拉曼实验聚苯乙烯的拉曼光谱图

拉曼实验聚苯乙烯的拉曼光谱图

实验名称:聚苯乙烯的拉曼光谱图

拉曼光谱

拉曼光谱实验报告 一、实验目的 1. 了解拉曼光谱的基本原理、主要部件的功能; 2. 了解拉曼光谱对所观察与分析样品的要求; 3. 了解拉曼光谱所观察材料的微观组织结构和实际应用; 4. 初步掌握制样技术和观察记录方法 二、实验仪器原理 1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ0+υ1又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。小拉曼光谱与分子的转动能级有关,大拉曼光谱与分子振动-转动能级有关。拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子吸收频率为υ0的光子,发射υ0+υ1的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线)。分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。激光器的问世,提供了优质高强度单色光,有力推动了拉曼散射的研究及其应用。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。 拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应: 设散射物分子原来处于基电子态,当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能级上的电子立即跃迁到下能级而发光,即为散射光。设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。

拉曼光谱解读

激光拉曼光谱 [实验目的] 1、学习使用光谱测量中常用的仪器设备; 2、测量4CCl (液体)的拉曼光谱; 3、学习简单而常用的光谱处理方法,并对4CCl 的拉曼光谱进行处理,求出4CCl 的主要拉曼线的拉曼位移。 [拉曼光谱基本原理] 1、 现象 频率0v 的单色辐射入射到透明气体、液体或光学上完整透明的固体上时,大部分辐射无改变地透过,还有一部分受到散射。其中将出现频率为0m v v ±的辐射对。这种辐射频率发生改变的散射成为拉曼(Raman )散射;还有辐射频率不发生改变的散射称为瑞利散射。一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱,即0v 和0m v v ±合起来构成拉曼光谱。0v 称为瑞利线,0m v v ±称为拉曼线,m v 称为拉曼位移。且频率为0m v v -的拉曼线称为斯托克斯线,频率为0m v v +的拉曼线称为反斯托克斯线。瑞利散射的强度通常约为入射辐射强度的310-,强的拉曼散射的强度一般约为瑞利散射强度的310-, 2、 解释 对拉曼散射的完整理论解释是非常复杂的,限于篇幅这里不作介绍,请大家参看附后的有关参考书。下面用一个简单模型——散射系统与入射辐射之间的能量交换模型对其加以解释。 设散射系统有两个能级1E 、2E ,且有21E E >,210E E hv ->。由于入射辐射的相互作用,系统可以从低能级1E 跃迁到高能级2E ,这是必须要从入射辐射中获得所需能量21E E E ?=-。这个过程可以认为是系统吸收一个能量为0hv 的入射光子,从1E 能级跃迁到某一更高能级(通常散射系统并没有这样一个能级,所

以称其为虚能级),然后,放出一个能量为0hv E -?的散射光子而跃迁到2E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h -??= =-=- 另一方面,如果散射系统处于激发能级2E ,由于相互作用的存在,它可以从高能级2E 跃迁到低能级1E 。此时系统必须把能量21E E E ?=-交给入射辐射。同样这一过程可认为是系统吸收一个能量为0hv 的入射光子。从2E 能级跃迁到某一高的虚能级,然后以放出一个能量为0hv E +?的散射光子而跃迁到1E 能级。此时,散射光子的频率可表述为: 000m hv E E v v v v h h +??==+=+ 以上的描述可用图1来直观表示。 拉曼散射所涉及到得能级1E 、2E ,一般为散射系统的振动、转动能级(对于分子系统而言),或为晶格振动能级(对于晶体而言)。即拉曼位移m v 通常对应系统的振动、转动频率或晶体振动频率。

拉曼光谱实验报告

拉曼光谱实验 姓名学号 何婷21530100 李玉环21530092 宋丹21530111 [实验目的] 1、了解Raman光谱的原理和特点; 2、掌握Raman光谱的定性和定量分析方法; 3、了解Raman光谱的谱带指认。 4、了解显微成像Raman光谱。 [仪器和装置] 1、显微Raman光谱系统一套,拉曼光谱仪的型号为SPL-RAMAN-785 USB2000+的拉曼光谱仪,自带785nm激光; 2、带二维步进电机平移台一台(有控制器一台); 3、PT纳米线样品; 4、光谱仪软件SpectraSuite; 5、步进电机驱动软件; 6、摄像头(已与显微镜集成在一起)。 [实验内容] 1、使用显微Raman系统及海洋光谱软件对单根或多根纳米线进行显微Raman光谱测量, 对测量的图和标准图进行比较,并通过文献阅读对PT纳米线Raman(测量和标准)的谱峰进行指认。 2、使用显微拉曼扫描系统进行二维样品表面拉曼信号收集,并生成样品表面特定波长处的 拉曼信号强度三维图,模拟样品表面拉曼表征。选择多个拉曼波长对样品形状进行观察。[实验结果及分析]

