220kV电力变压器大修作业指导书

220kV电力变压器大修作业指导书
220kV电力变压器大修作业指导书

220kV 电力变压器大修作业指导书

1 目的

为规范220kV 变压器大修的工作人员的作业程序,确保 大修质量达到规定标准,特编写本指导书。 2

适用范围

适用于220kV 电力变压器大修的过程指导 电业安全工作规程 电力变压器检修导则 电力变压器运行规程 环境管理体系

规范及使用指

质量管理体系 基础和术语 质量管理体系 要求

标准化工作导则

职业健康安全管理体系 规范 电力标准编写的基本规定

中电联技经[2002]12 号

电力建设工程预算定额第三册

电气设备安装工程(2002年版) 技术术语

变压器大修:就是指将变压器解体,吊罩检修,包括对 变压器

3

规范性引用文件 DL/408-91 DL/T573-95 DL/T572-95 IS014001 -1996 南

ISO9000-2000 ISO9001 -2000 GB/T 1-1 — 2000

GB/T28001 -2001

DL/T600-1996

芯体、附件等内外部分项目进行检查与修理。

5 安全措施

5.1安全注意事项

5.1.1认真执行安全规程及工作票所列安全措施。

5.1.2进入现场必须穿工作服、绝缘鞋、戴安全帽、高处作业必须系

安全带。

5.1.3 在变压器器身上检修必须穿干净软底鞋和专用工作服。

5.1.4 工作现场保持清洁,严禁烟火并备好消防器材。

5.1.5 严禁上下抛掷工、器具。

5.1.6 起重工作应分工明确,专人指挥,并有统一信号。

5.1.7 根据变压器钟罩的重量选择起重工具,包括起重

机、钢丝绳、吊环、U型挂环、千斤顶、枕

木等。

5.1.8 起重前应先拆除影响起重工作的各种连接。

5.1.9 起吊变压器整体或钟罩时,钢丝绳应分别挂在专用

起吊装置上,遇棱角处应放衬垫;起吊100mm左右时应停

留检查悬挂及捆绑情况,确认可靠后再继续起吊。

5.1.10 起吊时钢丝绳的夹角不应大于60度,否则应采用

专用吊具或调整钢丝绳套。

5.1.11 起吊或落回钟罩时,应系缆绳,由专人扶持,使其保持平稳。

5.1.13 起吊或降落速度应均匀,掌握好重心,防止倾斜。

5.1.14 起吊或落回钟罩时,应使高、低压侧引线,分接

开关支架与箱壁间保持一定的间隙,防止碰伤器身。

5.1.15 当钟罩因受条件限制,起吊后不能移动而需在空中停留时,应采取支撑等防止坠落措施。

5.1.16 吊装套管时,其斜度应与套管升高座的斜度基本一致,并用缆绳绑扎好,防止斜倒损坏瓷件。

5.1.17 吊车起重时,应检查支撑稳定性,注意起重臂伸张的角度、回转范围与邻近带电设备的安全距离,并设专人监护。

5.2 危险点及控制措施

表1危险点及控制措施

变压器行业kVSSS系列变压器损耗参数对照表

变压器行业10kV级S9、S11、S13系列变压器损耗参数对照表 S13-M型全密封电力变压器主要技术参数

负载损耗:即可变损失。与通过的电流的平方成正比。负载损耗是额定电流下与参考温度下的负载损耗。展开些说,所谓额定电流是指一次侧分接位置必须是主分接,不能是其它分接的额定电流。对参考温度而言,要看变压器的绝缘材料的耐热等级。对油浸式变压器而言,不论是自冷、风冷或强油风冷,都有是A级绝缘材料,其参考温度是根据传统概念加以规定的,都是75℃。 1 变压器损耗大致为两项:铁损和线损。其中铁损主要为变压器铁芯在工作时的磁滞损耗所造成的,其大小与电压相关较大,变压器空载还是带负载对于铁损影响不大; 2 负载电流流过变压器线圈,由于线圈本身的电阻,将有一部分功率损耗在线圈中,这部分损耗为“线损”,电流越大,损耗越大,所以负荷越大,线损也越大; 3 空载时,只有励磁电流流过变压器,所以线损很小; 4 上述“铁损”和“线损”之和就是变压器的大部分损耗,负载时的线损与铁损之和就是变压器的负载损耗,而空载损耗意义也是如此。 相关知识:1)推广使用低损耗变压器 (1)铁芯损耗的控制 变压器损耗中的空载损耗,即铁损,主要发生在变压器铁芯叠片内,主要是因交变的磁力线通过铁芯产生磁滞及涡流而带来的损耗。 最早用于变压器铁芯的材料是易于磁化和退磁的软熟铁,为了克服磁回路中由周期性磁化所产生的磁阻损失和铁芯由于受交变磁通切割而产生的涡流,变压器铁芯是由铁线束制成,而不是由整块铁构成。 1900年左右,经研究发现在铁中加入少量的硅或铝可大大降低磁路损耗,增大导磁率,且使电阻率增大,涡流损耗降低。经多次改进,用0.35mm厚的硅钢片来代替铁线制作变压器铁芯。 1903来世界各国都在积极研究生产节能材料,变压器的铁芯材料已发展到现在最新的节能材料——非晶态磁性材料如2605S2,非晶合金铁芯变压器便应运而生。使用2605S2制作的变压器,其铁损仅为硅钢变压器的1/5,铁损大幅度降低。 (2)变压器系列的节能效果 上述非晶合金铁芯变压器,具有低噪音、低损耗等特点,其空载损耗仅为常规产品的1/5,且全密封免维护,运行费用极低。 我国S7系列变压器是1980年后推出的变压器,其效率较SJ、SJL、SL、SL1系列的变压器高,其负载损耗也较高。 80年代中期又设计生产出S9系列变压器,其价格较S7系列平均高出20%,空载损耗较S7系列平均降低8%,负载损耗平均降低24%,并且国家已明令在1998年底前淘汰S7、SL7系列,推广应用S9系列。 S11是推广应用的低损耗变压器。S11型变压器卷铁心改变了传统的叠片式铁心结构。硅钢片连续卷制,铁心无接缝,大大减少了磁阻,空载电流减少了60~80,提高了功率因数,降低了电网线损,改善了电网的供电品质。连续卷绕充分利用了硅钢片的取向性,空载损耗降低20~35。运行时的噪音水平降低到30~45dB,保护了环境。 非晶合金铁心的S11系列配电变压器系列的空载损耗较S9系列降低75%左右,但其价格仅比S9系列平均高出30%,其负载损耗与S9系列变压器相等。

