圆锥曲线练习试题及详细答案

圆锥曲线练习试题及详细答案
圆锥曲线练习试题及详细答案

圆锥曲线归纳总结

——for Y uri

第22sin cos θθ+部分:知识储备

1. 直线方程的形式

(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容

①倾斜角与斜率tan ,[0,)k ααπ=∈

②点到直线的距离d =

③夹角公式:2121

tan 1k k k k α-=+

(3)弦长公式

直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:

12AB x =-=或12AB y =- (4)两条直线的位置关系

①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质

(1) 椭圆的方程的形式有几种?(三种形式)

标准方程:22

1(0,0)x y m n m n m n

+

=>>≠且

2a = 参数方程:cos ,sin x a y b θθ== (2) 双曲线的方程的形式有两种

标准方程:22

1(0)x y m n m n

+

=?<

距离式方程:2a = (3) 三种圆锥曲线的通径

椭圆:22b a ;双曲线:2

2b a

;抛物线:2p

(4) 圆锥曲线的定义

黄楚雅,分别回忆第一定义和第二定义! (5) 焦点三角形面积公式:

P 在椭圆上时,122tan 2F PF b θ?=S

P 在双曲线上时,122cot 2

F PF b θ

?=S

(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠===?u u u

r u u u u r u u u r u u u u r g )

(6) 记住焦半径公式:

①椭圆焦点在时为0a ex ±,焦点在y 轴上时为0a ey ± ②双曲线焦点在x 轴上时为0||e x a ± ③抛物线焦点在x 轴上时为0||2p x +

,焦点在y 轴上时0||2

p y + 33333333333333333333333333333333333华丽的分割线3333333333333333333333333333333333333333

第0sin xdx π

?部分:三道核心例题

例1.椭圆长轴端点为,A B ,O 为椭圆中心,F 为椭圆的右焦点,且1AF FB ?=u u u r u u u r

1OF =u u u r

(1)求椭圆的标准方程;

(2)记椭圆的上顶点为M ,直线交椭圆于,P Q 两点,问:是否存在直线l ,使点F 恰为的垂心?若存在,求出直线l 的方程;若不存在,请说明理由。

l PQM ?

分析:第一问比较容易,第二问关键是垂心(小黄同学,你还记得三角形的“四心”吗?)的处理。由待定系数法建立方程求解。

解(1)建立坐标系,设椭圆方程为,由1OF =u u u r 得 又∵即 ,∴

易得1b =,故椭圆方程为 (2)假设存在直线交椭圆于两点,且恰为的垂心,

设,∵,故, 于是设直线为 ,由得, ∵ 又

得 即

由韦达定理得

解得或(舍) 经检验符合条件。

例2.已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点

(2,1)M ,平行于OM 的直线l 在y 轴上的截距为(0)m m ≠,l 交椭圆于A 、B 两

个不同点。

(1)求椭圆的方程; (2)求m 的取值范围;

(3)求证直线MA 、MB 与x 轴始终围成一个等腰三角形。

分析:小黄同学,直线MA 、MB 与x 轴始终围成一个等腰三角形这个怎么理解,怎么处理?关键是把它转化成021=+k k 。

22

221(0)x y a b a b

+=>>1c =1=?22

()()1a c a c a c +?-==-22a =2

212

x y +=l Q P ,F PQM ?1122(,),(,)P x y Q x y (0,1),(1,0)M F 1=PQ k l y x m =+22

22

y x m x y =+??

+=?22

34220x mx m ++-=12210(1)(1)MP FQ x x y y ?==-+-u u u r u u u r

(1,2)i i y x m i =+=1221(1)()(1)0x x x m x m -+++-=212122()(1)0x x x x m m m ++-+-=222242(1)033

m m m m m -?--+-=43m =-1m =43

m =-

解:(1)设椭圆方程为)0(122

22>>=+b a b

y a x

则?????==?????=+=28

11

4222

2

2b a b a b a 解得 ∴椭圆方程为12822=+y x (2)∵直线l 平行于OM ,且在y 轴上的截距为m

又12OM K =

m x y l +=∴2

1

的方程为: 由0422128

2

1222

2

=-++∴???????

