE B.Integrated dynamic

analysis of floating offshore wind turbines (OMAE2006-92291)[C ]//25th International Conference on Offshore Mechanics and Arctic Engineering.Hamburg,Germany,2006:1-9.

[3]BALTROP N.Multiple floating offshore wind farm [J ].Wind Engineering,

1993,17(4):183-188.

[4]HENDERSON A R,BULDER B,HUIJSMANS R,et al .Feasibility

study of floating wind farms in shallow offshore sites [J ].Wind Engineering,2003,27(5):405-418.

[5]WEINZETTEL J,REENAAS M,SOLLI C,et al .Life cycle assess -

ment of a floating offshore wind turbine [J ].Renewable Energy,2009,34(3):742-747.

[6]ZAMBRANO T ,CREADY T M ,KICENIUK T,et al .Dynamic modeling

of deepwater offshore wind turbine structures in Gulf of Mexico

storm conditions (OMAE 2006-92029)[C ]//Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering.Hamburg,Germany,2006:1-6.

[7]CERMELLI C,RODDIER D,AUBAULT A.Windfloat:a floating

foundation for offshore wind turbines part II:hydrodynamic analysis (OMAE 2009-79231)[C ]//Proceedings of the 28th International

Conference on Ocean Offshore and Arctic Engineering.Honolulu,Hawaii,USA,2009:1-9.

[8]WITHEE J E.,Fully coupled dynamic analysis of a floating wind

turbine system [D ].Bostons,Mass,USA:Massachusetts Institute of Technology,2004.

[9]张亮,吴海涛,荆丰梅,等.海上漂浮式风力机研究进展及发展趋

势[J ].海洋技术,2010,29(4):122-126.

ZHANG Liang,WU Hai -tao,JING Feng -mei,et al .The state of art of study on offshore floating wind turbine and its development [J ].Ocean Technology,2010,29(4):122-126.

[10]TONG K C.Technical and economic aspects of a floating offshore

wind farm [J ].Journal of Wind Engineering and Industrial Aerodynamics,1998(74-76):399-410.

[11]SHIMADA K,MIYAKAWA M,ISHIHARA T,et al .A Study on a

semi -submersible floating offshore wind energy conversion system [C ]//Proceedings of the Sixteenth International Offshore and

Polar Engineering Conference.Lisbon,Portugal,2007:348-355.[12]UTSUNOMIYA T,MATSUKUMA H,MINOURA S,et al .On sea

experiment of a hybrid spar for floating offshore wind turbine using 1/10scale model (OMAE2010-20730)[C ]//Proceedings of the ASME 201029th International Conference on Ocean,Offshore and Arctic Engineering.Shanghai,China,2010:1-8.

(责任编辑李新捷)

电化学原理及其应用(习题及答案)

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是(C) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是Zn |Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+ Eθ(Cu2+/Cu)=(1) , Eθ(Sn4+/Sn2+)=(2) 则有(C) A. (1) = (2) B. (1)<(2) C. (1)>(2) D. 都不对 二、填空题 1.将下列方程式配平 3PbO2 + 2 Cr3+ + ____H2O___ =1Cr2O72—+ 3Pb2+ + __2H+___ (酸性介质) 2MnO2 + 3 H2O2 +__2OH-___ =2MnO4—+ ___4H2O______ (碱性介质)2.现有三种氧化剂Cr2O72—,H2O2,Fe3+,若要使Cl—、Br—、I—混合溶液中的I—氧化为I2,而Br-和Cl-都不发生变化,选用Fe3+最合适。(EθCl2/Cl-=1.36V, EθBr2/Br-=1.065V, EθI2/I-=0.535V) 3.把氧化还原反应Fe2++Ag+=Fe3++Ag设计为原电池,则正极反应为Ag++ e = Ag,负极反应为Fe3++e= Fe2+ ,原电池符号为Pt︱Fe3+(c1),Fe2+(c2)‖Ag+(c3)︱Ag。 4.在Mn++n e=M(s)电极反应中,当加入Mn+的沉淀剂时,可使其电极电势值降低,如增加M的量,则电极电势不变 5.已知EθAg+/Ag=0.800V, K sp=1.6×10—10则Eθ(AgCl/Ag)= 0.222V。 6.已知电极反应Cu2++2e=Cu的Eo为0.347V,则电极反应2Cu - 4e =2Cu2+的Eθ值为0.347V 。7.用氧化数法配平下列氧化还原反应。 (1)K2Cr2O7+H2S+H2SO4K2SO4+Cr2(SO4)3+S+H2O K2Cr2O7+3H2S+4H2SO4 =K2SO4+Cr2(SO4)3+3S+7H2O