施工单位工程质量合格证明书

施工单位工程质量合格 证明书 单位工程名称:七台河市财政大厦 建筑面积:11244.83m2 结构类型、层数:框架结构,地下一层,地上十二层施工单位名称:江苏江都建设七公司大桥分公司

1、人员签字 应分别由该项目负责人、企业技术负责人或总工程师及企业法人代表签名。 2、日期 日期应以签名时间为准,三个日期可以不相同。 3、质量验收意见填写要求 (1)施工单位质量责任行为履行情况(如是否依法承揽工程、分包工程签订合同与资质相符;是否建立工程质量保证体系,是否建立各级质量责任制及质量控制程序)。 (2)本工程是否已按要求完成工程设计和合同约定的各项内容。 (3)在施工过程中,执行强制性标准和强制性条文的情况。 (4)施工过程中对监理和监督机构提出的要求整改的质量问 题是否确已改正,并得到监理等单位认可。 (5)工程完工后、企业自查,是否确认工程达到竣工标准,工程质量达到合理质量等级,满足结构安全和使用功能要求。 (6)工程质量保证资料(包括检测报告的功能试验资料)基本齐全且已按要求装订成册。 (7)建筑物沉淀观察结果和倾斜率情况。 (8)其他需说明的情况。

监理单位竣工验收证明书填写要求 1、人员签字 应分别由该总监理工程师、企业技术负责人和企业法人代表签名。 2、日期 日期应以签名时间为准,三个日期可以不相同。 3、质量验收意见填写要求 (1)监理单位质量责任行为履行情况(是否依法签订了工程监理合同、是否到有关部门履行备案手续)。 (2)本工程是否已按要求完成监理合同约定的各项内容。 (3)在监理过程中,执行强制性标准和强制性条文的情况。 (4)监理过程中对施工单位提出的要求整改的质量问题是否确已改正,并得到监理单位认可。 监理单位工程质量合格 证明书 单位工程名称:七台河市财政大厦 建筑面积:11244.83m2 结构类型、层数:框架结构,地下一层,地上十二层监理单位名称:七台河市博望监理公司

变压器绕组接线组别及各分接的电压比调试作业指导书

变压器绕组接线组别及各分接的电压比调试作业指导书 1.概况及适用范围 本作业指导书适用于35KV及以下的油浸、干式变压器交接性试验时变压器绕组接线组别及各分接的电压比试验。 2.编制依据 本作业指导书如要依据和参考了如下文献编制而成: 《GB50150-2006电气装置安装工程电气设备交接试验》 3.知识拓展 3.1常识 3.1.1在任一瞬间,高压绕组的某一端的电位为正时,低压绕组也有一端的电位为正,这两个绕组间同极性的一端称为同名端,记作“˙”,反之则为异名端,记作“-”。 3.1.2 Yy联结的三相变压器,共有Yy0、Yy4、Yy8、Yy6、Yy10、Yy2六种联结组别,标号为偶数 Yd联结的三相变压器,共有Yd1、Yd5、Yd9、Yd7、Yd11、Yd3六种联结组别,标号为奇数 为了避免制造和使用上的混乱,国家标准规定对单相双绕组电力变压器只有ⅠⅠ0联结组别一种。对三相双绕组电力变压器规定只有Yyn0、Yd11、YNd11、YNy0和Yy0五种。 3.1.3标准组别的应用 Yyn0组别的三相电力变压器用于三相四线制配电系统中,供电

给动力和照明的混合负载; Yd11组别的三相电力变压器用于低压高于0.4kV的线路中;YNd11组别的三相电力变压器用于110kV以上的中性点需接地的高压线路中; YNy0组别的三相电力变压器用于原边需接地的系统中; Yy0组别的三相电力变压器用于供电给三相动力负载的线路中。在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 3.1.4 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中

