桩测摩阻计算

桩测摩阻计算
桩测摩阻计算

利用ABAQUS进行桩侧摩阻力仿真计算

[摘要] 桩侧摩阻力的大小直接确定了桩的实际承载力。因而如何确定桩的侧摩阻力对于桩基设计计算的意义重要。此处借用ABAQUS有限元软件对桩的侧摩阻力进行仿真计算。[关键词] 有限元软件桩侧摩阻力仿真计算

一、引言

桩基设计的核心问题,不外是沉降和承载力两个方面。在现行的规范中,桩侧摩阻力主要通过原位测试、当地经验值、规范给定值三种方式经过修订而得的。事实上,桩侧摩阻力的值是随着桩顶载荷、地层情况,以及深度等各种因素而变的,而且深度效应较为明显。

对于摩擦型单桩,其承载力主要由桩侧摩阻力承担。因此如何正确分析和计算桩侧摩阻力的分布及影响因素至关重要。传统的方法是通过原位贯入试验测得桩的侧摩阻力。通过现场原位试验虽然可以有效的得到设计需要的数据。但是现场原位试验既费工又费钱,而且试验技术有一定的困难。现代计算机技术的飞速发展,因此如何根据室内试验得到的有关资料,利用仿真分析的方法来确定桩侧摩阻力作用情况,进而确定桩侧摩阻力,是值得广泛关注和讨论的问题。

二、桩土计算模型

在考虑土的非线性、桩周土分层、桩土间非线性相互影响、桩端有存渣、桩端及桩侧注浆加固、桩长及桩直径变化等因素时,有限元法是现阶段最适用的方法,它能解决由于试桩困难及实测费用大的问题。为了方便阐述和演示,本次仿真计算采用了很大的简化。本次计算只考虑桩打入土层之后的摩阻力的变化,土层只取一层。桩取直径0.5米,长度为10米,并简化为弹性本构模型,土水平边界设置为10米,深度方向设置为30米,并简化为弹塑形本构模型。

图1:计算模型

三、计算过程

在几何模型上,采用大尺寸来模拟半无限空间体系,土体的边界半径去10米(桩半径的40倍),土体深度方向上去30米(桩长度的3倍)。

在ABAQUS的Part模块中根据工程条件通过轴对称的方式建立图1的计算几何模型,并将模型分别建成2个part,一个桩的part,一个土的part。在桩的part中只保留桩的部分,在土的part中只保留土的部分。在桩和土接触问题上,要求在土和桩相接触的地方分别建立接触面。

在 ABAQUS的Property模块中,分别建立相应的混凝土材料和土体材料,并赋值给相应

的部件。

在ABAQUS的Assembly模块中,用Independent的方式将桩和土装配成一个整体。采用Independent装配的方式,在接下来的网格划分中,可以有效的减少网格的歧义,保证网格的划分均匀。

在ABAQUS的Step模块中,为了简化计算本次只取三个计算步,桩土承受重力荷载步,桩顶受力步和桩周土承受堆载荷载步。

在ABAQUS的Interaction模块中,创建一个力学上剪切接触的Contact的接触面类型,,并采用罚函数计算方法,摩擦系数暂取为0.42。然后处理桩和土的接触问题,在此采用Master-Slave算法,在土和桩相接触的地方建立接触对。其中土体与桩的接触面取定为主面,桩与土体的接触面取为从面。

在ABAQUS的Load模块中,建立相应的荷载,并定义相应的边界条件。在荷载问题上,主要考虑桩土重力荷载、桩顶面荷载、桩周土堆载荷载三类。其中桩土的重力荷载在计算步的第一步创建,桩顶面荷载在计算步的第二步创建,桩周土堆载荷载在计算步的第三步创建。在边界问题上,土的左右二侧限制其水平位移,在土的底部限制起X、Y二个方向上的位移和绕X轴方向上的转动。

在ABAQUS的Mesh模块中,首先创建数据点的分布大小,然后选择Axisymmetric Stress 为本次计算的网格类型。最后然后确认创建网格。

最后在ABAQUS的Job模块中创建一个计算工作,并提交数据。并在Visualization模块中显示计算的结果。

四、计算结果

在ABAQUS中创建桩侧摩阻力与桩深度方向上的X-Y坐标图。

图2:土体固结过程中桩侧摩阻力变化

图3:桩顶承受上部荷载时的侧摩阻力变化

图4:桩周土有堆载后的桩侧摩阻力变化

五、结语

利用ABAQUS软件建立了桩土接触的共同作用模型,通过对桩摩阻力进行了仿真分析,可以得知桩的桩侧摩阻力分布情况,说明ABAQUS对桩土相互接触作用的问题有着很好的处

理能力。

桩侧负摩阻力

桩侧负摩阻力 摘要:基桩负摩阻力是桩基础设计中必须考虑的重要问题之一。本文介绍了有关负摩阻力的一些基本概念、其影响因素、计算等。简要介绍了桩基负摩阻力问题的研究现状, 分析了当前负摩阻力研究中存在的问题, 对今后桩基负摩阻力的研究方向提出建议。 关键词:桩基负摩阻力时间效应防治研究问题 引言 自20世纪20年代以来,国外对桩基负摩阻力开展了大量的研究工作,国内对负摩阻力的研究起步稍晚。但至今国际上对负摩阻力的研究尚不深入,许多问题尚待解决。 理论研究方面:比较经典的是有效应力计算负摩阻力方法,但计算结果往往偏大。1969 年Polous 提出了基于Mindlin解的镜像法计算桩的负摩阻力大小,但该方法仅用于端承桩。1972 年在上述基础上并根据太沙基一维固结理论,导出了单桩负摩阻力随时间变化的关系。影响负摩阻力的因素很多,精确确定负摩阻力难度很大,因此很多学者从有效应力法出发,提出经验公式。目前多根据有关资料按经验公式进行估算。 原位测试方面:李光煜利用滑动测微计成功地量测了一根钢管桩的负摩阻力,并用有效应力法进行了一些探讨。陈福全、龚晓南等通过现场试验,给出了中性点的深度。随着计算机的发展,利用有限元计算桩基负摩阻力已经逐渐运用 到工程设计中。但是有限元的计算需要确定大量的参数,且参数不容易确定,同时需要占用较大的计算空间,因此在工程中很难得到广泛应用。 1. 负摩阻力及其成因 桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力,有利于桩承载;反之,则为负摩阻力,不利于桩承载。桩侧负摩阻力产生的根本原因是,桩周土的沉降大于桩体的沉降。桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。 一般可能由以下原因或组合造成:

压裂施工管柱摩阻计算-(3)

压裂施工管柱摩阻计算 苏权生 摘要:压裂施工管柱摩阻计算对压裂施工过程中压力波动判断和压后净压力拟合具有重要意义。目前对压裂液在层流状态下的摩阻计算比较成熟,计算结果可信度高,但对压裂液在紊流状态下性质还未找出一定的规律,摩阻计算结果误差较大。本文以降阻比法为基础进行压裂管柱摩阻计算,通过理论计算与现场实测数据进行对比分析,提高计算精度。 关键词: 管柱摩阻 紊流 降阻比 计算精度 压裂管柱摩阻计算是压裂施工过程中压力变化判断的基础,是进行井底压力和裂缝净压力计算的关键。在实际压裂设计中经常采用经验估计法对管柱摩阻进行粗略计算,往往不能准确地预测实际管柱摩阻。本文以降阻比法为基础,分别对HPG 压裂液的前置液、携砂液沿程管柱摩阻进行理论计算,并结合胜利油田现场施工井的实际数据进行对比分析,对影响管柱摩阻计算的影响因素进行修正,提高理论计算和现场施工数据的一致性,形成适合胜利油田压裂施工管柱摩阻计算的相关计算程序。 1、降阻比管柱摩阻计算 Lord 和MC Gowen 等人在前人研究的基础上提出了HPG 压裂液前置液,携砂液摩阻计算的新方法,称为降阻比法,其基本原理是在相同条件(如排量、管径、管长相同)下,压裂液摩阻与清水摩阻之比称为降阻比,用公式表示为: w f p f P P )()(??= δ (1) 式中:p f P )(?:压裂液摩阻,Mpa ;w f P )(?:清水摩阻,Mpa ;δ:降阻比系数,无单位。 1.1 清水摩阻计算 从公式(1)可以看出,降阻比法要首先计算清水摩阻,且其值的准确性对压裂液摩阻计算有较大的影响,水力学中伯拉休斯清水摩阻计算式: L Q D P ***10*779.775.175.461--=? (2) 式中: 1P ?:清水摩阻,Mpa ; D :管柱内径,m ; Q :施工排量m 3 /s ; L: 管柱长度,m ;

压裂施工中摩阻计算

压裂施工中摩阻计算-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

*川西地区压裂施工过程中管柱摩阻计算摘要:以降阻比法为基础,分别对有机硼交联(HPG) 压裂液的前置液、携砂液的沿程管柱摩阻计算方法进行分析,结合川西地区部分井压裂施工现场的施工数据,对管柱摩阻计算公式进行修正改进后,提高了压裂施工设计和数值模拟中摩阻参数计算的准确性;同时用计算机程序实现了施工过程管柱沿程摩阻的计算,可用于模拟压裂施工全过程的摩阻计算。对四川川西地区以油管方式注入井的水力压裂施工设计及现场施工过程中井底压力的分析具有重要意义。 关键词:压裂施工;降阻比;管柱摩阻;公式;计算前言 压裂施工管柱沿程摩阻值的准确性直接影响到压裂工艺的设计过程,是确定井底压力的必要数据,也是压裂施工成功与否的主要因素。在实际压裂设计中,大多数采用经验估计法对管柱的摩阻损失进行计算,往往不能准确地预测实际摩阻,尤其不能模拟压裂施工整个过程的实际摩阻值。管柱的摩阻计算单纯的从流变学和水力学的角度去计算,目前还不能被实际应用。文章以降阻比法为基础,分别就HPG压裂液、相应的携砂液沿程管柱摩阻计算方法进行分析对比,并结合川西地区大部分压裂井的现场施工数据,对压裂液的沿程摩阻有关计算公式进行改进,实现压裂施工全过程摩阻计算的计算机程序化。实例计算表明,改进后的摩阻计算公式以及压裂施工过程摩阻计算结果与现场实际数据有较高的符合率,可以用于川西地区压裂施工过程摩阻的模拟计算。 1 压裂液摩阻的计算 Lord和MC Gowen等人[1,2]利用其他人的实验资料提出了计算溶胶及混砂液摩阻的方法。采用延迟交联技术,使交联HPG与HPG溶胶在井筒中的摩阻相差不大,因此,Lord等人仍用溶胶的数据提出了一个降阻比(δ)的概念:(1) 式中:(△Pf)0为清水的摩阻损失,MPa;(△Pf)P为压裂液的摩阻损失,MPa。清水的摩阻损失可以用经典水力学雷诺数与摩阻系数关系进行计算,或者同样采用Lord等人提出的回归公式: (2) 式中:D为压裂油管柱的内径,mm;Q为施工过程泵注排量,m3/min;H为油管长度,m。 在实验数据处理中认为,降阻比δ是压裂液平均流速υ、稠化剂浓度CHPG、支撑剂浓度CP的函数,通常表示为δ=f(υ、CHPG、CP)。通过对1 049个实验数据的线性回归,结合实际矿场条件,提出了实用于HPG压裂液降阻比的计算经验关系式: (3) 式中:CP为支撑剂的浓度,kg/m3;CHPG为稠化剂HPG的浓度,kg/m3。 从本质上讲,降阻比就是牛顿流体与非牛顿流体的不同流变特性在摩阻方面的表现,其值大小主要受物料来源及交联特性的影响[3]。因此,由上述公式计算所得到的压裂液摩阻与现场实测数据还有很大的误差,必须利用获得的实际压裂液的摩阻损失值进行现场校正,以便更为真实地反映压裂液的摩阻值。 前置液摩阻计算