观察PbTiO3的拉曼散射谱并比对具体的拉曼散射光谱数据进行分析,可以找到以上10个拉曼散射峰,分别位于784.54nm,794.94 nm,798.60 nm,802.90 nm,806.84 nm,811.91 nm,817.10 nm,825.29 nm,832.44 nm,879.69nm附近,对应的Raman Shift分别是-7.46 cm-1 159.28 cm-1 216.94 cm-1 284.00 cm-1 344.82 cm-1 422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1 1371.21 cm-1。 (通过Raman Shift=1/λ入射-1/λ散射计算得到) PT纳米线Raman测量的谱峰指认: 分析可知,-7.46 cm-1 159.28 cm-1 216.94 cm-1 284.00 cm-1 344.82 cm-1 422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1附近的9个振动模,分别对应于PbTiO3的A1(1TO),E(1LO),E(2TO),B1+E,A1(2TO),E(2LO)+A1(2LO),E(3TO)A1(3TO),A1(3LO)声子模。 位于159.28 cm-1附近的模对应PbTiO3纳米线表面的TiO6八面体相对于Pb的振动;位于500.44 cm-1附近的模分别对应于表面Ti-O或Pb-O键的振动;位于725.97 cm-1附近的模对应于TiO6八面体中Ti-O键的振动。而位于284.00 cm-1的振动模为静模。此外,在725.97 cm-1处PbTiO3还具有额外的Raman振动模,可能与该相中含有大量且复杂的晶胞结构有关。据报道,复杂钙钛矿结构中氧八面体的畸变或八面体内B位离子的移动在某种程度上会破坏平移对称性,引起相邻晶胞不再具有相似的局部电场和极化率。 位于-7.46 cm-1处的拉曼峰强度增强,相比标准PbTiO3纳米线,其余拉曼峰强度均减弱。798nm处样品表面拉曼信号三维强度图:

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

激光拉曼实验报告

激光拉曼及荧光光谱实验 一、实验目的 1、 了解激光拉曼的基本原理和基本知识以及用激光拉曼的方法鉴别物质成分和分子结构的原理; 2、 掌握LRS – II 激光拉曼/荧光光谱仪的系统结构和操作方法; 3、 研究四氯化碳CCL 4、苯C 6H 6等物质典型的振动—转动光谱谱线特征。 二、实验原理 2.1 基本原理 分子有振动。原子分双子的振动按经典力学的观点可以看成是简谐振子,其能量为 A 是振幅,k 是力常数。按照量子力学,简谐振子的能量是量子化的, t=0,1,2,3,···,是振动量子数,f 是振子的固有振动频率。如果在同一电子态中,有振动能级的跃迁,那么产生的光子能量 hf t t E E h )('12-=-=ν 波数为 CO 在红外部分有4.67微米、2.35微米、1.58微米等光谱带,其倒数之比近似为1: 2:3。当Δt=1时,测得的ν ~反映了分子键的强弱。 分子有转动。双原子分子的转动轴是通过质心而垂直于联接二原子核的直线的。按照经典力学,转动的动能是 式中P 是角动量,I是转动惯量, 222211r m r m I += 可以证明 I P I E 2212 2= =ω2 2 2 121r r m m m m I μ=+= 2222 1212 1 kA kx mv E =+ = 2 12 1m m m m m += hf t E )2 1(+=m k f π21= ,3,2,)(1 ~12ωωωωλ ν =?=-'=-= =t c f t t hc E E