=++=m mx x y x m x y ∵直线l 与椭圆交于A 、B 两个不同点,

,22,0)42(4)2(22≠<<->--=?∴m m m m 且解得

(3)设直线MA 、MB 的斜率分别为k 1,k 2,只需证明k 1+k 2=0即可 设42,2),,(),,(221212211-=-=+m x x m x x y x B y x A 且

则2

1

,21222111--=--=

x y k x y k 由可得042222=-++m mx x 42,222121-=-++m x x m x x 而)

2)(2()2)(1()2()1(2121211221221121----+---=--+--=

+x x x y x y x y x y k k )2)(2()1(4)2)(2(42)

2)(2()

1(4))(2()2)(2()

2)(121

()2)(12

1(212212*********------+-=

----+++=

----++--+=x x m m m m x x m x x m x x x x x m x x m x

)2)(2(444242212122=+∴=--+-+--=k k x x m m m m 故直线MA 、MB 与x 轴始终围成一个等腰三角形。

例3.已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).

(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.

分析:第一问抓住“重心”(小黄同学,你还记得三角形的“四心”吗?),利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。第二问抓住角A 为090可得出AB ⊥AC ,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程。

解:(1)设B(1x ,1y ),C(2x ,2y ),BC 中点为(00,y x ),焦点为F(2,0),则有

116

20,116202

2

222121=+=+y x y x 两式作差有

016

)

)((20))((21212121=+-+-+y y y y x x x x ,整理得

04

500=+k

y x (其中k 为点弦BC 的斜率) (1) 又F(2,0)为三角形重心,所以由

23

2

1=+x x ,得30=x 由

03421=++y y 得20-=y ,代入(1)得56

=k ,从而得到 直线BC 的方程为02856=--y x

(2)由AB ⊥AC 得 016)(14212121=++-+y y y y x x (2) 设直线BC 方程为8054,22=++=y x b kx y 代入,得

080510)54(222=-+++b bkx x k

又由韦达定理有 2

215410k

kb x x +-=+,222154805k b x x +-=

与直线方程结合,易得 2

2

22122154804,548k

k b y y k k y y +-=+=+ 代入(2)式得 054163292

2=+--k b b ,解得)(4舍=b 或94

-

=b 直线过定点(0,)94-,设D (x,y ),则1494

-=-?+

x

y x y ,即016329922=--+y x y 所以所求点D 的轨迹方程是)4()9

20

()916(222≠=-+y y x 。

77777777777777777777777777777777777777777777777777777优雅的分割线777777777777777777777777777777777777777777777777777

第0lim

1x j x x e π→-+部分:七种常见题型 1、中点弦问题

具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为11(,)x y 、

22(,)x y ,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这

里也要注意斜率不存在的情况),消去参数。

例如:设()11,y x A 、()22,y x B ,()b a M ,为椭圆1342

2=+y x 的弦AB 中点则有 13

42

12

1=+y x ,1342

22

2=+y x ;两式相减得(

)()03

42

2

2

1

2

2

21

=-+-y y

x x

?

()()

()()

3

4

21212121y y y y x x x x +--

=+-?AB k =b

a 43-

归纳:(1)椭圆)0(122

22>>=+b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为

00(,)M x y ,则有

02

20=+k b y a x 。 (2)双曲线)0,0(122

22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为

00(,)M x y ,则有

020

20=-k b

y a x 。 (3)抛物线22(0)y px p =>与直线l 相交于A 、B ,设弦AB 中点为00(,)M x y ,

则有022y k p =,即0y k p =。

典型例题 给定双曲线x y 2

2

2

1-=,过(2,1)A 的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。

2、焦点三角形问题

椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余

弦定理搭桥。

典型例题 设(,)P x y 为椭圆x a y b 222

21+=上任一点,F c 10(,)-,F c 20(,)为焦点,

∠=PF F 12α,∠=PF F 21β。

(1)求证离心率β

αβαsin sin )

sin(++=e ; (2)求|||PF PF 1323+的最值。

3、直线与圆锥曲线位置关系问题

直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题 抛物线方程2(1)(0)y p x p =+>,直线x y t +=与x 轴的交点在抛物线的右边。

(1)求证:直线与抛物线总有两个不同交点

(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数()f t 的

表达式。

4、圆锥曲线的相关最值(范围)问题

圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。

1)若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。 2)若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。 处理思路