电力变压器的详细技术参数

电力变压器技术参数详解 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA):额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A):变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示. H、相数和频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV.奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为

电力变压器分接方式(doc 10页)

电力变压器分接方式(doc 10页)

中华人民共和国国家标准 UDC 621.314.222.6 电力变压器GB 1094.4—85 第四部分分接和联结方法代替1094—79 Power transformers Part 4:Tappings and connections 国家标准局1985-11-22 发布1986-07-01 实施 本标准参照采用国际标准IEC 76-4(1976)《电力变压器第四部分分接和连接方法》。 1 范围 本标准适用于变压器的一对绕组间只在一个带分接的绕组上进行调压的情况。对于自耦 变压器,分接位置在线端还是在中性点须在订货时注明。 有关电压相位移的分接变换,本标准不予考虑。 2 各种调压的要求 2.1 总则 如无明确要求,则变压器不提供分接头。当需要分接头时,应指明它们是用于无励磁调

压或用于有载调压。 2.2 主分接 除非另有其他规定,当分接位置数为奇数时,主分接(见GB1094.1—85《电力变压器第 一部分总则》第3.5.1 款)系指中间分接。当分接位置数为偶数时,主分接系指分接绕组的 两个中间分接位置中有效匝数较多的一个。 如果这样下定义的分接不是满容量分接,则主分接应是靠近的一个满容量分接(见GB 1094.1 第3.5.4 款,主分接是满容量分接)。 2.3 分接范围的表示 分接绕组的分接范围按下述方式表示: 如果有正、负两种分接:±a%或+a%,-b%; 如果只有正分接或只有负分接:+a%或-b%。 2.4 短路阻抗的表示 与短路阻抗有关的绕组应按下述方式表示: 对双绕组变压器,表示出与短路阻抗有关的绕组即可。以H.V.表示高压绕组阻抗,L.V. 表示低压绕组阻抗H.V./L.V.成对绕组间的短路阻抗,例如折算到H. V.绕组的,就称为H.V./L.V. 阻抗(H.V.下面划横线)或称为H.V./L.V.成对绕组间的H.V.侧阻抗。若折算到L.H.绕组的,就

变压器的接线方式

变压器的接线方式、过载能力等介绍 接线方式 1、短接变压器的“输入”与“输出”接线端子用兆欧表测试其与地线的绝缘电阻。1000V兆欧表测量时,阻值大于2M欧姆。 2、变压器输入、输出电源线截面配线应满足其电流值大小的要求;按照 2-2.5A/min2电流密度配置为宜。 3、输入、输出三相电源线应按变压器接线板母线颜色黄、绿、红分别接A 相、 B 相、 C 相,中性零线应与变压器压器中性零线相接,接地线与变压器外壳(如变压器有机箱应与箱体地线标志对应相连接)。检查输入输出线,确认正确无误。 4、先空载通电,观察测试输入输出电压符合要求。同时观察机器内部是否有异响、打火、异味等非正常现象,若有异常,请立即断开输入电源。 5、当空载测试完成且正常后,方可接入负载。 过载能力 干式变压器的过载能力与环境温度、过载前的负载情况(起始负载)、变压器的绝缘散热情况和发热时间常数等有关,若有需要,可向生产厂索取干变的过负荷曲线。如何利用其过载能力呢?这里有两点供参考:(1)选择计算变压器容量时可适当减小:充分考虑某些轧钢、焊接等设备短时冲击过负荷的可能性--尽量利用干式变压器的较强过载能力而减小变压器容量;对某些不均匀负荷的场所,如供夜间照明等为主的居民区、文化娱乐设施以及空调和白天照明为主的商场等,可充分利用其过载能力,适当减小变压器容量,使其主运行时间处于满载或短时过载。(2)可减少备用容量或台数:在某些场所,对变压器的备用系数要求较高,使得工程选配的变压器容量大、台数多。而利用干变的过载能力,在考虑其备用容量时可予以压缩;在确定备用台数时亦可减少。变压器处于过载运行时,一定要注意监测其运行温度:若温度上升达155℃(有报警发出)即应采取减载措施(减去某些次要负荷),以确保对主要负荷的安全供电。 选型 干式变压器的安全运行和使用寿命,很大程度上取决于变压器绕组绝缘的安全可靠。绕组温度超过绝缘耐受温度使绝缘破坏,是导致变压器不能正常工作的主要原因之一,因此对变压器的运行温度的监测及其报警控制是十分重要的。 (1)风机自动控制:通过预埋在低压绕组最热处的Pt100热敏测温电阻测取温度信号。变压器负荷增大,运行温度上升,当绕组温度达110℃时,系统自动启动风机冷却;当绕组温度低至90℃时,系统自动停止风机。