上式中r1,r2和r分别代表两原子到转轴的距离及两原子之间的距离,μ称为约化质量。按照量子力学,角动量应等于 代入上式得 此式可以从量子力学直接推得,J称为转动量子数。当J=0,1,2,3,···等值时,相应的J(J+1)=0,2,6,12,···,所以能级的间隔是I h 228π的2,4,6,8,···倍。 实验和理论都证明纯转动能级的跃迁只能在邻近能级之间,就是ΔJ=±1。所得 光谱的波长应该有下式表达的值: 谱线波数(ν ~)的间隔是相等的。HCL 分子远红外吸收谱中,曾观察到很多条吸收线,这些线的波数间隔应该是2B,实验测得:B=10.34厘米 -1 ,所以由此求得 转动惯量I,进而求得HCL 分子中原子之间的核间距这一重要数据。 多原子分子的转动可以近似地看作刚体的转动,这涉及到多个转轴的不同的转动惯量。其谱线结构较为复杂,只有直线型的分子和对称高的分子转动曾研究出一些结果。在分析化学领域中提供了一些分析样品的标准特征谱线可供实验参照。 光通过透明的物体时,有一部分被散射。如果入射光具有线状谱,散射光的光谱中 除有入射光的谱线外,还另有一些较弱的谱线,这些谱线的波数ν '~等于入射光某一波数0~ν加或减一个数值,即10~~~ννν±='。新出现谱线的波数与入射光的波数之差发现与光源无关,只决定于散射物。如果换一个光源,0~ν不同了,但如果散射物不变换,那么0~~νν-'还是等于原来的1~ν,散射光的波数变动反映了散射物的性质。由于散射光的波数等于入射光的波数与另一数值1 ~ν组合的数值,所以这样的散射称作组合散射。 可以在紫外或可见区观测分子的振动和转动能级,通过选择波长在可见光波段的激 ,2,1,0,2) 1(=+=J h J J P π ) 1(82 2+= J J I h E πIc h B J BJ J J J J Ic h hc E E 2''''2'8, ,3,2,12)]1()1([8~1 ππνλ= ==+-+=-==

激光拉曼光谱仪实验报告

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能

激光拉曼光谱试验

拉曼散射是印度科学家Raman在1928年发现的,拉曼光谱因之得名。光和媒质分子相互作用时引起每个分子作受迫振动从而产生散射光,散射光的频率一般和入射光的频率相同,这种散射叫做瑞利散射,由英国科学家瑞利于1899年进行了研究。但当拉曼在他的实验室里用一个大透镜将太阳光聚焦到一瓶苯的溶液中,经过滤光的阳光呈蓝色,但是当光束进入溶液之后,除了入射的蓝光之外,拉曼还观察到了很微弱的绿光。拉曼认为这是光与分子相互作用而产生的一种新频率的光谱带。因这一重大发现,拉曼于1930年获诺贝尔奖。 激光拉曼光谱是激光光谱学中的一个重要分支,应用十分广泛。如在化学方面应用于有机和无机分析化学、生物化学、石油化工、高分子化学、催化和环境科学、分子鉴定、分子结构等研究;在物理学方面应用于发展新型激光器、产生超短脉冲、分子瞬态寿命研究等,此外在相干时间、固体能谱方面也有广泛的应用。 实验目的:1、掌握拉曼光谱仪的原理和使用方法; 2、测四氯化碳的拉曼光谱,计算拉曼频移。 实验重点:拉曼现象的产生原理及拉曼频移的计算 实验难点:光路的调节 实验原理:[仪器结构及原理] 1、仪器的结构 LRS-II激光拉曼/荧光光谱仪的总体结构如图12-4-1所示。 2、单色仪 单色仪的光学结构如图12-4-2所示。S1为入射狭缝,M1为准直镜,G为平面衍射光栅,衍射光束经成像物镜M2汇聚,经平面镜M3反射直接照射到出射狭缝S2上,在S2外侧有一光电倍增管PMT,当光谱仪的光栅转动时,光谱信号通过光电倍增管转换成相应的电脉冲,并由光子计数器放大、计数,进入计算机处理,在显示器的荧光屏上得到光谱的分布曲线。 3、激光器 本实验采用50mW半导体激光器,该激光器输出的激光为偏振光。其操作步骤参照半导体激光器

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

激光拉曼光谱仪实验报告记录

激光拉曼光谱仪实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频

拉曼光谱原理及应用简介

拉曼光谱原理及应用简介 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究。 应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

1. 激光拉曼光谱法的原理是拉曼散射效应 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不光改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 2. 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 3. 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是判断化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中

拉曼光谱实验报告

成绩 评定 教师 签名 嘉应学院物理学院近代物理实验 实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号: 实验时间:年月日