桩基负摩阻力产生的原因及其计算

浅析桩基负摩阻力产生的原因及其计算 【摘要】桩周土体由于某种原因发生下沉时对桩身产生相对向下的位移,这就使桩身承受向下作用的摩擦力,这种摩擦力就是桩基的负摩擦阻力。本文针对桩基负摩擦阻力产生的机理及原因,并通过实例计算分析桩基负摩擦阻力。 【关键词】桩基;负摩擦阻力;机理及原因;实例计算 rough discuss the reason and count of pile foundation force of negative friction wang zhigang1 liang guankao2 (1.fifth geological mineral exploration and development institute of inner mongolia, baotou 014010, p.r.china;2.inner mongolia geology engineering co.,ltd, hohhot.010010,p.r.china) 【abstract】owing to some reasons ,the soil around pile foundation occur subside will produce displacement downward to pile foundation,so pile foundation will bear downward friction force,this friction force is negative friction force。this paper point at the reason of pile foundation negative friction force and analysis pile foundation negative friction force by living example。 【key words】pile foundation; negative friction force;the mechanisation and reason;living example account

摩擦系数及其计算

精心整理达芬奇1508年提出假设,摩擦系数一般为0.25 阿芒汤1699年,摩擦系数0.3 比尤里芬格1730年,摩擦系数0.3 库伦,十八世纪,确定压力对摩擦系数的影响,并求出几种材料配合的摩擦系数的不同数值。 俄国,科捷利尼科夫、彼得罗夫,十九世纪中叶,摩擦偶件的摩擦系数并非不变 摩擦系数影响因素: 1材料本性及摩擦表面是否有膜(润滑油、氧化物、污垢) 2静止接触的延续时间 3施加载荷的速度 4 5 6 7压力 8 9 1 2 3 1 2 3 4 5 6 滑动摩擦系数,克服两物体相对移动的阻力(超出初位移的范围以外)所耗费的切向力对应接触物体所受压力载荷的比率。 滚动阻力系数,··· 库伦方程,采用的滚动摩擦系数 T——滚动摩擦力,r——圆柱体的半径,P——接触物体所受压力 接触面积、粗糙度、载荷的影响 由于固体表面的粗糙度及波纹度,使得两个固体表面总是在个别的点上发生接触。 两个相互叠合的表面只是在其某些凸部发生接触,而这些凸部的总接触面积只占接触轮廓所限定的总表面面积的极小部分。随着压力增大,接触面积增大。凸部的直径几分之一微米至30~50微米(高度小于80微米)。

载荷增大,各点的直径增大,随后面积的增大主要是由于接触点数目的增多。 名义(几何)接触面积——由接触物体的外部尺寸描绘出来. 轮廓接触面积——由物体的体积压皱所形成的面积;真实面积即轮廓接触面上;轮廓接触面积与压力载荷有关。 真实(物理)接触面积——物体接触的真实微小面积总和,也是压力载荷的函数,并且在名义面积尺寸的1/100000至1/10的范围内变化,由接触表面的机械性能及粗糙度而定。 接触点的总数目及每一个接触点的尺寸随着载荷的增大而增大,但当载荷继续增大时,接触面积的增大主要是依靠接触点的数目的增加,尺寸几乎不再变化。 对于粗糙表面来说,需要耗费更大的力,使凸部变形,从而获得一定的接触面积;光滑表面,凸部变形不大时,就能获得很大的接触面积(试验知,光滑表面的接触点上的应力约为材料硬度的一半,粗糙表面的接触点应力为硬度的2-3倍)。 L a =δ=若认为第三个量度中所有凸部具有相同的截面轮廓,则lb S ?=,b ——被研究表面的宽度。但若凸部具有球形,则单个接触面积相应的等于2l π?。若认为接触点具有相同的半径,则2S r n ?π=。 为得出真实面积,除总宽度外,必须有个别点的半径方面的数据, 在第一种和第二种情况下,真实接触面积与互相接近程度成正比。 令()S x ??=,当0x =,()P x S ?=;当x h =,()0x ?=。 S P ——轮廓投影图的基础面积,称为计算接触面积,但x ——棒的高度,相对于经过最短的棒 的零位截面而言的。 令棒上的单位载荷q 为绝度压缩(x-a )的函数,即

过渡区摩擦系数λ的计算公式

过渡区摩擦系数λ的计算公式水力计算是暖通空调工程设计中最基本的计算任务之一。当流体在圆管中的流动状态处于光滑区和过渡区时,其摩擦阻力系数λ的计算公式均需用迭代法逼近求解。若设计中手边没有适用的水力计算表,需自己临时计算制表时,则计算起来相当麻烦。其中,光滑管区已有其他学者提出的足够精确的计算公式,而在过渡区,虽也有学者提出计算公式,但计算误差相当大。为此,笔者在实践中总结出一公式。 公式表达为:λ=β(K/d+58/R e)^0.29 ,式中R e为雷诺数;K为绝对粗糙度,mm;d为圆管内径,mm;β为过渡区λ的计算系数,见下表。用该公式计算,误差很小,在常用范围内最大误差不超过1%。 过渡区λ的计算系数β值表

此表完成于2003年3月11日星期二下午6时52分,从而使用Excell进行采暖水力计算速度和准确性达到了一个新水平。

PPR,PE-X,PAP三种不同塑料管材的沿程损失计算 经过实际测试塑料管中的沿程损失理论计算公式与实际有明显的差距,具体分析如下: 由于管材原材料差别及制造工艺不同所致。铝塑复合管的内壁材料一般是聚乙烯(PE),或交联聚乙烯(PE-X),与交联聚乙烯(PE-X)管的材质相近或相同,水力条件也相近,故水头损失也相近并均大于理论计算值,而PP-R管是以聚丙烯(PP)和1%~7%的乙烯为原料,采用气相共聚法均匀聚合而成,其水力条件比PE-X和PAP更优,因此,水头损失小于理论计算值。 各修正系数如下:对于PE-X和PAP管的沿程水头损失计算时,乘以1.12的修正系数。对于PP-R管的沿程水头损失计算时,乘以0.947的修正系数。 另通过试验证实PE-X ,PAP和PP-R管的沿程水头损失比钢管的沿程水头损失小得多,流速越大水头损失减少的幅度也越大。 此数据取自《给水排水》-2003-8期。另本期还有大空间的《南京国际展览中心》消防给水设计的有关高大空间用雨淋系统的介绍。