1、建立目标函数。用坐标表示距离,用方程消参转化为一元二次函数的最值问题,关键是求方程求x 、y 的范围;

2、数形结合,用化曲为直的转化思想;

3、利用判别式,对于二次函数求最值,往往由条件建立二次方程,用判别式求最值;

4、借助均值不等式求最值。

典型例题 已知抛物线22(0)y px p =>),过(,0)M a 且斜率为1的直线L 与抛物线交于不同的两点A B 、,2AB p ≤。

(1) 求a 的取值范围;

(2) 若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值。

(1)曲线的形状已知

这类问题一般可用待定系数法解决

典型例题

已知直线已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点(1,0)

A-和点(0,8)

B关于L的对称点都在C上,求直线L和抛物线C的方程。

(2)曲线的形状未知-----求轨迹方程

典型例题

已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,

动点M到圆C的切线长|MN|与|MQ|的比等于常

数λ(λ>0),求动点M的轨迹方程,并说明它是

什么曲线。

6、存在两点关于直线对称问题

在曲线上两点关于某直线对称问题,可以按如下方式分三步解决:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。(当然也可以利用韦达定理并结合判别式来解决)

典型例题已知椭圆C的方程x y

22

43

1

+=,试确定m的取值范围,使得对于直

线y x m

=+

4,椭圆C上有不同两点关于直线对称。

M N

Q

O

圆锥曲线两焦半径互相垂直问题,常用k k y y x x

12

12

121

·

·

·

==-来处理或用向

量的坐标运算来处理。

典型例题已知直线l的斜率为k,且过点P(,)

-20,抛物线2

:4(1)

C y x

=+,直线l与抛物线C有两个不同的交点,A B。

(1)求k的取值范围;

(2)直线l的倾斜角θ为何值时,A、B与抛物线C的焦点连线互相垂直。

圆锥曲线基础练习题及答案

圆锥曲线基础练习题及答案 一、选择题: x2y2 ??1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 1.已知椭圆2516 A.2B. C.D.7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 x2y2x2y2x2y2x2y2 ??1B.??1 C.??1或??1 D.以上都不对A.916251625161625 3.动点P到点M及点N的距离之差为2,则点P的轨迹是 A.双曲线 B.双曲线的一支 C.两条射线D.一条射线 4.抛物线y2?10x的焦点到准线的距离是 51 B.C. D.102 5.若抛物线y2?8x上一点P到其焦点的距离为9,则点P的坐标为 A. A .,那么k? 三、解答题

11.k为何值时,直线y?kx?2和曲线2x2?3y2?6有两个公共点?有一个公共点?没有公共点? 12.在抛物线y?4x上求一点,使这点到直线y?4x?5的距离最短。 13.双曲线与椭圆有共同的焦点F1,F2,点P是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。 2 2214.已知双曲线x?y?1的离心率e?2,过A,B的直线到原点的距离是.223ab 求双曲线的方程;已知直线y?kx?5交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值. 2y2 1 经过坐标原点的直线l与椭圆?1相交于A、B两2 点,若以AB为直径的圆恰好通过椭圆左焦点F,求直线l的倾斜角. 16.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线y=x+1与椭 圆交于P和Q,且OP⊥OQ,|PQ|= ,求椭圆方程. 参考答案 1.D 点P到椭圆的两个焦点的距离之和为

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

圆锥曲线基础测试题大全

圆锥曲线基础测试题大 全 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

(北师大版)高二数学《圆锥曲线》基础测试试题 一、选择题 1.已知椭圆116 252 2=+ y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2. 椭圆32x 2+16 y 2 =1的焦距等于( )。 A .4 B 。8 C 。16 D 。123 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程 为 ( ) A .116922=+ y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 5.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 6.抛物线x y 102=的焦点到准线的距离是 ( ) A .2 5 B .5 C . 2 15 D .10 7. 抛物线y 2=8x 的准线方程是( )。 (A )x =-2 (B )x =2 (C )x =-4 (D )y =-2 8.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( ) (A )x 2=16y (B )x 2=8y (C )y 2=16x (D )y 2=8x 9.经过(1,2)点的抛物线的标准方程是( ) (A )y 2=4x (B )x 2=21y (C ) y 2=4x 或x 2=2 1y (D ) y 2=4x 或x 2=4y 10.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 11.椭圆mx 2+y 2=1的离心率是 2 3 ,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )2 1 或1 13. 抛物线y =-8 x 2 的准线方程是( )。