图2 ν? 0ν ν? 斯托克斯线 瑞利线 反斯托克斯线 一、实验目的: 1、 了解拉曼散射的基本原理 2、 学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD 型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其中瑞利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;光量子从较大的频率散射,称为反斯托克斯线,这时的光量子的频率为0ννν'=+?。 最简单的拉曼光谱如图2所示,中央的是瑞利散射线,频率为0ν,强度最强;低频一侧的是斯托克斯线,强度比瑞利线的强度弱很多;高频的一侧是反斯托克斯线,强度比斯托克斯线的 图(1a ) 0h ν ()0h νν+? 0h ν ()0h νν-? 图(1b ) (上能态是虚能态,实 际不存在。这样的跃迁 过程只是一种模型实 际并没有发生) 0h ν 0h ν 0h ν 0h ν

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

拉曼光谱实验报告

嘉应学院物理学院近代物理实验 实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号:

实验时间:年月日 一、实验目的: 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a);在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给

图2 ν?0νν? 斯托克斯线瑞利线反斯托克斯线予散射分子的能量只能是分子两定态之间的差值 12 E E E ?=-,当光量子把一部分能量交 给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态 1 E,如图(1b),这时的光量子的频率为 ννν '=-?;光量子从较大 的频率散射,称为反斯托克斯线,这时的光量子的频率为 ννν '=+?。 最简单的拉曼光谱如图2所示,中央的是瑞 利散射线,频率为 ν,强度最强;低频一侧的 是斯托克斯线,强度比瑞利线的强度弱很多;高 频的一侧是反斯托克斯线,强度比斯托克斯线的 强度又要弱很多,因此并不容易观察到反斯托克 斯线的出现,但反斯托克斯线的强度随着温度的升高而迅速增大。斯托克斯线和反斯托克斯 线通常称为拉曼线,其频率常表示为 νν ±?,ν?称为拉曼频移。为尽可能地考虑增强入射光的光强和最大限度地收集散射光,又要尽量地抑制和消除主要来自瑞利散射的背景杂散光,提高仪器的信噪比。拉曼光谱仪一般由图3所示的五个部分构成。 仪器的外形示意图见图5所示。仪器配套实验台,各分部件安装于实验台上,实验台结实平稳,满足精度光学实验的要求。 图3 拉曼光谱仪的基本结构

激光拉曼光谱仪实验报告

实验六激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL、计算机、打印机 【原理】 1.拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 (1)弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3X 105HZ在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换,光子转移一部分能量给分子或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值=E - E2。在光子与分子发生非弹性碰撞 过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能 量,从而处于激发态Ei,这时的光子的频率为、-- ■'■:■■-(入射光的频率为\ 0);

物理实验实验报告

物理仿真实验——拉曼光谱 一、实验目的: 1.拍摄拉曼光谱并观察; 2.学会推测出分子拉曼光谱的基本概貌,如谱线数目、大致位置、偏振性质和它们的相对强度; 3.从实验上确切知道谱线的数目和每条线的波数、强度及其应对应的振动方式。 4.以上两个方面工作的结合和对比,利用拉曼光谱获得有关分子的结构和对称性的信息。 二、实验原理 (1)拉曼效应和拉曼光谱:当光照射到物质上时会发生非弹性散射,散射光中除有与激发光波长相同的弹性成分(瑞利散射)外,还有比激发光波长长的和短的成分,后一现象统称为拉曼效应。由分子振动、固体中的光学声子等元激发与激发光相互作用产生的非弹性散射称为拉曼散射,一般把瑞利散射和拉曼散射合起来所形成的光谱称为拉曼光谱。 (2)拉曼光谱基本原理: 设散射物分子原来处于基电子态,振动能级如下图所示。 当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态,虚能级上的电子立即跃迁到下能级而发光,即为散射光。

设仍回到初始的电子态,则有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为反斯托克斯线。 瑞利线与拉曼线的波数差称为拉曼位移,因此拉曼位移是分子振动能级的直接量度。下图给出的是一个拉曼光谱的示意图。 (3)拉曼效应的经典电磁解释:如分子,在激发光的交变场作用下发生感生极化,也就是正负电中心从相合变为相离,成为电偶极子。这感生电偶极子是随激发场而交变的,因此它也就是成了辐射体。简单的与激光同步的发射,就成为瑞利散射。然而分子本身有振动和转动,各有其特种频率。这些频率比激发光的频率低一两个数量级或更多些,于是激发光的每一周期所遇的分子振动和转动相位不同,相应的极化率也不同。 (4)当光入射到样品上时的三种情况: 1.光子同样品分子发生了弹性碰撞,没有能量交换,只是改变了光子的运动方向, 此时散射光频率=入射光频率:hv k =hv 1 ; 2.如频率为v 1的入射光子被样品吸收,样品分子被激发到能量为hv L 的振动能级 L = 1上,同时发生频率为v s=v1-v L的斯托克斯散射;