风电水电互补电力系统稳定性分析与计算

风电——水电互补电力系统稳定性分析与计算 摘要 本文介绍了含风力发电的风电一水电互补电力系统如何处理风力发电参数,进行稳定性分析与计算的方法,并结合新疆阿勒泰地区布尔津风电一水电互补电力系统计算实例验证其方法的正确性及可行性。 引言 近年来,由于当代科学技术的发展,加之能源短缺和环境保护等方面的影响,人类正在致力于寻找可再生的,取之不尽,用之不竭又是洁净的绿色能源,而水能与风能是绿色能源中最有发展潜力和前景的品种。同时水能与风能又都容易转化为能源的更高级形式一电能,其经济效益显著。 由于风力资源的随机性和季节性使风力发电的出力不平稳,风力发电不具备有功调节和无功调节的能力。风电的缺点也就是无风就无电,影响到风电的连续及稳定性。为了解决风电的连续性和稳定性问题就需要有一个互补系统。 在我国西北、华北、东北等内陆风区,风资源的季节分布特色大多为冬春季风大、夏秋季风小,与水能资源夏秋季丰水、冬春季枯水的季节分布正好形成互补特性,这是构建风能一水能互补系统的基础条件。如果在上述地区内,以带有蓄水调节水库的水电站为依托,在风资源丰富的地点建设适当容量的风电场,两者以电网连接实现季节性能量互补,以水库做为能源调剂手段,就能够实现风能与水能这两种最佳绿色能源的联姻,充分发挥绿色能源的优势,以风一水联手供电取代传统的水一火联合供电,这将是人类能源利用形式的历史性突破。由于阿勒泰地区的风资源和水资源具有极强的互补性,更由于阿勒泰地区具有较大的水电装机容量,而且其中有三个电站带有库容可观的调节水库,因此在该地区突破传统限制,在风电装机大大超出电网容量10%的条件下建设水电一风电互补系统,在技术上和经济上都是可行的。在我国类似阿勒泰那样资源条件的地区还有很多,都可以构建水电一风电互补系统解决供电问题,这将是对现有禁区的重要突破,有可能为阿勒泰及有类似条件地区的电源建设找到一条最为多快好省的途径。 1问题的提出 在电力系统中,传统的发电方式为水力发电和火力发电,一般均为同步电机。目前,风力发电这一新成员加入电网,一般都采用电容励磁感应异步发电机。使其分析计算复杂化。风电的加入使电网的稳定性受到影响。对风力发电机如何给定运行条件,如何建立数学模型、如何确定参数,是进行含风力发电的风电一水电互补电力系统静态和暂态及动态稳定性分析和计算的关键。本文介绍了含风力发电的风电一水电互补电力系统如何处理风力发电参数,进行稳定计算的方法。 2风力发电机的处理 电力系统是由发电厂、输电网络及电力负荷三大部分组成的能量生产、传输和使用系统。在过去的几十年间,同步发电机(水轮发电机或汽轮发电机)、输电网络及负荷的稳定计算已经成熟。只有风力发电技术在国内外都属于研究阶段,建立适合潮流计算、暂稳、动稳和静稳

电渗析脱盐技术应用简述

电渗析脱盐技术应用简述 电渗析是电场驱动的水溶液离子脱除/浓缩的分离技术,电渗析器的核心部件是由多张阴离子交换膜、淡化室隔板、阳离子交换膜和浓缩室隔板交替排列组成的膜堆。在电场的作用下可实现淡化室水溶液盐分的脱除和浓缩室水溶液盐分的富集。 电渗析膜和电渗析器,可用于脱除水溶液的盐分(淡化)或者浓缩水溶液的盐分(制盐),具体的应用包括各种化工/食品/医药生产过程中的物料脱盐(比如乳清蛋白脱盐、甘露醇脱盐、大豆低聚糖脱盐、氨基酸脱盐等)、苦咸水淡化、天然水纯化、工业废水净化、小规模海水淡化、海水或卤水制盐等。在这些应用中,均相膜电渗析法具有其它方法不可比拟的优势。(a)对于生产过程中的物料脱盐,现有的方法是采用离子交换树脂进行离子交换。由于离子交换树脂对于物料不可避免的吸附,导致物料收率低,并且离子交换树脂再生过程中产生大量含盐废水,不易处理。均相膜电渗析法的优势是物料收率高,产生的含盐废水少。(b)对于苦咸水淡化,同世界的很多其它地区相似,我国西北干旱内陆地区由于降水稀少,蒸发强烈,水资源天然匮乏,作为主要供水水源的地下水普遍含盐含氟,成为苦咸水,水质低劣,不符合饮用水标准。在山东,苦咸水分布面积达1.09万平方公里,主要分布在鲁西北及潍坊市“三北”地区;山东省黄泛平原和滨海平原区,由于受地下水径流条件和古沉积环境的影响,在内陆和滨海区形成了各种类型的盐水。与反渗透法相比,电渗析法苦咸水淡化的优势在于膜抗有机污染、水收率高以及较低运行费用。(c)

对于小规模海水淡化,电渗析技术适用于在海岛、酒店、渔船、舰艇和潜艇等生产饮用水。与反渗透法相比,电渗析法的优势在于低操作压力和预处理简单,系统易操作、易维护、安全、无噪音。(d)反渗透法已经广泛应用于海水淡化和苦咸水淡化,一个普遍的问题是浓水的处理。浓水可以排入海水,但需要非常谨慎以避免对环境造成冲击。电渗析膜较反渗透膜,更耐有机污染和无机结垢,因此可通过电渗析器处理浓水,进一步生产出淡水,提高水收率,同时可将盐水中氯化钠浓度提高到18%以上,再通过多效蒸发等方式制备工业盐或食用盐。因此均相膜电渗析技术与反渗透技术结合,可突破膜法海水淡化的技术瓶颈,实现海水的综合利用。 目前国内市场的离子交换膜90%以上为异相离子交换膜,异相膜由离子交换树脂与聚乙烯粉共混挤出制备,电阻很高,选择性不足,寿命短;异相膜电渗析用于脱盐制备纯水运行能耗过高,用于生产过程的物料脱盐物料损失率高、设备使用寿命短。相比于异相膜,均相离子交换膜具有非常明显的优势,电阻低,选择性高,使用寿命长;在美国、日本及欧洲地区,大多数应用中异相膜已经被均相膜取代。目前,国际上规模化的均相电渗析膜生产厂家仅限美国GE 公司、日本ASTOM 公司、日本Asahi Glass 公司和德国FuMA-Tech 公司,而国内也仅有中国科学技术大学、山东天维膜技术有限公司等数家高校、企业从事开发研究。