(完整word版)圆锥曲线练习题含答案

圆锥曲线专题练习 一、选择题 1.已知椭圆 116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( ) A . 116922=+y x B .1162522=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线 4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 5.抛物线x y 102 =的焦点到准线的距离是 ( ) A . 25 B .5 C .2 15 D .10 6.若抛物线2 8y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-± 7.如果22 2 =+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()+∞,0 B .()2,0 C .()+∞,1 D .()1,0 8.以椭圆 116 252 2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A . 1481622=-y x B .127922=-y x C .1481622=-y x 或127 92 2=-y x D .以上都不对 9.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2 1π = Q PF ,则双曲线的离心率 e 等于( ) A .12- B .2 C .12+ D .22+ 10.21,F F 是椭圆17 92 2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则Δ12AF F 的面积为( ) A .7 B . 47 C .2 7 D .257 11.以坐标轴为对称轴,以原点为顶点且过圆09622 2 =++-+y x y x 的圆心的抛物线的方程() A .2 3x y =或2 3x y -= B .2 3x y = C .x y 92 -=或2 3x y = D .2 3x y -=或x y 92 =

2019高考圆锥曲线大题例题练习题

1.【2018全国二卷19】设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过点,且与的准线相切的圆的方程. 3.【2018全国三卷20】已知斜率为的直线与椭圆交于,两点,线段的中点为. (1)证明:; (2)设为的右焦点,为上一点,且.证明: ,,成等差数列,并求该数列的公差. 【定点问题】已知()()()0,10,1,10.A B M --,, 动点P 为曲线C 上任意一点,直线,PA PB 的120,0,y , )0a b 的两个焦点均在以坐标原点的短半轴长为半径的圆上,且该圆被直线20x y +-=截得的弦长为问:,AB BD 是否【18浙江改编】已知椭圆C :()22 2210x y a b a b +=的离心率为12 ,过右顶点与上顶点的直(1)求C 的标准方程; (2)若圆O :223x y +=上一点处的切线l 与椭圆C 交于不同的两点,,A B 求OAB ?面积的最大值. 24C y x =:F F (0)k k >l C A B ||8AB =l A B C k l 22 143 x y C +=:A B AB ()()10M m m >,12 k <-F C P C FP FA FB ++=0FA FP FB

5.【2018天津卷19】设椭圆22 221x x a b +=(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离 A 的坐标为(,0)b ,且F B AB ?=(I )求椭圆的方程; (II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若 4AQ AOQ PQ =∠(O 为原点) ,求k 的值.

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

圆锥曲线练习题及答案

… 圆锥曲线测试题(文) 时间:100分钟 满分100分 一、选择题:(每题4分,共40分) 1.0≠c 是方程 c y ax =+2 2 表示椭圆或双曲线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .不充分不必要条件 、 2.如果抛物线y 2 =ax 的准线是直线x =-1,那么它的焦点坐标为 ( ) A .(1, 0) B .(2, 0) C .(3, 0) D .(-1, 0) 3.直线y = x +1被椭圆x 2 +2y 2 =4所截得的弦的中点坐标是( ) A .( 31, -3 2 ) B .(- 32, 3 1 ) C.( 21, -31) D .(-31,2 1 ) 4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( ) A .6m B . 26m C . D .9m 5. 已知椭圆15922=+y x 上的一点P 到左焦点的距离是3 4 ,那么点P 到椭圆的右准线的距离是( ) A .2 B .6 C .7 D . 143 — 6.曲线 2 25 x + 2 9 y =1与曲线 2 25k x -+ 2 9k y -=1(k <9 )的( ) A.长轴长相等 B.短轴长相等 C.离心率相等 D.焦距相等 7.已知椭圆 2 5 x + 2 m y =1的离心率 e= 5 ,则m 的值为( ) A .3 B. 25 3 或 3 8.已知椭圆C 的中心在原点,左焦点F 1,右焦点F 2均在x 轴上,A 为椭圆的右顶点,B 为 椭圆短轴的端点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率等于( ) A . 12 B C .1 3 D 9 2)0>>n m 的曲线在同一坐标系 >