Renishaw显微共焦激光拉曼光谱仪操作说明

Renishaw显微共焦激光拉曼光谱仪操作说明 一、开机顺序 1、打开主机电源; 2、计算机电源 3、将使用的激光器电源 1)、514nm:打开激光器后面的总电源开关->打开激光器上的钥匙; 2)、785nm:直接打开激光器电源开关。 二、自检 1、用鼠标双击WiRE2.0 图标,进入仪器工作软件环境; 2、系统自检画面出现,选择Reference All Motors 并确定(OK)。系统将检验所有的电机。 3、从主菜单Measurement -> New -> New Acquisition 设置实验条件。静态取谱(Static),中心520 Raman Shift cm-1, Advanced -> Pinhole 设为in。 4、使用硅片,用50 倍物镜,1 秒曝光时间,100%激光功率取谱。使用曲线拟合(Curve fit)命令检查峰位。 三、实验 1、实验条件设置 1)、点击设置按钮(或者菜单中Measurement-->Setup Measurement),(设置)下列参数 2)、OK:采用当前设置条件,并关闭设置窗口;Apply:应用当前设置条件,不关闭窗口; 2、采谱:执行Measurement -> Run 命令。 四、关机 1、关闭计算机 1)、关闭WiRE2.0 软件; 2)、Start-->Shut Down-->Turn off computer。计算机将自动关闭电源。 2、关闭主机电源; 3、关闭激光器 1)、关闭钥匙; 2)、514 激光器散热风扇会继续运转,此时不要关闭主电源开关。等风扇自动停转后再关闭主电源开关; 五、注意事项 1、开机顺序:主机在前,计算机在后。 2、关机顺序:计算机在前,主机在后。514nm 激光器要充分冷却后才能关闭主电源。 3、自检:一定要等自检完成再做其他动作。不能取消(Cancel)。 4、硅片:514nm,自然解理线与横向成45 度时信号最强。780nm,(633nm,325nm)自然解理线与横向基本平行时信号最强。

拉曼光谱培训教材

内容概要
拉曼光谱原理
拉曼光谱仪各部件功能
激光器 滤光片 物镜及共焦针孔 光栅和焦长 探测器CCD 常用附件及选择
? 2009 HORIBA, Ltd. All rights reserved.

拉曼光谱原理
? 2009 HORIBA, Ltd. All rights reserved.

什么是拉曼效应?
1928 年,印度科学家C.V Raman in首先在CCL4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。
Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science
? 2009 HORIBA, Ltd. All rights reserved.

弹性散射与非弹性散射
弹性散射: 频率不发生改变,如瑞利散射 非弹性散射: 频率发生改变,如拉曼散射
拉曼散射
λscatter≠ λlaser
λlaser
瑞利散射
λscatter= λlaser
拉曼散射
λscatter≠ λlaser
? 2009 HORIBA, Ltd. All rights reserved.

斯托克斯散射
反斯托克斯散射 反斯托克斯散射 斯托克斯散射 瑞利散射
能级示意图
虚态
瑞利散射 电子激发态 +激光线
hv0 hv0 hv0
h(v0-v) hv0
能量差
hv
h(v0+v) 电子基态
-x
0
x
Raman shift (cm-1)
? 2009 HORIBA, Ltd. All rights reserved.

拉曼光谱实验报告

拉曼光谱实验报告 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号: 实验时间:年月日 一、实验目的: 1、了解拉曼散射的基本原理 2、学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其中瑞利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散 射。

在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;光量子从较大的频率散射,称为反斯托克斯线,这时的光量子的频率为0ννν'=+?。 最简单的拉曼光谱如图2所示,中央的是瑞利散射线,频率为0ν,强度最强;低频一侧的是斯托克斯线,强度比瑞利线的强度弱很多;高频的 一侧是反斯托克斯线,强度比斯托克斯线的强度又要弱很多,因此并不容易观察到反斯托克斯线的出现,但反斯托克斯线的强度随着温度的升高而迅速增大。斯托克斯线和反斯托克斯线通常称为拉曼线,其频率常表示为0νν±?,ν?称为拉曼频移。为尽可能地考虑增强入射光的光强和最大限度地收集散射光,又要尽量地抑制和消除主要来自瑞利散射的背

Raman 拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

相关文档
最新文档