电工学复习题及参考答案

第1章 直流电路 习题参考答案 一、 填空题: 1. 任何一个完整的电路都必须有 电源 、 负载 和 中间环节 3个基本部分组成。具有单一电磁特性的电路元件称为 理想 电路元件,由它们组成的电路称为 电路模型 。电路的作用是对电能进行 传输 、 分配 和 转换 ;对电信号进行 传递 、 存储 和 处理 。 2. 反映实际电路器件耗能电磁特性的理想电路元件是 电阻 元件;反映实际电路器件储存磁场能量特性的理想电路元件是 电感 元件;反映实际电路器件储存电场能量特性的理想电路元件是 电容 元件,它们都是无源 二端 元件。 3. 电路有 通路 、 开路 和 短路 三种工作状态。当电路中电流0 R U I S 、端电压U =0时,此种状态称作 短路 ,这种情况下电源产生的功率全部消耗在 内阻 上。 4.从耗能的观点来讲,电阻元件为 耗能 元件;电感和电容元件为 储能 元件。 5. 电路图上标示的电流、电压方向称为 参考方向 ,假定某元件是负载时,该元件两端的电压和通过元件的电流方向应为 关联参考 方向。 二、 判断题: 1. 理想电流源输出恒定的电流,其输出端电压由内电阻决定。 (错) 2. 电阻、电流和电压都是电路中的基本物理量。 (错) 3. 电压是产生电流的根本原因。因此电路中有电压必有电流。 (错) 4. 绝缘体两端的电压无论再高,都不可能通过电流。 (错) 三、选择题:(每小题2分,共30分) 1. 当元件两端电压与通过元件的电流取关联参考方向时,即为假设该元件(A )功率;当元件两端电压与通过电流取非关联参考方向时,即为假设该元件(B )功率。 A 、吸收; B 、发出。 2. 一个输出电压几乎不变的设备有载运行,当负载增大时,是指( C ) A 、负载电阻增大; B 、负载电阻减小; C 、电源输出的电流增大。 3. 当电流源开路时,该电流源内部( C ) A 、有电流,有功率损耗; B 、无电流,无功率损耗; C 、有电流,无功率损耗。 4. 某电阻元件的额定数据为“1K Ω、”,正常使用时允许流过的最大电流为( A ) A 、50mA ; B 、; C 、250mA 。 四、计算题 已知电路如题所示,试计算a 、b 两端的电阻。

直驱式风力发电系统

第一章双PWM型变流电路简介 本文讨论克驱式风电系统的一种电力变换装拓扑结构,选取背靠 背双PWM型变流电路为研究对彖. 直驱式风电系统结构原理如图1-1所示。 风轮电机 图1-1永磁同步电机直驱式风力发电系统并网结构图双脉宽调制(pulse-width modulation, PWM)变流器是由2个电压源型变流器(voltage source converter, VSC)背靠背连接构成,2 VSC直流侧通过直流母线并联,两极直流母线Z间并联滤波电容器以提高直流电压的电能品质。由于该电路结构是完全镜面对称的,文献中称这种结构为背靠背连接。背靠背双PWM变流器以其控制功能灵活、交流侧功率因数可调和直流电压可控等诸多优点,在轻型直流输电、统潮流控制器和柔性功率调节器等柔性交流输电技术领域 中获得了广泛的应用。 该电路拓扑结构如图1-2所示,整流和逆变部分都采用PWM三相桥实现,这种结构的优点:输入电流为正弦波,减少了发电机的铜耗和铁耗;发电机功率因数可调节为1,且能够与大阻抗的同步发电机相联接。凤轮

图1-2三相电压型PWM逆变器的拓扑结构 第二章双PWM变流器动态数学模型 三相桥式拓扑结构构中交流侧采用三相对称的无中线连接方式, 图中L代表交流侧滤波电感参数,R为电感中的寄生电阻,图中直流电压源1}血代表并网变流器直流母线电压,同时也是与发电机转了绕组相连的变流器直流母线电压。为建立三相电压源型并网变流器的数学模型,根据其其拓扑结构,首先作以下假设: 1.电网电动势为平稳的纯正弦波电动势(e a,e b,e c)o 2?主电路开关元器件为理想开关,无损耗。 3?三相参数是对称的。 4?网侧滤波电感L是线性的,且不考虑饱和。 以A相为例,当VI导通V2关断时,直流电源Ude正极直接加到节点a处,由图可知,U M1 =U dc/2;当V2导通VI关断时,直流电源Ude负极接于节点a处,同理可知,=-U dc/2,同理易知节点b和c也是根据上下MOS管V5、V6 )导通情况决定其电位的,由此可见,三相中任一相输出的相电压都有正负两个电平,因此这种结构的逆变器称为三相两电平逆变器。 图中1}如是逆变器输入的直流电压,Ug,b,c)、i(a,b,c)分别为逆变器输出的电压和电流,e(a,b,cj是电网的正弦波电压。通过对VI至V6六个MOS管进行合适的PWM控制,就可以实现逆变器输出电流与电网电压相位相同这一目标。 在上述假设条件下,根据三相有源逆变器的拓扑结构和三相电压源型PWM并网变流器的开关工作原理,利用基尔霍夫电压、电流定律,建

电渗析水处理技术的优点和不足

电渗析水处理技术的优点和不足 1、能量消耗少: 电渗析器在运行中,不发生相的变化,只是用电能来迁移水中已解离的离子。它耗用的电能一般是与水中含盐量成正比的。大多数人认为,对含盐量4000~5000mg/L以下的苦咸水的变化,电渗析技术是耗能少的较经济的技术。 2、药剂耗量少,环境污染小: 离子交换技术在树脂交换失效后要用大量酸、碱进行再生,水洗时有大量废酸、碱排放,而电渗析系统仅酸洗时需要少量酸。 3、设备简单,操作方便: 电渗析器是用塑料隔板与离子交换膜剂电极板组装而成的,它的主体配套设备都比较简单,而且膜和隔板都是高分子材料制成,因此,抗化学污染和抗腐蚀性能均较好。在运行时通电即可得淡水,不需要用酸碱进行繁复的再生处理。 4、设备规模和除盐浓度适应性大: 电渗析水处理设备可以从每日几吨的小型生活饮用水淡化水站到几千吨的大、中型淡化水站。 5、用电较易解决、运行成本较低:电渗析技术也存在以下不足:

1、对离解度小的盐类及不离解的物质难以去除,例如,对水中的硅酸和不离解的有机物就不能去除掉,对碳酸根的迁移率就小一些。 2、电渗析器是由几到几百张较薄的隔板和膜组成。部件多,组装要求较高,组装不好,会影响配水均匀。 3、电渗析设备是使水流在电场中流过,当施加一定电压后,靠近膜面的滞留层中电解质的盐类含量较少。此时,水的离解度增大,易产生极化结垢和中性扰乱现象,这是电渗析水处理技术中较难掌握又必须重视的问题。 4、电渗析器本身耗水量还是较大的。虽然采取极水全部回收,浓水部分回收或降低浓水进水比例等措施,但本身的耗水量仍达20%~40%。因此,缺水地区,应用电渗析水处理技术会受到一定限制。 5、电渗析水处理对原水净化处理要求较高,需增加精密过滤设备。

PPP项目财务测算模型分析

PPP项目财务测算模型分析 一、财务测算在项目识别、准备、采购阶段的作用 财务测算是在合理假设的前提进行,与未来实际情况存在差异,进而影响项目实际的内部收益率。财务测算实际上是和实施方案、物有所值和财政承受能力互相依托,为政府提供参考依据,为引进社会资本和招标或磋商时设定合理标的,对项目的落地实施加以保障。 物有所值指标是现值概念,判断是否采用PPP模式代替传统政府投资运营提供公共服务的一种评价方法。财政承受能力指标是年度指标,是规范PPP项目财政支出管理、控制财政风险的定量分析方法。二者应用的场景和作用不同。 二、PPP项目财务模型要素表 PPP项目中咨询机构需要根据以上财务报表建立财务测算模型,清晰准确呈现PPP项目全生命周期存在的成本、利润、风险和项目收益情况。根据财务测算模型,编制物有所值评价报告、财政承受能力论证报告、项目实施方案以及PPP项目协议中与项目回报机制相关的财务内容。 三、不同类PPP项目测算模型的异同 (一)不同行业,PPP项目涉及的运营维护内容和成本项则不同。 (二)PPP项目投资建设形成的固定资产,项目公司拥有的资产使用权和收益权,不论折旧还是摊销,都是以投资建设形成的资产原

值(包括建设期利息)为基数进行分摊,有的咨询机构忽略国家相关部门对固定资产折旧的最短年限做出规定,例如,房屋、建筑物为20年,市政道路和高速公司的大中小修最长年限等。 (三)打包类型的PPP项目,存在将经营性、准经营性、非经营性子项目分别建立现金流量表,对不同类型子项目分开进行财务可行性和政府补贴测算。可能导致经营性项目收益未能弥补到可行性缺口补贴中,政府未能从经营性子项目中获利,却为准经营性和非经营性子项目支付大量的财政补贴。 (四)融资比例不同财务杠杆不同,导致同一项目因融资比例变化而使得项目收益高低不同,从未导致政府对项目缺乏合理的判断标准,也导致投融资比例和交易结构设计变得困难,在项目规模和融资比例两者均发生变化的情况下,项目内部回报率则变得多样。 四、PPP项目财务评价指标 我国目前项目投资财务评价指标体系是以贴现现金流量指标为主,非贴现现金流量指标为辅的多种指标并存的指标体系,PPP项目中财务评价指标主要是内部收益率、净现值和投资回收期等。 (一)利润率和内部收益率 1、概念比较 (1)内部收益率(IRR)是项目生命期内各年净现值为零的折现率。一般来说,内部收益率反应项目自身盈利能力的指标,即项目占用的未收回资金的获利能力,包含融资成本在内的真实回报率,是判断社会资本方收益是否合理的关键指标。

电渗析技术

电渗析技术的发展及应用 08食科汪强 20080808132 摘要:电渗析技术属于膜分离技术, 广泛应用于食品、化工、废水处理等行业的分离纯化的生产过程中, 有效率高、清洁卫生及经济节能等优点。本文简述了电渗析技术的类型, 重点论述了电渗析技术的原理, 介绍了电渗析技术在食品行业以及在废水处理中应用研究, 并对其发展前景进行了展望。 关键词:电渗析;膜;应用 电渗析是在外加直流电场的作用下, 利用离子交换膜的选择透过性, 使离子从一部分水中迁移到另一部分水中的物理化学过程。电渗析器, 就是利用多层隔室中的电渗析过程达到除盐的目的。电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子, 阻止阴离子通过, 阴膜只允许通过阴离子, 阻止阳离子通过。在外加直流电场的作用下, 水中离子作定向迁移。由于电渗析器是由多层隔室组成, 故淡室中阴阳离子迁移到相邻的浓室中去, 从而使含盐水淡化。在食品及医药工业, 电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功[ 1] 。电渗析作为一种新兴的膜法分离技术, 在天然水淡化, 海水浓缩制盐, 废水处理等[ 2] 方面起着重要的作用, 已成为一种较为成熟的水处理方法。 1 .电渗析技术的类型 1.1倒极电渗析( EDR) 倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。 1.2液膜电渗析( EDLM) 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜[3 ] ,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。 1.3填充床电渗析( EDI) 填充床电渗析( EDI) 是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最

风电模型

一、风力发电模型 1风速数学模型 一年当中的大部分时间中风速都是比较平稳的,风速在0~25m/s 之间发生的概率较高。研究表明,绝大多数地区的年平均风速都可以采用威布尔分布函数来表示 ])exp[()(1k k c v c v c k v -=)(? 其中v 是平均风速,c 是尺度系数,它反映的是该地区平均风速的大小;另一个形状系数k,它能够反映风速分布的特点,对应威布尔分布密度函数的形状,取值范围一般在1.8到2.3之间。 在有些研究中为了考察暂态过程中风速的变化情况,也可以风速分解,采用四分量模型,即:基本风、阵风、渐变风和随机风。 2单个风电场模型 风力发电场输出功率的变化主要源于风速和风向的波动、风力发电机组的故障停运等,而坐落在同一风力发电场的不同风机具有几乎相同的风速、风向,因此可以假设同一风力发电场内所有风机的风速和风向相同,然后根据风力发电机组的功率特性曲线求出单个风机的输出功率,所有风机功率之和乘以一个表示尾流效应的系数即为该风力发电厂的输出功率。