桩测摩阻计算

利用ABAQUS进行桩侧摩阻力仿真计算 [摘要] 桩侧摩阻力的大小直接确定了桩的实际承载力。因而如何确定桩的侧摩阻力对于桩基设计计算的意义重要。此处借用ABAQUS有限元软件对桩的侧摩阻力进行仿真计算。[关键词] 有限元软件桩侧摩阻力仿真计算 一、引言 桩基设计的核心问题,不外是沉降和承载力两个方面。在现行的规范中,桩侧摩阻力主要通过原位测试、当地经验值、规范给定值三种方式经过修订而得的。事实上,桩侧摩阻力的值是随着桩顶载荷、地层情况,以及深度等各种因素而变的,而且深度效应较为明显。 对于摩擦型单桩,其承载力主要由桩侧摩阻力承担。因此如何正确分析和计算桩侧摩阻力的分布及影响因素至关重要。传统的方法是通过原位贯入试验测得桩的侧摩阻力。通过现场原位试验虽然可以有效的得到设计需要的数据。但是现场原位试验既费工又费钱,而且试验技术有一定的困难。现代计算机技术的飞速发展,因此如何根据室内试验得到的有关资料,利用仿真分析的方法来确定桩侧摩阻力作用情况,进而确定桩侧摩阻力,是值得广泛关注和讨论的问题。 二、桩土计算模型 在考虑土的非线性、桩周土分层、桩土间非线性相互影响、桩端有存渣、桩端及桩侧注浆加固、桩长及桩直径变化等因素时,有限元法是现阶段最适用的方法,它能解决由于试桩困难及实测费用大的问题。为了方便阐述和演示,本次仿真计算采用了很大的简化。本次计算只考虑桩打入土层之后的摩阻力的变化,土层只取一层。桩取直径0.5米,长度为10米,并简化为弹性本构模型,土水平边界设置为10米,深度方向设置为30米,并简化为弹塑形本构模型。

图1:计算模型 三、计算过程 在几何模型上,采用大尺寸来模拟半无限空间体系,土体的边界半径去10米(桩半径的40倍),土体深度方向上去30米(桩长度的3倍)。 在ABAQUS的Part模块中根据工程条件通过轴对称的方式建立图1的计算几何模型,并将模型分别建成2个part,一个桩的part,一个土的part。在桩的part中只保留桩的部分,在土的part中只保留土的部分。在桩和土接触问题上,要求在土和桩相接触的地方分别建立接触面。 在 ABAQUS的Property模块中,分别建立相应的混凝土材料和土体材料,并赋值给相应 的部件。

管道水力摩阻系数的计算

管道水力摩阻系数的计算 Черникин,A.B. Черникин,A.B.:管道水力摩阻系数的计算,油气储运,1999,18(2)26~28。 摘要介绍了计算水力摩阻系数λ的通用公式,在分析现有计算摩阻系数公式的基础上,借助于专门的过渡函数,求出了新的通用式。推荐可实际应用于管道水力计算的公式λ=0.11[(Z+ε+C1.4)/(115 C+1)]1/4,该公式可完全避免确定液体流动区域的程序,适用于任一雷诺数Re和不同管子相对粗糙度ε,排除了由于自身连续性而导致不同区域边界上λ数值不一致的情况。 主题词管道水力摩阻系数计算方程 一、管道水力摩阻系数计算的改进 完善各种管道(原油管道、天然气管道、水管道等)的水力计算,可以通过提高计算精度或使计算公式通用化等途径来实现。进行水力计算所需重要参数之一,便是水力摩阻系数λ,一般情况下它是以下两个参数的函数:雷诺数Re和管子相对粗糙度ε。依据这些参数的数值,管道内流体流动划分为不同区域(状态),对于每个区域都有计算λ的公式,以及确定区域边界的所谓雷诺数过渡值。 在分析现有计算系数λ的公式和寻求通用计算式的基础上,借助专门的过渡函数,求得以下形式新的通式: (1) 这一公式覆盖所有的流动区域,即在管输液体和气体介质时,用于计算任一Re和ε时的λ。公式中的参量具有如下数值:对于液体,α=0.11,C=1.4,γ=68/Re,A=(28 γ)10,B=115,n=4;对于气体介质,α=0.077,C=1.5,γ=79/Re,A=(25 γ)10,B=76,n=5。 比较式(1)和常用的斯托克斯公式、Aльтшуль公式、俄罗斯天然气科学研究院公式(做为特例,针对不同流动区域,由式(1)很容易求得这些公式)计算λ的结果,它们完全吻合。最大的偏差(不超过1.7%)发生在层流与湍流过渡区边界上。在其它情况下,偏差甚小。

通风阻力_计算公式汇总 2

1、 巷道几何参数的测算 (1)梯形: 断面积 SL=H L *B L 周长 U L (2) 半圆拱: 断面积 S L =(H L -0.1073B L )*B L 周长 U L =3.84* (3)三心拱: 断面积 S L =(HL-0.0867B L )*B L 周长 U L (4)圆形: 断面积 S L =π*R 2 周长 U L =2*π*R (5)矩形: 断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2 U L —巷道断面周长,m ; H L —巷道断面全高,m ; B L —巷道断面宽度或腰线宽度,m ; R —巷道断面圆半径,m ; π—圆周率,取3.14159。 以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。 2、 巷道内风量的计算 (1)两测点之间巷道通过的风量按如下原则确定: Q=(Q i +Q i+1)/2 , m 3/min (2)井巷内风量、风速按以下公式计算: Q L =S L *V L , m 3/min V L =((S-0.4)/S )*(a X+ b ) , m 3/min 式中: Q L --井巷内通过的风量,m 3/min ; S L (S )--井巷断面面积,m 2 V L --井巷内平均风速,m/min X —表风速,m/min a 、 b —风表校正系数 3 井巷内空气密度的计算 湿空气密度用下列公式计算: i b i=d 0.0348(Pi 0.379P )273.15+t ?-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ?≠0), kg/ m 3 Pi --测点i 处空气的绝对静压(大气压力),Pa ; d t --测点i 处空气的干温度,℃; i ?--测点i 处空气的相对湿度,%; P b —测点i 处d t 空气温度下的饱和水蒸气压力,Pa 。