变压器的接线方式及钟点数

变压器的接线方式及钟点数的确定 判断变压器的联接组别方法 在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器接线方式有4种基本连接形式:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。 三相变压器在电力系统和三相可控整流的触发电路中,都会碰到变压器的极性和联接组别的接线问题。变压器绕组的联接组,是由变压器原、次边三相绕组联接方式不同,使得原、次边之间各个对应线电压的相位关系有所不同,来划分联接组别。通常是采用线电压矢量图对三相变压器的各种联接组别进行接线和识别,对初学者和现场操作者不易掌握。而利用相电压矢量图来对三相变压器各种联接组别进行接线和识别,此种方法具有易学懂、易记牢,在实用中即简便又可靠的特点,特别是对Y/△和△/Y的联接组,更显示出它的优越性。下面以实例来说明用相电压矢量图对三相变压器的联接组别的接线和识别的方法。 1 用相电压矢量图画出Y/△接法的接线图 首先画出原边三相相电压矢量A、B、C,以原边A相相电压为基准,顺时针旋转到所要求的联接组。 如图1所示,Y/△-11的联接组别,顺时针旋转了330°后再画出次边a相的相电压矢量,此a相相电压矢量在原边A相与B相反方向-B的合成矢量上,由于原次边三相绕组A、B、C和a、b、c相对应,我们把次边a相绕组的头连接次边b相绕组尾,作为次边a相的输出线,由此在三角形接法中,只要确定了次边a相的连结,其他两相的头尾连接顺序和引出线就不会弄错。因此根据原次边相电压矢量便可画出Y/△-11组接线图,如图2所示。

电力变压器的运行方式及容量选择

电力变压器的运行方式及容量选择 【摘要】电力变压器是生产企业主要用电设备之一,其运行方式及容量选择是否妥当与企业生产能否正常进行、电费开支多少有很大关系。本文主要分析了电力变压器的运行方式及容量选择。 【关键词】电力变压器;运行方式;容量选择 一、电力变压器的运行方式 1.一般运行条件 (2)无励磁调压变压器在额定电压±5%范围内改换分接位置运行时,其额定容量不变。 (3)油浸式自然循环自冷变压器,冷却介质最高温度为40℃时,最高顶层油温不超过95℃(制造厂有规定的按制造厂规定)。当冷却介质温度较低时,顶层油温也相应降低。自然循环冷却变压器的顶层油温一般不宜经常超过85℃。 (4)干式变压器的温度限值应按制造厂的规定。 (5)变压器三相负载不平衡时,应监视最大一相的电流。接线为Y,yn0和Y,Zn11的配电变压器,中性线电流的允许值分别为额定电流的25%和40%,或按制造厂的规定。接线为D,yn11的配电变压器不在此限。 2.变压器在不同负载状态下的运行方式 (2)配电变压器负载状态的分类。①正常周期性负载。在周期性负载中,某段时间环境温度较高,超过额定电流,但可以由其他时间内环境温度较低或低于额定电流所补偿。从热老化的观点出发,它与设计采用的环境温度下施加额定负载是等效的;②长期急救周期性负载。要求变压器长时间在环境温度较高或超过额定电流下运行,这种运行方式可能持续几星期或几个月,将导致变压器的老化加速,但不直接危及绝缘的安全;③短期急救负载。要求变压器短时间大幅度超额定电流运行,这种负载可能导致绕组热点温度达到危险的程度,使绝缘强度暂时下降。 (3)附件和回路元件的限制。变压器的载流附件和外部回路元件应能满足超额定电流运行的要求,当任一附件和回路元件不能满足要求时,应按负载能力最小的附件和元件限制负载。 3.树脂绝缘干式变压器的运行条件 (1)树脂绝缘干式变压器在规定的绕组平均温升前提下可在限定时间内作过负载运行,允许过负载量与环境温度、变压器初始负载有关,与额定负载时的绕组温升和绕组热时间常数密切相关。制造厂可根据环境温度、所需过负载时间、过负载倍数及规格、容量,按计算结果提供不同情况下的正常过负载资料;(2)树脂绝缘干式变压器在强迫风冷情况下可短时过负载40%~50%。 二、电力变压器容量的选择 1.变压器台数的选择 选择变电所主变压器台数时应遵守下列原则: (1)对接有大量一、二级负荷的变电所,宜采用两台变压器,可保证一台变压器发生故障或检修时,另一台变压器能对一、二级负荷继续供电;(2)对只有二级负荷的变电所,如果低压侧有与其他变电所相联的联络线作为备用电源也可采用一台变压器;(3)对季节性负荷或昼夜负荷变动较大的变电所,可采用两