其中,t SW 为风机轮毂高度处的风速,co r ci ,V V V ,以及r P 为别为风机启动风速、额定风速、切除风速以及风机额定功率。在此基础上,引入了风机停运模型来模拟风力发电机组的故障停运:风力发电机组具有一定的故障率。当风机处于检修状态时,输出为零;当风机处于运行状态时,输出功率由风力发电场风速决定 二、光伏发电模型 1,光伏发电系统是由光伏电池板、控制器、电能存储和变换等环节构成的发电与电能变换系统。 2,光伏发点输出功率模型 其中,P 为输出功率,mod η为该小时环境温度下的模块效率,A 为光照总面积,wr η为配线效率系数,pc η为功率调节系统的效率,tilt I 为倾斜面的光照,l horisconta I 为水平面的光照,R 为l horisconta I 到tilt I 的折算系数,sd η为模块的标准效率,m f 为匹配系数,β为效率改变的温度系数,cell T 为环境温度。

电渗析技术的简介

电渗析技术的简介 一、电渗析技术简介及其发展背景 电渗析(eletrodialysis,简称ED) 技术是膜分离技术的一种,它将阴、 阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统,在直流电场作用下,以电位差为动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。 电渗析技术的研究始于德国,1903年,Morse和Pierce把2根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的实验装置,力图减轻极化,增加传质速率。但直到1950年Juda首次试制成功了具有高选择性的离子交换膜后,电渗析技术才进入了实用阶段,其中经历了三大革新: (1) 具有选择性离子交换膜的应用; (2) 设计出多隔室电渗析组件; (3) 采用频繁倒极操作模式。 现在离子交换膜各方面的性能及电渗析装置结构等不断革新和改进,电渗析技术进入了一个新的发展阶段,其应用前景也更加广阔。 电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。离子交换膜对不同电荷的离子具有选择透过性。阳膜只允许通过阳离子,阻止阴离子通过,阴膜只允许通过阴离子,阻止阳离子通过。在外加直流电场的作

用下,水中离子作定向迁移。由于电渗析器是由多层隔室组成,故淡室中阴阳离子迁移到相邻的浓室中去,从而使含盐水淡化。在食品及医药工业,电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功。 电渗析作为一种新兴的膜法分离技术,在天然水淡化,海水浓缩制盐,废水处理等方面起着重要的作用,已成为一种较为成熟的水处理方法。 二、几种电渗析技术 1 倒极电渗析( EDR) 倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20 世纪80 年代后期,倒极电渗析器的使用, 大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR 在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95 %。 2 液膜电渗析( EDLM) 液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器 中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属

电渗析(ED)技术及操作简介

电渗析(ED)技术及操作简介 电渗析原理 电渗析器是在外加直流电场的作用下,当含盐分的水流经阴、阳离子交换膜和隔板组成的隔室时,水中的阴、阳离子开始定向运动,阴离子向阳极方向移动,阳离子向阴极方向移动,由于离子交换膜具有选择透过性,阳离子交换膜(简称阳膜)的固定交换基团带负电荷,因此允许水中阳离子通过而阻挡阴离子,阴离子交换膜(简称阴膜)的固定交换基团带正电荷,因此允许水中的阴离子通过而阻挡阳离子,致使淡水隔室中的离子迁移到浓水隔室中去,从而达到淡化的目的。电渗析器通电以后,电极表面发生电极反应,致使阳极水呈酸性,并产生初生态的氧O2和氧气Cl2。阴极水呈减性,当极节水中有Ca=+和Ng++时由生成CaCO3和Ng(OH)2水垢,结集在阴极上,阴极室有氧气H2排出。因此极水要畅通,不断排出电极反应产物,有利于电渗析器正常运行。 三、电渗析的结构

电渗析不论其规格怎样,形式如何,均由膜堆、电极、夹紧装臵三大部件组成。1.膜堆 一张阳膜、一张隔膜、一张阴膜,再一张隔板组成一个膜对,一对电极之间所有的膜对之和称膜堆。它是电渗析器的心脏部件,也是电渗析器性能好、坏的关键部件。在此简单介绍组成膜对零件的主要材料:(1)阴、阳离子交换膜:按膜中活性基团的均一程度可分为异相膜(非均质),均相膜与半均相膜。理论上讲均相膜优越,事实上由于各制膜厂技术水平不齐,生产经验不等,制出来的膜性能相关很大,即使同一家厂的产品由于批号不一样性能差别也 不小。本所通过试制比较确定采用上海化工厂生产的异相膜,该膜性能相对比较稳定。 (2)隔板:本所电渗析器隔板流进均为无回路短流形式。其边框采用0.9毫米聚丙烯板冲压成型。内烫二聚丙烯丝编织网构成水流通道,有时根据用户需要选用0.5或1.2毫米聚丙烯板加工成型(一般说隔板

电工学原理实验资料

实验一电子仪器仪表使用一 【实验目的】 1. 学习正确使用数字万用表和直流稳压电源; 2.验证叠加原理及基尔霍夫定律; 3. 加深对线性电路中参考方向和实际方向以及电压、电流正负的认识。 【相关知识要点】 1.叠加原理:在任一线性网络中,多个激励同时作用的总响应等于每个激励单独作用时引起的响应之和。 叠加定理是线性电路普遍适用的基本定理,它是线性电路的重要性质之一。应用叠加定理可以把一个复杂电路分解成几个简单电路来研究,如图1.4.1所示,然后将这些简单电路的研究结果叠加,便可求得原来电路中的电流或电压。 图1.4.1叠加定理示意图 2. 基尔霍夫定律: 基尔荷夫电流定律(KCL):对任一节点,在任一时刻,所有各支路电流的代数和恒等于零。即: ∑I=0 (若流入节点为正,则流出节点为负) 基尔荷夫电压定律(KVL):沿任一绕行回路,在任一时刻,所有支路或元件电压的代数和恒等于零。即: ∑U=0 (若与绕行方向相同为正,则与绕行方向相反为负) 【预习与思考】 1. 掌握叠加原理、基尔霍夫定律等理论。 2. 计算图1.4.1中负载支路的电压U L、电流I L,将所得值记入表1.4.1中。 3. 叠加原理中,两个电源同时作用时在电路中所消耗的功率是否也等于两个电源单独作用时所消耗的功率之和?为什么?