单桩承载力验算(计负摩阻力)

单桩承载力验算 一、土层分布情况 二、单桩竖向承载力特征值 桩端持力层为全风化花岗岩,按《建筑桩基技术规范》(JGJ94-2008),中性点深度比l n /l 0=,桩周软弱土层下限深度l 0=,则自桩顶算起的中性点深度l n =。根据规范可知,该处承载力特征值只计中性点以下侧阻值及端阻值。 kN l q u A q Q i sik p pk 3976)613021.712(1141600uk =?+???+??=+=∑ππkN Q K R uk a 198838942 11=?== 三、单桩负摩阻力

第一层路堤填土和杂填土自重引起的桩周平均竖向有效应力: 地下水以上部分:Pa k 93.6594.6192111=??= σ; 地下水以下部分:Pa k 06.1396.1)1019(2 194.61912=?-?+?=σ; 则kPa 20512111=+=σσσ; 第二层淤泥自重引起的桩周平均竖向有效应力: kPa 26.182)54.863.21()105.15(2 16.1)1019(94.6192=-?-?+?-+?=σ; ;,故取kPa q kPa kPa q n s n n s 24245.612053.01111=>=?==σξ ;,故取kPa q kPa kPa q n s n n s 121245.3626.1822.01222=>=?==σξ 对于单桩基础,不考虑群桩效应则1n =η; 基桩下拉荷载: kN l q u Q n i i n si n n g 1137))54.863.21(1254.824(10.11=-?+????==∑=πη 四、单桩分担面积上的荷载 kN N 720)2520(44k =+??= 五、验算 N R N Q N a n k 1988k 185********g k =<=+=+ 故单桩承载力满足要求。

通风阻力计算公式汇总

通风阻力计算公式汇总

————————————————————————————————作者:————————————————————————————————日期:

1、 巷道几何参数的测算 (1)梯形: 断面积 SL=H L *B L 周长 U L =4.16*L S (2) 半圆拱: 断面积 S L =(H L -0.1073B L )*B L 周长 U L =3.84*L S (3)三心拱: 断面积 S L =(HL-0.0867B L )*B L 周长 U L =4.10*L S (4)圆形: 断面积 S L =π*R 2 周长 U L =2*π*R (5)矩形: 断面积 S L = H L * B L 周长 U L =2*(H L +B L ) 式中: S L —巷道断面面积,m 2 U L —巷道断面周长,m ; H L —巷道断面全高,m ; B L —巷道断面宽度或腰线宽度,m ; R —巷道断面圆半径,m ; π—圆周率,取3.14159。 以上有关参数均通过实测获取,而巷道各分支长度由地测部门提供。 2、 巷道内风量的计算 (1)两测点之间巷道通过的风量按如下原则确定: Q=(Q i +Q i+1)/2 , m 3/min (2)井巷内风量、风速按以下公式计算: Q L =S L *V L , m 3/min V L =((S-0.4)/S )*(a X+ b ) , m 3/min 式中: Q L --井巷内通过的风量,m 3/min ; S L (S )--井巷断面面积,m 2 V L --井巷内平均风速,m/min X —表风速,m/min a 、 b —风表校正系数 3 井巷内空气密度的计算 湿空气密度用下列公式计算: i b i=d 0.0348(Pi 0.379P )273.15+t ?-ρ , kg/ m 3 式中:i ρ—测点i 处湿空气密度(i ?≠0), kg/ m 3 Pi --测点i 处空气的绝对静压(大气压力),Pa ; d t --测点i 处空气的干温度,℃;

浅谈负摩阻力(一)

浅谈负摩阻力(一) 论文关键词]负摩阻力中性点成因影响因素防治措施计算方法 论文摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。 随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。因此地基处理变得越来越重要。在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。下面对负摩阻力的问题进行分析、阐述。 一、负摩阻力的成因 桩周土的沉降大于桩体的沉降!桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。 地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。 一般可能由以下原因或组合造成:未固结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。 二、地基设计为什么要考虑负摩阻力 桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 三、如何在现场测试和估算负摩阻力 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(SlidingMicrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。 四、影响负摩阻力大小的主要因素 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。 五、负摩阻力的防治措施 打桩前,先预压地基土,从根本上消除负摩阻力的产生;在产生负摩阻的桩段安装套筒或者把桩身与周围土体隔离,这种方法会使施工难度加大;在桩身涂滑动薄膜如涂沥青],目前这种方法应用比较普遍,效果也不错;通过降低桩上部荷载,储备一定承载力;在地基和上部结构允许有相对较大沉降的情况下,采用摩擦桩;采用一定的装置消除负摩阻力。 下面介绍一种消除负摩阻力的装置:它由设置在桩体外周的卸荷套及卸荷套与桩体之间的润滑隔离层构成。卸荷套使桩体与周围土层完全隔开并由桩体带动在打桩时与之同步下沉,而当桩周土层沉陷时,卸荷套依靠隔离层内润滑材料的作用,可随土层相对桩体自由下沉而不将下拽力传给桩体,从而有效地消除了负摩阻力的作用。可广泛用于各种软基地层拟用桩基础的工程中。 六、负摩阻力的群桩效应研究大多数是单桩,实践中基本是群桩 这个跟我们的研究方法有关系,目前我们的现场实践方面的研究方法都是针对单一桩体的。另外,群桩方面的研究,运用数值分析方法也有不少研究。群桩的现场研究很值得期待呀。 七、端承桩产生负摩阻的可能性大于摩擦桩 (1)对于摩擦型桩基,当出现负摩阻力对基桩施加下拉荷载时,由于持力层压缩性较大,