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

0417浙江高考历年圆锥曲线大题(供参考)

2018年04月10日wan****.121的高中数学组卷 评卷人得分 一.解答题(共21小题) 1.如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q. (Ⅰ)求直线AP斜率的取值范围; (Ⅱ)求|PA|?|PQ|的最大值. 2.如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1, (Ⅰ)求p的值; (Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围. 3.如图,已知抛物线C1:y=x2,圆C2:x2+(y﹣1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(Ⅰ)求点A,B的坐标;

(Ⅱ)求△PAB的面积. 注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点. 4.已知椭圆上两个不同的点A,B关于直线y=mx+对称. (1)求实数m的取值范围; (2)求△AOB面积的最大值(O为坐标原点). 5.如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点 P,且点P在第一象限. (Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标; (Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b. 6.如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的

长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D. (1)求椭圆C1的方程; (2)求△ABD面积的最大值时直线l1的方程. 7.已知抛物线C的顶点为O(0,0),焦点F(0,1) (Ⅰ)求抛物线C的方程; (Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值. 8.如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1) 的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分. (Ⅰ)求椭圆C的方程; (Ⅱ)求△APB面积取最大值时直线l的方程.

圆锥曲线练习题(附答案)

) 圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. ? 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上,且满 足021=?PF PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=-y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是 (4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为 8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 .

9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . ^ 11、抛物线)0(12 <=m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的一个端 点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点, 与x 轴正向的夹角为60°,则||为 . 14.在ABC △中,AB BC =,7 cos 18 B =-.若以A B ,为焦点的椭圆经过点 C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值1 2 -. . (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

圆锥曲线高考题汇编[带详细解析]

第八章 圆锥曲线方程 ●考点阐释 圆锥曲线是解析几何的重点容,这部分容的特点是: (1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用. (2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等容,体现了对各种能力的综合要求. (3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题 1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( ) 2.(2003京春理,7)椭圆?? ?=+=? ? sin 3cos 54y x (?为参数)的焦点坐标为( ) A.(0,0),(0,-8) B.(0,0),(-8,0) C.(0,0),(0,8) D.(0,0),(8,0) 3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线 4.(2002全国文,7)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 等于( ) A.-1 B.1 C.5 D. - 5 5.(2002全国文,11)设θ∈(0, 4 π ),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值围为( ) A.(0, 2 1 ) B.( 22 ,21) C.( 2,2 2 ) D.( 2,+∞) 6.(2002文,10)已知椭圆222253n y m x +和双曲线22 2 232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A.x =± y 2 15 B.y =± x 2 15

全国卷高考数学圆锥曲线大题集大全之欧阳数创编

高考二轮复习专项:圆锥曲线大题集 时间:2021.03.02 创作:欧阳数 2.如图,直线l1与l2是同一平面内两条互相垂直的直 线,交点是A,点B、D在直线l1上(B、D 位于点A右侧),且|AB|=4,|AD|=1,M是该平面上的一个动点,M 在l1上的射影点是N,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M的轨迹C的方程.(Ⅱ)过点D且不与l1、l2垂直的直线l交(Ⅰ)中的轨迹C 于E、F两点;另外平面上的点G、H满足: 求点G的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在轴上,离心率 ,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆的一条准线方程是 其左、右顶点分别 是A、B;双曲线的一条渐近线方程为3x-5y=0. A D M B N l2 l1

(Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若. 求证: 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为 a. (1)用半焦距c表示椭圆的方程及tan; (2)若2

圆锥曲线大题练习1(供参考)

1.已知动直线l 与椭圆C: 22 132 x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ?= 6 2 ,其中O 为坐标原点. (Ⅰ)证明2212x x +和22 12y y +均为定值; (Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ?的最大值; (Ⅲ)椭圆C 上是否存在点D,E,G ,使得6 2 ODE ODG OEG S S S ???===?若存在,判断△DEG 的形状;若不存在,请说明理由. 2.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D. (I )设1 2 e = ,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由 3.设λ>0,点A 的坐标为(1,1),点B 在抛物线y x 2 =上运动,点Q 满足QA BQ λ=,经过Q 点与x 轴垂直的直线交抛物线于点M ,点P 满足MP QM λ=,求点P 的轨迹方程。 4.在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足MB//OA , MA ?AB = MB ?BA ,M 点的轨迹为曲线C 。 (Ⅰ)求C 的方程; (Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值。