【注意事项】 1.在使用万用表测量时,注意电压、电流、欧姆等档次的选择,切忌用电流档测电压(即与被测元件并联)。 2.一定要在电源断开的情况下,才能用万用表测电阻。 3. 在使用稳压电源时,只允许按下一个琴键按钮,切勿将几个选择按钮同时压下,使几组互相独立的电源并联在同一个电压表上,而将几个电源相互短路造成仪器的损坏。 4. 通电后,如U L等于零,可用电压表逐点测量电压的方法,找到故障点,分析判断是导线还是器件发生了故障,断电后,仔细检查、排除故障。 【实验设计及测试】 用数字万用表欧姆挡测试R1、R2、R3、R L,测试结果记人表1.4.1中,与标称值对照。 表1.4.1 R1R2R3R L 标称值100 200 200 300 测量值 调节稳压电源,使其一路电压源输出E1=6V,另一路电压源输出E2=9V,待用。 1. 叠加原理实验 (1)先将开关S I、S II拨向“2”侧,再按实验原理电路图1.4.2接线。 (2)测量下列三种情况下负载电阻的电压值U L,并将数据记入表1.4.1中 电源E1单独作用于电路(S I拨“1”,S II拨“2”),电源E2单独作用于电路的情况(S I 拨“2”,S II拨“1”),电源E1和E2同时作用于电路的情况(S I、S II都拨“1”)。 (3)测负载电流值I L:将万用表置于直流电流档“20mA”处并串入R L支路中(注意极性),分别在a、b、c步骤情况下,测得电流值I L,并将数据记入表1.4.2中。 图1.4.2叠加原理实验电路图 表1.4.2 U L/V I L/mA 计算值测 量值 误 差 计 算值 测 量值 误 差

电化学原理及其应用(习题及答案)

电化学原理及其应用 (习题及答案) https://www.360docs.net/doc/2e11714932.html,work Information Technology Company.2020YEAR

第六章电化学原理及其应用 一、选择题 1.下列电极反应中,溶液中的pH值升高,其氧化态的氧化性减小的是( C ) A. Br2+2e = 2Br- B. Cl2+2e=2Cl— C. MnO4—+5e+8H+=2Mn2++4H2O D. Zn2++2e=Zn 2.已知H2O2在酸性介质中的电势图为 O2 0.67V H2O2 1.77V H2O,在碱性介质中的电势图为O2-0.08V H2O2 0.87V H2O,说明H2O2的歧化反应(C) A.只在酸性介质中发生 B.只在碱性介质中发生 C.无论在酸、碱性介质中都发生D.与反应方程式的书写有关 3.与下列原电池电动势无关的因素是 Zn | Zn2+‖H+,H2 | Pt (B) A. Zn2+的浓度 B. Zn电极板的面积 C.H+的浓度 D.温度 4.298K时,已知Eθ(Fe3+/Fe)=0.771V,Eθ(Sn4+/Sn2+)=0.150V,则反应 2Fe2++Sn4+=2Fe3++Sn2+的△r G mθ为(D)kJ/mol。 A. -268.7 B. -177.8 C. -119.9 D. 119.9 5.判断在酸性溶液中下列等浓度的离子哪些能共存(D) A Sn2+和Hg2+ B. SO32—和MnO4— C. Sn4+和Fe D. Fe2+和Sn4+ 已知Eθ(Hg2+/Hg)=0.851V,Eθ(Sn4+/Sn2+)=0.15V ,Eθ(MnO4—/Mn2+)=1.49V Eθ(SO42—/H2SO3)=1.29V ,Eθ(Fe2+/Fe)= —0.44V 6.已知下列反应在标准状态下逆向自发进行 Sn4++Cu = Sn2++Cu2+

风力发电系统建模与仿真

《新能源发电及并网技术》专题报告风力发电系统建模与仿真 学院电气工程学院 专业电气工程 姓名xxxxxxx 学号xxxxxxxxxxxx 2013年6月

目录 1 风资源及风力发电的基本原理 (1) 1.1 风资源概述 (1) 1.2 风力发电的基本原理 (2) 1.3 风力发电特点 (3) 2 风能及风力机系统模型的建立 (3) 2.1风频模型 (3) 2.2 风速模型 (4) 2.3 风力机建模与分析 (5) 3 变桨距风力发电机组控制系统模型 (10) 3.1 变桨距风力发电机组的运行状态 (10) 3.2 变桨距控制系统 (11) 4风力发电控制系统的模拟仿真分析 (13) 4.1 无穷大系统模型的建立 (13) 4.2 风力发电机系统并网模拟仿真分析 (13) 5 结论 (17) 参考文献 (18)