浅谈负摩阻力

浅谈负摩阻力 [论文关键词]负摩阻力中性点成因影响因素防治措施计算方法 [论文摘要]负摩阻力问题严重影响着建筑物的安全,桩的负摩阻力的大小受多种因素的影响,故其准确数值很难计算。介绍和阐述桩侧负摩阻力产生的条件和机理,桩侧负摩阻力的计算方法,中性点的确定,防治和减少桩侧负摩阻力的方法。 随着人文居住环境的改善以及土地价格的不断攀升,建筑物已从多层不断的转向高层建筑,从而对地基承载力和变形要求也越来越高,越来越严格。因此地基处理变得越来越重要。在地基处理工程中,因负摩阻力问题,造成工程事故屡有发生(建筑物出现沉降、倾斜、开裂),负摩阻力问题在我国工程实践中已变成一个热点问题。下面对负摩阻力的问题进行分析、阐述。

一、负摩阻力的成因 桩周土的沉降大于桩体的沉降!桩土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。 地基土沉降过大,桩和土相对位移过大地基土将对桩产生向下的摩擦力拉力,使原来稳定的地基变得不稳定,实际荷载可能超过原来建议的地基承载力。 一般可能由以下原因或组合造成:未固结的新近回填土地基;地面超载;打桩后孔隙水压力消散引起的固结沉降;地下水位降低,有效应力增加引起土层下沉;非饱和填土因浸水而湿陷;可压缩性土经受持续荷载,引起地基土沉降;地震液化。 二、地基设计为什么要考虑负摩阻力

桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拉力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 三、如何在现场测试和估算负摩阻力 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(SlidingMicrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。 四、影响负摩阻力大小的主要因素 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位臵问题)、桩体的形状、桩土模量比等都有影响。

压裂施工中摩阻计算

*川西地区压裂施工过程中管柱摩阻计算摘要:以降阻比法为基础,分别对有机硼交联(HPG) 压裂液的前置液、携砂液的沿程管柱摩阻计算方法进行分析,结合川西地区部分井压裂施工现场的施工数据,对管柱摩阻计算公式进行修正改进后,提高了压裂施工设计和数值模拟中摩阻参数计算的准确性;同时用计算机程序实现了施工过程管柱沿程摩阻的计算,可用于模拟压裂施工全过程的摩阻计算。对四川川西地区以油管方式注入井的水力压裂施工设计及现场施工过程中井底压力的分析具有重要意义。 关键词:压裂施工;降阻比;管柱摩阻;公式;计算前言 压裂施工管柱沿程摩阻值的准确性直接影响到压裂工艺的设计过程,是确定井底压力的必要数据,也是压裂施工成功与否的主要因素。在实际压裂设计中,大多数采用经验估计法对管柱的摩阻损失进行计算,往往不能准确地预测实际摩阻,尤其不能模拟压裂施工整个过程的实际摩阻值。管柱的摩阻计算单纯的从流变学和水力学的角度去计算,目前还不能被实际应用。文章以降阻比法为基础,分别就HPG压裂液、相应的携砂液沿程管柱摩阻计算方法进行分析对比,并结合川西地区大部分压裂井的现场施工数据,对压裂液的沿程摩阻有关计算公式进行改进,实现压裂施工全过程摩阻计算的计算机程序化。实例计算表明,改进后的摩阻计算公式以及压裂施工过程摩阻计算结果与现场实际数据有较高的符合率,可以用于川西地区压裂施工过程摩阻的模拟计算。 1 压裂液摩阻的计算 Lord和MC Gowen等人[1,2]利用其他人的实验资料提出了计算溶胶及混砂液摩阻的方法。采用延迟交联技术,使交联HPG与HPG溶胶在井筒中的摩阻相差不大,因此,Lord等人仍用溶胶的数据提出了一个降阻比(δ)的概念: (1) 式中:(△Pf)0为清水的摩阻损失,MPa;(△Pf)P为压裂液的摩阻损失,MPa。 清水的摩阻损失可以用经典水力学雷诺数与摩阻系数关系进行计算,或者同样采用Lord等人提出的回归公式: (2) 式中:D为压裂油管柱的内径,mm;Q为施工过程泵注排量,m3/min;H为油管长度,m。在实验数据处理中认为,降阻比δ是压裂液平均流速υ、稠化剂浓度CHPG、支撑剂浓度CP的函数,通常表示为δ=f(υ、CHPG、CP)。通过对1 049个实验数据的线性回归,结合实际矿场条件,提出了实用于HPG压裂液降阻比的计算经验关系式: (3) 式中:CP为支撑剂的浓度,kg/m3;CHPG为稠化剂HPG的浓度,kg/m3。 从本质上讲,降阻比就是牛顿流体与非牛顿流体的不同流变特性在摩阻方面的表现,其值大小主要受物料来源及交联特性的影响[3]。因此,由上述公式计算所得到的压裂液摩阻与现场实测数据还有很大的误差,必须利用获得的实际压裂液的摩阻损失值进行现场校正,以便更为真实地反映压裂液的摩阻值。 1.1 前置液摩阻计算 令式(3)中的CP = 0(即未加支撑剂的情况),可以求出前置液阶段的降阻比δ,结合(1)、(2)式可以计算出前置液的摩阻值。为了获得与实际更接近的结果,在不改变降阻比影响因素的前提下,以川西地区部分压裂井前置液阶段施工过程的实际摩阻值为基础,结合降阻比公式,对式(3)的系数进行反复修正计算,最终得到适合于川西地区压裂液体系的降阻比计算式:

桩基负摩阻力问题讨论

桩基负摩阻力问题讨论 (1)负摩擦力是怎么形成的?[简单成因,机理很复杂] (2)地基设计为什么要考虑负摩擦力? (3)实践中什么情况下一般考虑负摩擦力? (4)如何测试和估算负摩擦力? (5)影响抚摩擦力大小的主要因素? (6)工程实践中都有那些方法减小抚摩擦力? (7)抚摩擦力的群桩效应?[研究大多数是单桩,实践中基本是群桩] (8)目前的最新进展。 (1)负摩擦力是怎么形成的? 桩周土的沉降大于桩体的沉降!桩—土的相对位移(或者相对位移趋势)是形成摩擦力的原因,桩基础中,如果土给桩体提供向上的摩擦力就称为正摩阻力;反之,则为负摩阻力。(2)地基设计为什么要考虑负摩擦力? 桩周负摩阻力非但不能为承担上部荷载作出贡献,反而要产生作用于桩侧的下拽力。而造成桩端地基的屈服或破坏、桩身破坏、结构物不均匀沉降等影响。因此,考虑桩侧负摩阻力对桩基础的作用是桩基础设计必不可少的问题之一。 (3)实践中什么情况下一般考虑负摩擦力? 这个问题,可以从负摩阻力产生原因来说明:产生负摩擦力的原因主要有, 1)欠固结软粘土或新填土的自重固结; 2)大面积堆载使桩周土层下沉; 3)正常固结软粘土地区地下水位全面下降,有效应力增加引起土层下沉; 4)湿陷性黄土湿陷引起沉降。 (4)如何测试和估算负摩擦力? 在桩体安装应变计这是目前测单桩负摩阻力问题的最常用的方法。80年代,有工程运用瑞士生产的滑动侧微计(Sliding Micrometer---ISETH)来测定。 普遍的方法都是测定桩体轴力,从而推算桩侧摩阻力。这个方法来推算桩侧摩阻力、负摩阻力。这个方法大家可以分析一下利弊,从而讨论一个新的途径、方法可以直接测定桩侧摩阻力问题。这样相比结果更精确可靠,我们的研究也将是一个不小的进步!大家都来思考一下罗,“测定桩侧摩阻力问题!” (5)影响负摩擦力大小的主要因素? 桩周土的特性当然是首当其冲的,其次桩端土特性也不可忽视(因为其之间影响着中性点的位置问题)、桩体的形状、桩土模量比等都有影响。 (6)工程实践中都有那些方法减小抚摩擦力? 沥青涂层这个方法运用很是广泛,效果似乎也不错。这个方法以单桩为考虑对象;另外,隔离桩方法,这个以群桩为研究对象,但是似乎目前运用的不是很广,大家可以找找这方面的咚咚,一起讨论一下,分析原因,相比也是一个不错的思考问题的途径。 (7)负摩擦力的群桩效应?[研究大多数是单桩,实践中基本是群桩] 这个估计跟我们的研究方法有问题吧,目前我们的现场实践方面的研究方法都是针对单一的桩体的。另外,群桩方面的研究,运用数值分析方法也有不少研究。群桩的现场研究很

管道摩阻损失计算方法说明

管道摩阻损失的计算公式 根据《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》TB10002.3-2005第6.3.4条规定,后张法构件张拉时,由于钢筋与管道间的摩擦引起的应力损失按下式计算: ()1[1]kx L con e μθσσ-=-+ 式中 1L σ——由于摩擦引起的应力损失(MPa); con σ——钢筋(锚下)控制应力(MPa); θ——从张拉端至计算截面的长度上,钢筋弯起角之和(rad); x ——从张拉端至计算截面的管道长度(m); μ——钢筋与管道之间的摩擦系数; k ——考虑每米管道对其设计位置的偏差系数。 根据公式推导k 和μ计算公式,设主动端压力传感器测试值为P 1,被动端为P 2,此时管道长度为l , θ为管道全长的曲线包角,考虑公式两边同乘以预应力钢绞线的有效面积,则可得: )(1 )(1 21kl e P P P +μθ--=- 即: )(12 kl e P P +μθ-= 两边取对数可得: )/ln(12P P kl -=+μθ 令 )/ln(12P P y -=, 则 y kl =+μθ 由此,对不同管道的测量可得一系列方程式: 111y kl =+μθ 即 0111=-+y kl μθ 222y kl =+μθ 即 0222=-+y kl μθ n n n y kl =+μθ 即 0=-+n n n y kl μθ

由于测试存在误差,上式右边不会为零,假设 1111F =Δy kl -+μθ 2222F =Δy kl -+μθ n n n n y kl F =Δ-+μθ 则利用最小二乘法原理,同时令21)(i n i F q ΔΣ==有: 2121)()(i i n i i i n i y kl F q -+==∑==μθΔΣ 当 00=??=??k q q μ (3-5) 时,21)(i n i F ΔΣ=取得最小值。 可得: 01121111 2 =-+=-+∑∑∑∑∑∑======n i i i n i i n i i i n i i i n i i i n i i l y l k l y l k θμθθθμ 式中:i y 为第i 管道对应的))/ln((12P P -值,i l 为第i 个管道对应的预应力筋空间曲线长度(m),i θ为第i 个管道对应的预应力筋空间曲线包角(rad),n 为实测的管道数目,且不同线形的预应力筋数目不小于2。解方程组得k 及μ值。

阀门流量系数与流阻系数的计算公式V1.2

阀门流量系数与流阻系数的计算公式 1、流量系数标准公式: )1式()m ( 2---?=p Q C ρ Q :体积流量,单位m 3/h ρ:介质相对水的密度,单位为1 △p :静压力损失,单位bar 2、流量系数计算用公式: )2(式)m ( 1000002水---???=p Q C ρρ Q :体积流量,单位m 3/h ρ:介质密度,单位kg/m 3 ρ水:水的密度,单位kg/m 3 △p :静压力损失,单位Pa 3、流阻系数: )3(式(无量纲) 22---?= v p K ρ △p :静压力损失,单位Pa ρ:介质密度,单位kg/m 3 v :流体速度,单位m/s 4、水头损失: )4(式---(m) g p h ρ?= △p :静压力损失,Pa ρ:介质密度,kg/m 3 g :重力加速度,g=9.80665m/s 2 5、阀门流量系数和流阻系数的关系式: )5(式---360002 ?=K A C

C :流量系数 A :阀门截面积,单位m 2 K :流阻系数 6、流阻系数与当量长度换算公式 )6(式---D L K ? =λ K :流阻系数 λ:沿程阻力系数 L :阀门当量长度,单位m D :阀门直径,单位m 7、沿程阻力系数 )7(式---22v L D h g ????=λ λ:沿程阻力系数,无量纲 g :重力加速度,g=9.80665m/s 2 h :水头损失,单位m D :阀门直径,单位m L :阀门当量长度,单位m v :流体速度,单位m/s 8、功率损失 )8(式---106.36????=Q g h P ρ P :功率损失,单位KW h :水头损失,单位m ρ:介质密度,kg/m 3 g :重力加速度,g=9.80665m/s 2 Q :体积流量,单位m 3/h