变压器供电方案与接线方式

牵引变电所的供电方案与接线方式 我国现行的牵引变电所供电方式绝大多数为三相-两相制式,即其原边取自电力系统的110kV或220kV三相电压,次边向两个单相供电臂馈电,其母线额定电压为27.5kV或55kV。 对于三相YN,d11或V,v接线的牵引变电所,次边两相电压的相别是原边三个相(或线)电压相别三中取二的某种组合;而对于平衡变压器,经变压器的变换,次边形成大小相等而相位相互垂直的两相电压。从广义的角度上讲,牵引变压器原次边之间除了有电压的变换外,还有电流和阻抗变换,可称为系统变换,如? .... A B Cοαβ 通过系统变换,可以获得一次侧的电力系统、牵引变压器的等值电路模型,或二次侧的电力系统、牵引变压器等值电路模型。这两个等值电路模型对于牵引供电系统的电气分析十分方便、有用,如用于电压损失,故障分析,电能计量,负序含量,谐波水平等计算。 (一)纯单相接线变压器 电力机车是单相交流负荷,显然,牵引变电所采用单相变压器最为直观、简单,单相牵引变压器和一般的单相变压器不同,一般单相变压器,都是一端接高压,另一端接地或接中性点,故可采用分级绝缘,而单相牵引变压器的高压绕组两端都接高压,故对地的绝缘要求相同,故采用全绝缘。 单相牵引变电所中的两台变压器并联接线完全一样。两台变压器的高压绕组金额相同的两相,地压绕组的一端接母线,同时供给变电所的两个臂的负荷。相邻两段接触网绝缘分开,既利于缩小事故停电范围,又提高了供电的灵活性。低压

绕组的另一端与接地网和钢轨以及回流线可靠连接,以便使钢轨、回流线中的负荷电流以及地中电流流回变压器。 纯单相接线的主要优点是变压器的容量利用率为100%,且变电所的主接线简单,设备少、占地面积小,缺点是在三相系统形成较大的负序电流,为了减少负序电流对系统的影响,各变电所变压器高压绕组所结相序依次轮换,即所谓换相连接。纯单相接线的另一个缺点是不能实现双边供电,并且变电所无三相电源,变电所的所用电须由附近地方电网引入。我国的哈尔滨—大连线全部采用纯单相接线。 (二)单相V,V接线变压器 单相V,V接线与纯单相接线的区别是两台变压器分别接不同的两个线电压,两高压绕组有公用端子,故而构成V型。两个低压绕组也有一个公共端子,接到钢轨和地网,低压绕组的另外两个端子分别接变电所的两个供电臂,两臂电压均为27.5 kV,构成所谓60度接线。 由于两臂的相位不同,故两供电臂在接触网上必须采用分相绝缘器。分相绝缘器两端电压也为27.5 kV。 与纯单相接线的另一个区别时,V,V接线牵引变压器在正常工作时,两台变压器均投入运行,其备用方式是移动备用。当一台变压器故障或检修时,由专用车将移动变压器运往变电所。 V,V接线变压器的优点是容量利用率为100%,而且可以供给所用电电能,对牵引网还可实现双边供电。变电所内设备也相对较少,这种接线在阳平关—安康线路应用。 (三)三相V,V接线变压器 电力机车是单相交流负荷,现在普遍采用三相V,v接线牵引变压器。这种变电所内装设两台三相V,v接线牵引变压器。一台运行,一台固定备用。三相V,v

工字钢质量证明书

工字钢质量证明书 篇一:◎安装工程常用物资质量证明文件及要求 安装工程常用物资质量证明文件及要求 注: 1.各类管材应有产品质量证明文件,饮用水管必须提供卫生检验报告。 2.阀门、减压装置、消防设备、卫生洁具、给水系统、中水设备、排水设备、采暖设备、热水设备、散热器、锅炉及附属设 备、各类开式水箱、分水器、安全阀、水位计、减压阀、热交换器、补偿器、疏水器、除污器、过滤器、游泳池水系统设备等应有产品质量合格证及相关检验报告。 3.对于国家有规定的特定设备及材料,如消防、卫生、压力容器等,应附有相应资质检验单位提供的检验报告。如:安全阀、 减压阀的调试报告、锅炉(承压设备)焊缝无损探伤报告、给水管道材料卫生检验报告、卫生器具环保检验报告、水表和热量表计量检定证书等。 4.绝热材料应有产品质量合格证和质检报告,镀锌产品须有镀锌质量证明。 5.主要设备、器具应有安装使用说明书。

6.对涉及建筑工程质量、安全、节能、环保的建筑材料,实行供应备案管理。 7.已实施产品强制认证制度的消防产品:点型感烟火灾探测器、点型感温火探测器、火灾报警控制器、洒水喷头、湿式报警阀、 水流指示器、消防用压力开关、消防水带、手动火灾报警按钮、消防联动控制设备。实施型式认可制度的消防产品:灭火剂、防火门、消火栓、灭火器、消防接口、消防枪炮、消防应急灯具、火灾报警设备(可燃气体报警控制器、可燃气体探测器、家用可燃气体报警器)、防火阻燃材料(钢结构、饰面型、电缆、无机防火堵料、有机防火堵料、堵火包)。实施强制检验制度的消防产品:气体灭火系统、干粉灭火系统、气溶胶灭火系统、防火卷帘门、防排烟风机、防火阀、排烟防火阀、消防供水设备、消防供水设备、消防栓箱等。 8.境内制造、使用的锅炉压力容器,制造企业必须取得《中华人民共和国锅炉压力容器制造许可证》。9.安装于建筑工程中用于贸易结算的电度表、水表、煤气表、热量表等计量仪表的生产厂家必须提供产品合格证和法定计量 检测单位出具的计量检定。 10.国家实施生产许可证产品目录包括:电焊表、空气压缩机、家用燃气快速热水器、泵、燃气调压器、铜及