摘要:风力发电作为一种清洁的可再生能源利用方式,近年来在世界范围内获得了飞速的发展。本文基于风力机发电建立模型,建立了以风频、风速模型为基础的风力发电理论基础,运用叶素理论,建立了变桨距风力机机理模型,然后分析了变速恒频风力发电机的运行区域与变桨距控制的原理与方法,并给出了机组的仿真模型,最后搭建了一套基于PSCAD/EMTDC 仿真软件的风力发电系统控制模型以及完整的风力发电样例系统模型,并且已初步实现风力机特性模拟功能。 关键词:风力发电;风频;风速;风力机;变桨距;建模与仿真 1 风资源及风力发电的基本原理 1.1 风资源概述 随着世界工业化进程的不断加快,使得能源消耗逐渐增加,全球工业有害物质的排放量与日俱增,从而造成气候异常、灾害增多、恶性疾病的多发,因此,能源和环境问题成为当今世界所面临的两大重要课题。由能源问题引发的危机以及日益突出的环境问题,使人们认识到开发清洁的可再生能源是保护生态环境和可持续发展的客观需要。可以说,对风力发电的研究和进行这方面的毕业设计对我们从事风力发电事业的同学是有着十分重大的理论和现实意义的,也是十分有必要的。 风力发电起源于20世纪70年代,技术成熟于80年代,自90年代以来风力发电进入了大发展阶段。随着风力发电容量的不断增大,控制方式从基本单一的定桨距失速控制向全桨叶变距控制和变速控制发展。前人在风轮机的空气动力学原理和能量转换原理的基础上,系统分析了定桨距风力发电机组、变桨距风力发电机组、变速风力发电机组的基本控制要求和控制策略,并对并网型风力发电机组的变桨距控制技术进行了一定的研究。变桨距风力发电机组的主要控制是在起动时对风轮转速的控制和并网后对输入功率的控制。通过变距控制可以根据风速来调整桨叶节距角,以满足发电机起动与系统输出功率稳定的双重要求。但由于对运行工况的认识不足,对变桨距控制系统的设计不能满足风力发电机组正常运行的要求,更达不到优化功率曲线和稳定功率输出的要求。 1、风能的基本情况[1] 风的形成乃是空气流动的结果。风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。

电工从入门到精通

电工从入门到精通 学习电工一点基础都没有从零做起是可以的,那么电工从入门到精通是怎么样的呢? 电工应该知道并掌握以下这些内容:职业道德与安全生产法规的学习电工岗位职责,安全意识,电工常用工具的使用方法内外线电工专用工具常用电气图形符号电工基础、电流和电磁场对人体的作用,墙孔的錾打及木楔的安装 常用电工仪表的使用,分别有以下四个1万用表2兆欧表3钳形表4功率表 简易起重,搬运工具的使用,分别有以下三个1千斤顶2滑轮3绳扣 需要了解高压配电装置,低压电器(保护电器和开关电器)防触电安全技术、电气安全装置及电工安全用具 当然还有基础的常用照明灯具开关及扦座的安装,用电设备安全、电气测量和常用测量仪表的使用电气线路 之后还有晶体管的简易测试晶体二极管晶体三极管12伏5安整流稳压电源电路电路原理图电路安装 还有关于安全的电气防火防爆、电气防雷与防静电,触电事故与触电救护、电气安全管理掌握人身触电急救方法触电事故与电气安全技术变压器和电动机的安全运行知识,多多看书,想要更快的掌握知识可以参加培训。 南京宁鼓职业培训学校是经南京人力资源和社会保障局批准成立的职业培

训机构,是南京市特种作业人员培训机构。 南京市宁鼓职业培训学校位于南京市的人文、教育、经济核心区域——鼓楼区山西路。地理位置优越,交通便利,有通往城南、城北、城东、城西的多路公交线路直达。 南京宁鼓职业培训学校有着良好的教学培训支撑条件,既有适合小范围互动的小型多功能教室,又有适合百人以上公开课的大型报告厅。配备有现代化多媒体教学设施、设备,与大型企业及高校合作建有特种作业的实习基地。现下设有特种作业人员培训部,职业技能培训部,远程教育培训部。 新的时期,新的起点,南京宁鼓职业培训学校将不负社会各界的重托和厚望,秉承“客户至上,锐意进取”的经营理念为广大客户提供服务。

{高中试卷}高三化学一轮复习:电化学原理及其应用[仅供参考]

20XX年高中测试 高 中 试 题 试 卷 科目: 年级: 考点:

监考老师: 日期: 电化学原理及其应用 1.家蝇的雌性信息素可用芥酸(来自菜籽油)与羧酸X在浓NaOH溶液中进行阳极氧化得到。电解总反应式为: 则下列说法正确的是( ) A.X为C2H5COOH 3+6H+B.电解的阳极反应式为:C21H41COOH+X-2e-+2H2O―→C23H46+2CO2- C.电解过程中,每转移a mol电子,则生成0.5a mol雌性信息素 D.阴极的还原产物为H2和OH- 解析:A项根据原子守恒可判断X为C2H5COOH;B项由于电解质溶液为浓NaOH,因此阳极反应 3+4H2O;C项根据电解总反应可知每生成1 式应为C21H41COOH+X-2e-+60H-―→C23H46+2CO2- mol雌性信息素转移2 mol电子,则C项正确;D项阴极的还原产物为H2,OH-并非氧化还原产物. 答案:AC 2.下列关于铜电极的叙述正确的是( ) A.铜锌原电池中铜是负极 B.用电解法精炼粗铜时,粗铜作阴极 C.在镀件上电镀铜时可用金属铜做阳极 D.电解稀硫酸制H2和O2时铜做阳极 解析:铜锌原电池中锌活泼,锌做负极;电解精炼铜时,粗铜中的铜失去电子,做阳极;电

镀铜时,应选用铜片做阳极,镀件做阴极,含有铜离子的溶液做电镀液。电解稀硫酸时,铜做阳极,失电子的是铜而不是溶液中的OH-,因而得不到氧气。 答案:C 3.普通水泥在固化过程中自由水分子减少并产生Ca(OH)2,溶液呈碱性。根据这一特点,科学家发明了电动势(E)法测水泥初凝时间,此法的原理如图所示,反应的总方程式为:2Cu+Ag2O===Cu2O+2Ag。 下列有关说法不正确的是( ) A.工业上制备普通水泥的主要原料是黏土和石灰石 B.测量原理装置图中,Ag2O/Ag极发生氧化反应 C.负极的电极反应式为:2Cu+2OH--2e-===Cu2O+H2O D.在水泥固化过程中,由于自由水分子的减少,溶液中各离子浓度的变化导致电动势变化解析:A项工业上制备普通水泥的主要原料正确;B项测量原理装置图中,Ag2O/Ag极发生还原反应;C项负极材料Cu失电子,该电极反应式正确;D项在溶液中通过离子移动来传递电荷,因此各离子浓度的变化导致电动势变化。 答案:B 4. LiFePO4电池具有稳定性高、安全、对环境友好等优点,可用于电动汽车。电池反应为:FePO4 +Li 放电 充电 LiFePO4,电池的正极材料是LiFePO4,负极材料是石墨,含Li+导电固体为电解 质。 下列有关LiFePO4电池说法正确的是( ) A.可加入硫酸以提高电解质的导电性B.放电时电池内部Li+向负极移动 C.充电过程中,电池正极材料的质量减少