摩阻力公式

i i 1-i 1-i vi 2 1Z Z P γγσ++=∑ P 为外加荷载强度,γ为有效重度,Z 为有效厚度。 vi ni q βσ= ni q 与各层土中的给定摩阻力强度比较,取较小值。得 ni ni l q u ∑=N N 为总的摩阻力,u 为桩的周长,ni q 为第i 层的摩阻力强度,ni l 为第i 层的有效厚度(中性点所在的层的有效厚度为其上一层到中性点的距离,其余为各层厚度) 群桩基础——由基桩和连接于桩顶的承台共同组成。若桩身全部埋于土中,承台底面与土体接触,则称为低承台桩基;若桩身上部露出地面而承台底位于地面以上,则称为高承台桩基。建筑桩基通常为低承台桩基础。 单桩基础——采用一根桩(通常为大直径桩)以承受和传递上部结构(通常为柱)荷载的独立基础。 群桩基础——由2根以上基桩组成的桩基础。 基桩——群桩基础中的单桩。 复合桩基——由桩和承台底地基土共同承担荷载的桩基。 复合基桩——包含承台底土阻力的基桩。

单桩竖向极限承载力——单柱在竖向荷载作用下到达破坏状态前或出现不适于继续承载的变形时所对应的最大荷载。它取决于土对桩的支承阻力和桩身材料强度,一般由土对桩的支承阻力控制,对于端承桩、超长桩和桩身质量有缺陷的桩,可能由桩身材料强度控制。 群桩效应——群桩基础受竖向荷载后,由于承台、桩、土的相互作用使其桩侧阻力、桩端阻力、沉降等性状发生变化而与单桩明显不同,承载力往往不等于各单桩承载力之和,称其为群桩效应。群桩效应受土性、桩距、桩数、桩的长径比、桩长与承台宽度比、成桩方法等多因素的影响而变化。 群桩效应系数——用以度量构成群桩承载力的各个分量因群桩效应而降低或提高的幅度指标,如侧阻、端阻、承台底土阻力的群桩效应系数。 桩侧阻力群桩效应系数——群桩中的基桩平均极限侧阻与单桩平均极限侧阻之比。 桩端阻力群桩效应系数——群桩中的基桩平均极限端阻与单桩平均极限端阻之比。 桩侧阻端阻综合群桩效应系数——群桩中的基桩平均极限承载力与单桩极限承载力之比。 承台底土阻力群桩效应系数——群桩承台底平均极限土阻力与承台底地基土极限阻力之比。 负摩阻力——桩身周围土由于自重固结、自重湿陷、地面附加荷载等原因而产生大于桩身的沉降时,土对桩侧表面所产生的向下摩阻力。在桩身某一深度处的桩土位移量相等,该处称为中性点。中性点是正、负摩阻力的分界点。 下拉荷载——对于单桩基础,中性点以上负摩阻力的累计值即为下拉荷载。对于群桩基础中的基桩,尚需考虑负摩阻力的群桩效应,即其下拉荷载尚应将单桩下拉荷载乘以相应的负摩阻力群桩效应系数予以折减。 闭塞效应——开口管桩沉入过程,桩端土一部分被挤向外围,一部分涌入管内形成“土塞”。土塞受到管壁摩阻力作用将产生一定压缩,土塞高度及其闭塞程度与土性、管径、壁厚及进入持力层的深度等诸多因素有关。闭塞程度直接影响端阻发挥与破坏性状及桩的承载力。称此为“闭塞效应”。

摩擦系数及其计算

达芬奇1508年提出假设,摩擦系数一般为0.25 阿芒汤1699年,摩擦系数0.3 比尤里芬格1730年,摩擦系数0.3 库伦,十八世纪,确定压力对摩擦系数的影响,并求出几种材料配合的摩擦系数的不同数值。俄国,科捷利尼科夫、彼得罗夫,十九世纪中叶,摩擦偶件的摩擦系数并非不变 摩擦系数影响因素: 1材料本性及摩擦表面是否有膜(润滑油、氧化物、污垢) 2静止接触的延续时间 3施加载荷的速度 4摩擦组合件的刚度及弹性 5滑动速度 6摩擦组合件的温度状态 7压力 8物体的接触特性,表面尺寸,重叠系数 9表面质量及粗糙度 A Static Friction Model for Elastic—Plastic Contacting Rough Surfaces. 形状误差对过盈联接摩擦力的影响分析及其修正 摩擦分类: 1动摩擦力,对应于很大的、不可逆的相对位移,相对位移大小与外施力无关。 2非全静摩擦力,对应于很小的、局部可逆的相对位移,位移大小与外施力成正比,称为初位移,微米级。 3全静摩擦力,对应于初位移的极限值,初位移转变成相对位移。 根据运动学特征划分 滑动摩擦、旋转摩擦(变相的滑动摩擦)、滚动摩擦 根据表面状态,是否润滑的特征 1纯净摩擦,无吸附膜、氧化物等 2干摩擦,表面间无润滑油、污垢等 3边界摩擦,表面被一层润滑油分开,润滑油极薄(<0.1微米) 4液体摩擦 5半干摩擦 6半液体摩擦 静摩擦系数,克服两物体的接触耦合、使之摆脱静止状态所耗费的最大切向力对应接触物体所受压力载荷的比率。 滑动摩擦系数,克服两物体相对移动的阻力(超出初位移的范围以外)所耗费的切向力对应接触物体所受压力载荷的比率。 滚动阻力系数,··· 库伦方程,采用的滚动摩擦系数 P T k r T——滚动摩擦力,r——圆柱体的半径,P——接触物体所受压力 接触面积、粗糙度、载荷的影响 由于固体表面的粗糙度及波纹度,使得两个固体表面总是在个别的点上发生接触。 两个相互叠合的表面只是在其某些凸部发生接触,而这些凸部的总接触面积只占接触轮

相关文档
最新文档