电力变压器有载分接开关维护问题

电力变压器有载分接开 关维护问题 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电力变压器有载分接开关维护问题有载调压变压器在电力系统中有着重要作用,它不仅能稳定负荷中心电压,而且也是联络电网、调整负载潮流、改善无功分配等不可缺少的重要设备。目前,乌兰察布电业局共有69台电力变压器,其中54台 35kV及以上变压器均为有载调压变压器。 有载调压变压器上安装的有载分接开关在运行和操作中难免会出现故障,这些故障可能是制造厂质量问题,也有可能是运行维护不当引起的。据统计,2004年全国220kV及以上变压器非计划停运中,有载分接开关导致的非计划停运次数为8次,占非计划停运总时间的10.343%。因此,变压器有载分接开关的安全运行维护非常关键。 有载分接开关基本原理、结构

有载分接开关,是一种能在励磁状态下变换分接位置的电器装置。有载分接开关调压的基本原理,就是在变压器绕组中引出若干分接头后,通过它在不中断负载电流的情况下,由一个分接头切换到另一个分接头,来改变有效匝数,即改变变压器的电压比,从而实现调压的目的。因此,有载分接开关在操作过程中,一要保证负载电流的连续性;二要在切换分接的动作中具有良好的断弧性能。 有载分接开关在变换分接头过程中,必须利用电阻实现过渡,以限制其过渡时的环流。通常采用的是电阻式组合型有载分接开关,实际工作中,电阻限流有载分接开关的结构可分为3个部分,即切换开关、选择开关、操作结构。这些中的哪一部分出现问题都会自接影响变压器的正常运行。 有载分接开关在运行中出现的问题 问题一

变压器接线方式详解

[分享]变压器接线方式详解(标题无法改,这是共享资源) 例1:一台双绕组变压器,高压星形联结绕组额定电压为10000V,低压为中性点引出的星形联结绕组,额定电压为400V。两个星形联结绕组的电压同相位(钟时序数0)。 其联结组标号为Y,yn0。 例2:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为38.5kV,低压为三角形联结绕组,额定电压为10.5kV。两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。 所以,联结组标号为YN,yn0,d11。 例3:一台带第三绕组的自耦变压器,自耦联结的一对绕组为中性点引出的星形联结,其额定电压分别为220kV,121kV;第三绕组为三角形联结,额定电压为11kV。自耦联结的一对绕组电压同相位(钟时序数0),而三角形联结绕组上的电压超前于星形联结绕组上的电压30°(钟时序数11)。 所以,联结组标号为YN,a0,d11。 例4:一台单相双绕组变压器,高压绕组额定电压为550kV,低压绕组额定电压为20kV。则,连接组标号为I,I0。 例5:一台双绕组变压器,高压绕组为星三角变换,低压绕组为三角形联结,低压绕组电压超前于高压为星形联结时的电压30°(钟时序数11),与三角形联结时的电压同相位。 则,联结组标号为Y-D,d11-0 例6:一台带分裂绕组的变压器,高压绕组为星形联结有中性点引出,低压绕组为两个三角形联结的分裂绕组,低压绕组上的电压超前于星形联结绕组上的电压30°(钟时序数11)。则,联结组标号为YN,d11-d11。 变压器采用三角形接法和星形接法各有什么意义 D-D;Y-Y;D-Y;Y-D这四种变压器用于什么场合有什么不同吗? 另外比如一个Y-Y变压器下级再接一个D-Y变压器,那么Y-Y的n线能不能和下级的D-Y 变压器的n线接到一起?好像不对吧,该怎么处理这种情况? Y型因为有中性点可以接地所以多用于为高压侧提供接地,也就是说: Y-D 一般做降压变压器, D-Y一般做升压变压器,但是事实上很多配电变压器(属于降压变压器)也采用D-Y接法,只是接地测变成了低压侧而已。 D-D的好处是在其中一组坏的情况下,可以将这组移去检修而保持另两足继续工作只是容量变为原来的58%, Y-Y一般不采用,因为它没有谐波通路,会使变压器输出产生很大的畸变。 对于两级变压器的问题,比方说你们办公楼会有一个10/0.4的变压器供电,它的Y测中性点是接地的,但是你需要将400V或者380V的电压变换成110V供给你的特殊设备,那么这个小变压器事实上的n线就是通过上一级的变压器n线而最终接地的 关于变压器星形三角形那种接法可以防止三次谐波的问题,原理是什么,求助高手给解释一下还有最好能给讲解一下,三次谐波产生的原因,不胜感激。 简单回答一下,希望对你有帮助. 谐波产生的原因谐波是指一个电气量的正弦波分量.其频率为基波频率的整数倍,不同频率的谐波对不同的电气设备会有不同的影响。谐波主要由谐波电流源产生,当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源. 变压器谐波的产生变压器的谐波电流是由其励磁回路的非线性引起的。加在变压器上的电