5.在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22 221 x y a b +=的左右焦点.已知△12F PF 为等腰三角形. (Ⅰ)求椭圆的离心率e ; (Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ?=-,求点M 的轨迹方程. 6.已知抛物线1C :2 x y =,圆2C :2 2 (4)1x y +-=的圆心为点M (Ⅰ)求点M 到抛物线1c 的准线的距离; (Ⅱ)已知点P 是抛物线1c 上一点(异于原点),过点P 作圆2c 的两条切线,交抛物线1c 于A ,B 两点,若过M ,P 两点的直线l 垂直于AB ,求直线 l 的方程 7.如图7,椭圆)0(1:22 221>>=+b a b y a x C 的离心率为23,x 轴被曲线 b x y C -=22:截得的线段长等于1C 的长半轴长. ()I 求1C ,2C 的方程; ()II 设2C 与y 轴的交点为M ,过坐标原点O 的直线 l 与2C 相交于点A ,B ,直线MA ,MB 分别与1 C 相交于点 D , E . (ⅰ)证明: ME MD ⊥; (ⅱ)记MAB ?,MDE ?的面积分别为21,S S ,问:是否存在直线l ,使得32 17 21=S S ?请说明理由.

圆锥曲线练习试题与详细答案

圆锥曲线归纳总结 ——for Yuri 第22sin cos θθ+部分:知识储备 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-=+ (3)弦长公式 直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离: 12AB x =-=或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1) 椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n + =>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2) 双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n + =?< 距离式方程 :2a = (3) 三种圆锥曲线的通径 椭圆:22b a ;双曲线:2 2b a ;抛物线:2p (4) 圆锥曲线的定义 黄楚雅,分别回忆第一定义和第二定义! (5) 焦点三角形面积公式: P 在椭圆上时,122tan 2F PF b θ?=S P 在双曲线上时,122cot 2 F PF b θ ?=S (其中222 1212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠===?) (6) 记住焦半径公式: ①椭圆焦点在时为0a ex ±,焦点在y 轴上时为0a ey ± ②双曲线焦点在x 轴上时为0||e x a ± ③抛物线焦点在x 轴上时为0||2p x + ,焦点在y 轴上时0||2 p y + 3333333333333333333333333333333333333333333333333华丽的分割线3333333333333333333333333333333333333333333333333333333 第0sin xdx π ?部分:三道核心例题 例1.椭圆长轴端点为,A B ,O 为椭圆中心,F 为椭圆的右焦点,且1AF FB ?=, 1OF =。 (1)求椭圆的标准方程; (2)记椭圆的上顶点为M ,直线交椭圆于,P Q 两点,问:是否存在直线 l

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

圆锥曲线大题练习1.doc

1. 已知动直线 l 与椭圆 C: x 2 y 2 1 交于 P x 1 , y 1 、 Q x 2 , y 2 两不同点,且△ OPQ 的 3 2 面积 S OPQ = 6 , 其中 O 为坐标原点 . 2 (Ⅰ)证明 x 12 x 22 和 y 12 y 2 2 均为定值 ; (Ⅱ)设线段 PQ 的中点为 M ,求 |OM | | PQ | 的最大值; (Ⅲ)椭圆 C 上是否存在点 D,E,G ,使得 S ODE S ODG S OEG 6 ?若存在,判断△ 2 DEG 的形状;若不存在,请说明理由 . 2. 如图,已知椭圆 C1 的中心在原点 O ,长轴左、右端点 M ,N 在 x 轴上,椭圆 C2 的短轴为 MN ,且 C1, C2的离心率都为 e ,直线 l ⊥MN , l 与 C1 交于两点,与 C2 交于两点,这四点按纵坐标从大 到小依次为 A , B , C , D. (I )设 e 1 ,求 BC 与 AD 的比值; 2 (II )当 e 变化时,是否存在直线 l ,使得 BO ∥ AN ,并说明理由 3. 设 ,点 A 的坐标为( 1,1 ),点 B 在抛物线 y x 上 运动,点 Q 满足 BQ QA ,经过 Q 点与 x 轴垂直的直线 交抛物线于点 M ,点 P 满足 QM MP , 求点 P 的轨迹 方程。 4. 在平面直角坐标系 xOy 中,已知点 A(0,-1) ,B 点在直线 y = -3 上, M 点满足 MB//OA , MA ?AB = MB?BA , M 点的轨迹为曲线 C 。 (Ⅰ)求 C 的方程; (Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A,点B、D在直线l1上(B、D 位于点A右侧,且|AB|=4,|AD|=1,M是该平面上的一个动点,M在l1上的射影点是N,且|BN|=2|DM|. 2. (Ⅰ建立适当的坐标系,求动点M的轨迹C的方程. (Ⅱ过点D且不与l1、l2垂直的直线l交(Ⅰ中的轨迹C于E、F两点;另外平面上的点G、H满足: 求点G的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在轴上,离心率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆的一条准线方程是其左、右顶点分别 是A、B;双曲线的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB 并延长交椭圆C1于点N,若. 求证: 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为 a. (1)用半焦距c表示椭圆的方程及tg;