风电变流器网侧PWM变换器的数学模型和控制框图

文:裴景斌周维来孙敬华来源:九洲电气 摘要:本文介绍了风电变流器网侧PWM变换器的数学模型和控制框图,给出了控制电路的硬件构成和软件流程,并给出实验波形。 关键词:风电变流器,PWM,控制器 0 引言 PWM变换器的控制技术是风力发电技术的核心技术之一,本文设计的PWM变换器是基于PI调节器的双闭环控制系统,并对提高网侧PWM变换器抗扰动性能的前馈控制策略进行了研究。采用改进的前馈控制策略,对于负载扰动和电网电压三相平衡跌落,具有很好的抗干扰能力。 1 PWM变换器的数学模型和控制框图 1.1 PWM变换器d-q轴下的数学模型 图1 PWM整流器主电路 将三相静止对称轴系中PWM整流器的一般数学模型经坐标变换后,即得到VSR的dq 模型,可解决对时变系数微分方程的求解,便于对参量解耦及获得控制策略。坐标系及矢量分解如图2所示,其中(d, q)轴系以电网基波角频率ω同步逆时针旋转。 图2 坐标系及矢量分解 根据幅值不变原理,进行矢量分解。经推导,可得同步旋转(d, q)轴系下的PWM整流器数学模型:

式中e d, e q——电网电压E的d, q轴分量; u d, u q——VSR交流侧电压矢量U的d, q轴分量; i d, i q——VSR交流侧电流矢量I的d, q轴分量。 1.2 PWM整流器的控制策略 三相VSR控制系统设计采用双闭环控制,电压外环主要控制三相VSR直流侧电压稳定在指定值,电流内环按照电压外环输出的电流指令对有功无功电流进行控制,在同步旋转(d, q)轴系下电流控制器跟踪参考电流产生合适的参考电压。然后,参考电压矢量被转换到三相静止轴系中,产生PWM脉冲,驱动开关。 (1) 电网电压定向矢量控制 选取d轴与电网电压矢量E重合,则d轴表示有功分量参考轴,而q轴表示无功分量参考轴。此时,电网电压的q轴分量e q为零。为了实现单位功率因数,无功电流分量i q 的参考值i q*设为零。 VSR双闭环控制系统结构图如图3所示。 图3 VSR双闭环控制系统结构框图 由式(1-1)可以看出,变换器交流侧电流的d, q轴分量存在着相互耦合,无法对电流的d, q轴分量进行单独控制,给控制器设计造成一定困难。为此,可采用前馈解耦控制策略,对u sd, u sq进行前馈补偿。当电流调节器采用PI调节器,则指令电压可以计算为 (1-2)

房地产开发项目投资收收益测算模型

房地产开发项目投资收收益测算模型 作者:时间:2012年12月04日信息来源:经理人网 众所周知,房地产属资金密集型行业,经营风险也很大,仅就单个房地产项目来说,其投资额少则数亿,多则上十几亿,可以说,一个项目投资失败,对企业的打击就是致命的。因此,做好房地产项目投资收益管理十分重要。根据自己的经验和体会,要做好房地产项目投资收益管理,应从以下四个方面进行。 一、构建适合企业的投资收益测算模型 1. 建立投资收益模型的目的 个人认为,建立投资收益模型,其目的有三个。第一,跨区域发展时,保持多项目间的收益对比,指导投资决策。第二,作为项目实施目标和实施效果评价标尺。投资收益模型是企业在项目销售定价、项目投入甚至项目核心节点(如开盘、融资)等方面的重要目标;在项目结案后,还可将实际数据代入模型,对项目收益及管理团队业绩进行评价。第三,规范投资收益测算、提高工作效率。投资模型一旦建立,必将促进测算工作规范进行,同时,对不同项目测算时只需调整一些基础数据即可完成,可以大大提升测算效率。 2. 销售型物业投资收益测算模型 关于销售型物业的经济评价指标很多,但归结起来,其核心指标关注两个,静态指标为销售利润率,动态指标为内部收益率。要得出上述指标,将形成三张主表、若干辅表。

主表一:项目利润表。本表为静态指标测算表,应按分期(分期下设产品形态)和分产品形态分别测算。前者反映项目各期的利润状况,了解每期对项目利润贡献,特别是在项目比较大的情况下更应分期考虑。后者反映每类产品形态对项目利润的贡献。 主表二:现金流量表。本表为动态指标测算表,在内容上,分为现金流入、现金流出、现金净流入。现金流入主要是销售回款,现金流出为各类成本、费用、税金支出。在时间维度上,为了反映项目动态指标,本表以季度或月度为单位编制。本表不同于会计上的现金流量表,它只反映现金流量表中的经营活动产生的现金流量这一内容。 主表三:资金计划表。本表主要反映项目融资和还本付息的情况。 要形成上述三张主表,还需要一些辅助表单作为依据。 辅表一:项目核心关键节点表。此表主要反映项目开发进度的核心节点,如开盘时间,四证齐全时间、物业竣工时间等,为形成项目销售进度、投资进度、融资进度等提供依据。 辅表二:销售回款进度表。本表要以项目区域、规划楼栋为基础,梳理产品形态,确定产品形态的销售量价走势,为分期、分产品形态确定利润提供依据。 辅表三:投资估算及投资进度表。此表编制相对复杂,首先要规划好成本科目,保证成本科目既满足管理要求、又方便项目测算。 辅表四:成本分配表。本表主要反映项目投资成本在各类产品形态之间的分配情况,为从不同角度测算项目利润提供数据支撑。分配规则可以结合税务对土地增值税及所得税清算口径进行。

相关文档
最新文档