电力变压器基本型号及参数知识

电力变压器基本型号及参数知识 干式变压器: 例如,(SCB 1 0 — 1 0 0 0 KVA/10KV/0.4KV) S的意思表示此变压器为三相变压器,如果S换成D 则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思是箔式绕组,如果是R则表示为缠绕式绕组, 如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。 10的意示是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(10 00千伏安)。 10KV的意思是一次额定电压,0 .4KV意思是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。(1)绕组藕合方式,涵义分:独立(不标);自藕 (O表示)。(2 )相数,涵义分:单相(D);三相(s)o (3)绕组外绝缘介质,涵义分;变压器油(不标);空气

(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)°(5 )油循环方式,涵义:自然循环(不标);强迫油循环(P)o (6)绕组数,涵义分;双绕组(不标);三绕组(S); 双分裂绕组(F)。(7 )调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)°(8 )线圈导线材质,涵义分:铜(不标);铜箔(E);铝(L)铝箔(LB)o (9)铁心材质,涵义;电工钢片(不标);非晶合金(H)o(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用 (Q);防雷保护用(B);调容用(T);高阻抗 (K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB); 油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)o 变压器型号 、电力变压器型号说明如下:变压器的型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料的符号,以及变压器容量、额定电压、绕组连接方式组成。请问下列电力

电力变压器分接方式

中华人民共和国国家标准 UDC 621.314.222.6 电力变压器GB 1094.4—85 第四部分分接和联结方法代替1094—79 Power transformers Part 4:Tappings and connections 国家标准局1985-11-22 发布1986-07-01 实施 本标准参照采用国际标准IEC 76-4(1976)《电力变压器第四部分分接和连接方法》。 1 范围 本标准适用于变压器的一对绕组间只在一个带分接的绕组上进行调压的情况。对于自耦 变压器,分接位置在线端还是在中性点须在订货时注明。 有关电压相位移的分接变换,本标准不予考虑。

2 各种调压的要求 2.1 总则 如无明确要求,则变压器不提供分接头。当需要分接头时,应指明它们是用于无励磁调 压或用于有载调压。 2.2 主分接 除非另有其他规定,当分接位置数为奇数时,主分接(见GB1094.1—85《电力变压器第 一部分总则》第3.5.1 款)系指中间分接。当分接位置数为偶数时,主分接系指分接绕组的 两个中间分接位置中有效匝数较多的一个。 如果这样下定义的分接不是满容量分接,则主分接应是靠近的一个满容量分接(见GB 1094.1 第3.5.4 款,主分接是满容量分接)。 2.3 分接范围的表示 分接绕组的分接范围按下述方式表示: 如果有正、负两种分接:±a%或+a%,-b%;

如果只有正分接或只有负分接:+a%或-b%。 2.4 短路阻抗的表示 与短路阻抗有关的绕组应按下述方式表示: 对双绕组变压器,表示出与短路阻抗有关的绕组即可。以H.V.表示高压绕组阻抗,L.V. 表示低压绕组阻抗H.V./L.V.成对绕组间的短路阻抗,例如折算到H. V.绕组的,就称为H.V./L.V. 阻抗(H.V.下面划横线)或称为H.V./L.V.成对绕组间的H.V.侧阻抗。若折算到L.H.绕组的,就 称为H.V./L.V.阻抗或称为H.V./L.V.成对绕组间的L.V.侧阻抗。 对三绕组变压器的中压绕组用M.V.表示,其他的表示方法同双绕组变压器。 按照系统条件,短路阻抗常常可以折算到变压器的任何一个绕组。如果功率流向仅为从 高压绕组流向低压绕组,则短路阻抗折算到高压绕组是适当的。 本章下述规则不适用于三绕组变压器和电压比小的(如小于2)自耦变压器(此类变压器

电力变压器主要技术参数

电力变压器主要技术参数 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA):额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要, 变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A):变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时 所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额 定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流, 此时变压器所消耗的功率. G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路 电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示. H、相数和频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国 外有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、 强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该

电力变压器的结构及制造

电力变压器的结构及其制造 一、电力变压器的分类与型号 1、按用途分类 (1)升压变压器:发电厂向外输送电力用。 (2)降压变压器:供电局的变电站作为变换电压用。 (3)配电变压器:向用户供电用。 (4)厂用变压器:为发电厂提供内部用电。 (5)站用变压器:为变电站提供内部用电。 (6)换流变压器:直流输电用,一侧接交流电,一侧接换流阀。 (7)整流变压器:火电厂给电除尘供电用。 2、按绕组分类 (1)双绕组变压器:用于升压变、降压变、厂用变等。 (2)三绕组变压器:用于降压变、联络变等。 (3)自藕变压器:用于降压变、联络变等。 (4)分裂变压器:有轴向分裂和辐向分裂两种,用于厂用变和启备变。 3、按结构分类 (1)单相变压器:用于330~1000kV变压器。 (2)三相变压器:用于10~500 kV变压器。 (3)组合式变压器:将变压器分为几个部分,到现场后再组合起来的变压器,用于交通不便地区。 4、按冷却方式分类 (1)油浸式变压器:用于10~1000kV变压器。 (2)干式变压器:用于10~110 kV变压器。 (3)SF6变压器:目前用于110 kV变压器。 5、电力变压器的型号 (1)型号中字母的含义 D—单相 F—油浸风冷 O—自 P—强迫油循环 S —三相或三线圈 J—油浸自冷 Z —有载调压 L—铝线圈 铜线圈和双线圈不用加符号 (2)举例 SFPSL—120000/110:110kV、120MVA三相三线圈强迫油循环风冷铝线圈变压器 OSFPSZ—240000/330:330 kV、240MVA三相三线圈有载调压强迫油循环