(2)若2 <3 ,求椭圆率心率 e 的取值范围 . 5. 已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为 (1)求椭圆的方程 (2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由 6. 在直角坐标平面中,的两个顶点的坐标分别为,,平 面内两点同时满足下列条件: ①;②;③∥ (1)求的顶点的轨迹方程; (2)过点的直线与(1)中轨迹交于两点,求的取值范围 7. 设,为直角坐标平面内x轴.y轴正方向上的单位向量,若 ,且 (Ⅰ)求动点M(x,y的轨迹C的方程; (Ⅱ)设曲线C上两点A.B,满足(1直线AB过点(0,3),(2若,则OAPB为矩形,试求AB方程.

圆锥曲线练习题附答案

圆锥曲线练习题附答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

圆锥曲线 一、填空题 1、对于曲线C ∶1 42 2-+-k y k x =1,给出下面四个命题: ①由线C 不可能表示椭圆; ②当1<k <4时,曲线C 表示椭圆; ③若曲线C 表示双曲线,则k <1或k >4; ④若曲线C 表示焦点在x 轴上的椭圆,则1<k <2 5 其中所有正确命题的序号为_____________. 2、已知椭圆)0(122 22>>=+b a b y a x 的两个焦点分别为21,F F ,点P 在椭圆上, 且满足021=?PF ,2tan 21=∠F PF ,则该椭圆的离心率为 3.若0>m ,点?? ? ??25,m P 在双曲线15422=- y x 上,则点P 到该双曲线左焦点的距离为 . 4、已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 5、已知点P 是抛物线24y x =上的动点,点P 在y 轴上的射影是M ,点A 的 坐标是(4,a ),则当||a >4时,||||PA PM +的最小值是 . 6. 在ABC 中,7 ,cos 18 AB BC B ==- .若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = . 7.已知ABC ?的顶点B ()-3,0、C ()3,0,E 、F 分别为AB 、AC 的中点,AB 和AC 边上的中线交于G ,且5|GF |+|GE |=,则点G 的轨迹方程为

8.离心率3 5 = e ,一条准线为x =3的椭圆的标准方程是 . 9.抛物线)0(42<=a ax y 的焦点坐标是_____________; 10将抛物线)0()3(42≠-=+a y a x 按向量v =(4,-3)平移后所得抛物线的焦点坐标为 . 11、抛物线)0(12 <= m x m y 的焦点坐标是 . 12.已知F 1、F 2是椭圆2 2 22)10(a y a x -+=1(5<a <10=的两个焦点,B 是短轴的 一个端点,则△F 1BF 2的面积的最大值是 13.设O 是坐标原点,F 是抛物线)0(22>=p px y 的焦点,A 是抛物线上的一点,与x 轴正向的夹角为60°,则||OA 为 . 14.在ABC △中,AB BC =,7 cos 18 B =- .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = . 二.解答题 15、已知动点P 与平面上两定点(A B 连线的斜率的积为定值 12 -. (Ⅰ)试求动点P 的轨迹方程C. (Ⅱ)设直线1:+=kx y l 与曲线C 交于M 、N 两点,当|MN |=3 2 4时,求直线l 的方程.

相关文档
最新文档