冷自藕变压 二、电力变压器的线圈 线圈是电力变压器中最重要、最复杂的部件,它由铜(或铝)导线绕制,再配以专门的绝缘部件组成。 1、螺旋式线圈 螺旋式线圈的主要特点是并联导线的根数较多,线饼绕成螺旋状,且一个线饼为一匝的线圈。螺旋式线圈具有较好的机械稳定性、散热性好工艺性也好,广泛用于变压器的低电压大电流线圈。 螺旋式线圈根据电流的大小,可以绕制成单螺旋、双螺旋和四螺旋三种结构。 2、连续式线圈 当线圈是由若干个沿轴向分布,且由彼此不需要焊接的线段组成的线圈,称为连续式线圈。 连续式线圈的端部支撑面大,承受轴向力大,抗短路能力强,且各线段上有较大的散热能力。这种线圈无论是电压等级还是容量范围,应用都很广泛。 3、纠结式线圈 纠结式线圈由若干纠结线段(饼)组成。全部是纠结线段(饼)的线圈称为全纠结式线圈,广泛用于220kV及以上电压的变压器。一部分纠结线段(饼)和一部分连续式线段组成的线圈称为纠结连续式线圈,应用于66 kV及以上电压的变压器。 由于它在线圈的相邻线匝间插入了不相邻的线匝,形成了交错的纠结线段并组成了纠结式线圈,从而使线圈的纵向电容增加,使得沿线圈轴向高度上的冲击电压分布特性改善,因此它在各种高电压线圈上得到了广泛应用。 4、内屏蔽式线圈 . 内屏蔽连续式线圈是通过增大线段间的串联电容的方式,来达到改善冲击电压分布的目的。其结构特点是将附加电容线匝直接绕在连续式线段内部,电容线匝的端头包好绝缘后在线段中悬空,电容线匝不载电流,只在冲击电压下起作用。 内屏蔽连续式线圈在结构上有两段跨接、四段跨接、八段跨接和分段连接等形式。 三、电力变压器的铁心 铁心也是电力变压器的重要组成部件,它由高导磁的硅钢片叠积,然后用钢夹件夹紧或用玻璃丝带绑扎而成。 、硅钢片

产品合格证及质量证明

编号:SZ-QZ054-2014-0001 起重机械产品质量证明书(封面) 产品类别:桥式起重机 产品品种:通用桥式起重机 型号规格: LXs2-10 A3 产品编号: 14-X001 设备代码:41803227120140001 质量保证工程师:袁和生 单位法定代表人:吴东林 质量检验专用章: 苏州神峰起重机械有限公司 —1—

编号:SZ-QZ054-2014-0001 起重机械产品合格证 制造单位:苏州神峰龙起重机械有限公司 制造地址:江苏省苏州高新区浒关工业园浒牌路28号 制造许可证编号: TS2432271-2015 产品类别:桥式起重机产品品种:通用桥式起重机型号规格:LXs2-10 A3 产品编号: 14-X001 设备代码:41803227120140001 合同编号: FH14006 制造完成日期: 2014 年 02 月 20 日 本起重机械产品经质量检验,符合《起重机械安全技术监察规程—桥式起重机》、设计文件和相关标准的要求。 质量检验员: 检验部门负责人:袁和生 质量检验专用章: —2— 一、产品技术特性

—3—

注:(1)发生材料代用的应当在备注栏中注明“代用”; (2)本表可用材料的原始证明书的有效复印件代替,但是必须注明使用该材料的构件名 称和构件号。 —4—

有关的驱动电机和减速器、电气控制设备等,如果所用的与原设计不一致,发生代用,应当在备注栏中注明“代用”; (2)附外构件产品合格证明(复印件)。 —5— 四、安全保护装置

注:(1)如果与原设计不一致,发生代用,应当在备注栏中注明“代用”; (2)附型式试验证明、外购件产品合格证明(复印件)。 —6—

调节变压器分接头计算及措施

目录 一.序言········································二.课程设计任务及要求······························ 1.设计要求··········································· 2.设计任务···········································三.调压理论分析···································· 1.电力系统的电压管理···························· ①中枢点电压管理···································· ②电压调整的基本原理································ 2.电力系统的几种调压方式························ ①改变发电机机端电压调压····························· ②改变变压器变比调压································· ③改变网络中无功功率分布调压··························三.计算分析············································ 1.等值电路·········································· 2.潮流计算·········································· 3.B开机分接头计算·································· 4.B关机电压损耗计算······························· 五. 调压措施的具体分析及展望························· 1. 电网电压偏差大的原因··························· 2. 调压措施分析····································· 3. 各种调压方式的比较····························· 六. 实验小结··········································

相关文档
最新文档