初中数学竞赛余数定理和综合除法

初中数学竞赛余数定理和综合除法
初中数学竞赛余数定理和综合除法

第1讲 余数定理和综合除法

知识总结归纳

一.除法定理:

()f x 和()g x 是两个一元多项式,且()0g x ≠,则恰好有两个多项式()q x 及()r x ,使

()()()()f x q x g x r x =?+,其中()0r x =,或者()r x 比()g x 次数小。

这里()f x 称为被除式,()g x 称为除式,()q x 称为商式,()r x 称为余式.

二.余数定理:

对于一元n 次多项式1110()n n n n f x a x a x a x a --=++++L ,用一元多项式x c -去除()f x ,那么余式是一个数。设这时商为多项式()g x ,则有

()()()()f x x c g x f c =-+

也就是说,x c -去除()f x 时,所得的余数是()f c .

三.试根法的依据(因式定理):

如果()0f c =,那么x c -是()f x 的一个因式.反过来,如果x c -是()f x 的一个因式,那么()0f c =。

四.试根法的应用:

假定1110()n n n n f x a x a x a x a --=++++L 是整系数多项式,又设有理数p c q

=是()f x 的根(p q 、是互质的两个整数),则p 是常数项0a 的因数,q 是首项系数n a 的因数.

特别的,如果1n a =,即()f x 是首1多项式,这个时候1q =,有理根都是整数根。 典型例题

一. 多项式的除法

【例1】 已知32()4523f x x x x =+--,2()21g x x x =++,试求()f x 除以()g x 所得的商式()Q x 和余式

()R x .

的商式()

R x.

Q x和余式()

【例3】已知432

g x x

()1

=-,试求()

f x x x x x

=-+--,2

()571023

Q x和余式

g x所得的商式()

f x除以()

R x.

()

二.综合除法

【例4】用综合除法计算:432

-----÷+.

(531)(1)

x x x x x

【例5】用综合除法求()

Q x和余数R.

f x除以()

g x所得的商式()

(2)32()321f x x x =-+,1()3

g x x =+.

【例6】 用综合除法计算:432(6534)(21)x x x x x ---+÷+.

【例7】 先用综合除法求出()f x 除以()g x 所得的商式和余式,不再作除法,写出()f x 除以()h x 的商式

和余式.32()243f x x x x =-+-,()3g x x =-.

(1)()2(3)h x x =-;(2)1()(3)2

h x x =-.

三. 余数定理和多项式理论

【例8】 43()241f x x x x =+++,()2g x x =+,求余数R 的值.

【例9】 32()23814f x x x x =-+-除以23x -的余数R 是多少?

【例10】 (1)求1x -除542()7465f x x x x =--+所得的余数;

(2)求22x -除542()7465f x x x x =--+所得的余数.

【例11】 多项式324715ax bx x +--可以被31x +和23x -整除,求a ,b .

【例12】 试确定a 、b 的值,使多项式432()235f x x x ax x b =-+++被(1)(2)x x --整除.

【例13】 已知432()22f x x ax x bx =+++-能被22x x --整除,求a b -的值.

【例14】 证明:当a ,b 是不相等的常数时,若关于x 的整式()f x 能被x a -,x b -整除,则()f x 也能

被积()()x a x b --整除.

【例15】 多项式()f x 除以1x -、2x -所得的余数分别为3和5,求()f x 除以(1)(2)x x --所得的

余式.

【例16】 已知关于若x 的三次多项式()f x 除以21x -时,余式是21x -;除以24x -时,余式是

34x --.求这个三次多项式.

【例17】 已知关于x 的三次多项式()f x 除以21x -时,余式是25x -;除以24x -时,余式是34x -+,

求这个三项式.

【例18】 已知32()232f x x x x =+++除以整数系数多项式()g x 所得的商式及余式均为()h x ,试求()

g x 和()h x ,其中()h x 不是常数.

【例19】 已知323x kx ++除以3x +,其余数比1x +除所得的余数少2,求k 的值.

【例20】 若多项式432x x ax bx c -+++能被3(1)x -整除,求a ,b ,c 的值.

【例21】 如果当x 取0,1,2时,多项式分别取值0,0,1,试确定一个二次多项式()f x .

四.因式分解(试根法)

【例22】分解因式:354

-+.

x x

【例23】分解因式:32

6116

+++.

x x x

【例24】分解因式:432

+--+.

2928

x x x x

【例25】分解因式:432

x x x x

-+--.

93732

【例26】分解因式:65432

++++++

234321

x x x x x x

【例27】 分解因式:322392624x x y xy y -+-

【例28】 分解因式:32511133

x x x ---

【例29】 分解因式:32()()x a b c x ab bc ca x abc -+++++-

【例30】 分解因式:32(1)(3)(2)a x ax a x a ----+-

【例31】 分解因式:32()(32)(23)2()l m x l m n x l m n x m n +++-+---+

思维飞跃

【例32】 若2310x x +-=,求325518x x x +++的值.

【例33】 若2()f x x mx n =++(m n 、都是整数)既是多项式42625x x ++的因子,又是多项式

4234285x x x +++的因子,求()f x .

【例34】 求证:若a b ≠,则多项式()f x 除以()()x a x b --所得的余式是()(()(f a f b af b bf a x a b a b

--+--)).

【例35】 ()f x 除以1x -,2x -,3x -多得的余数分别为1,2,3,求()f x 除以(1)(2)(3)x x x ---多

得的余式.

【例36】 求证:99998888777722221111()1f x x x x x x =++++++L 能被9872()1g x x x x x x =++++++L 整除.

作业

1. 分解因式:

(1)3246a a a -++.

(2)43233116a a a a +---.

(3)4322347136x x y x y xy y --+-.

2. 若32()23f x x x ax b =-++除以1x +所得的余数为7,除以1x -所得的余数为5,试求a b 、的值.

3. 多项式()f x 除以1x -、2x -和3x -所得的余数分别为1、2、3,试求()f x 除以(1)(2)(3)

x x x ---所得的余式.

4. 若554x qx r -+能被

22)x -(整除,求q 与r 的值.

5. 分解因式:3245x x +-.

6. 分解因式:4322344x x x x +--+.

7. 分解因式:4322744x x x x +++-.

8. 分解因式:5432271214103x x x x x +++++.

9. 分解因式:33(2)(2)x y x y x y ---.

10. 分解因式:32236532x x y xy y --+.

11. 分解因式:3284()2()x a b c x ab bc ca x abc +++++++.

12. 分解因式:32(1)(3)(2)a x ax a x a ----+-.

13. 已知多项式543()3811f x x x x x k =++++能被2x +整除,求k 的值.

14. 求证:a b -,b c -,c a -都是222()()()a b c b c a c a b -+-+-的因式,并分解因式.

15. 一个整系数3次多项式()f x ,有三个不同的整数123,,a a a ,使

123()()()1f a f a f a ===.

又设b 为不同于123a a a ,

,的任意整数,试证明:()1f b ≠.

16. 已知a 、b 、c 、d 是正整数,则4414243a b c d x x x x ++++++能被321x x x +++整除.

初中数学定义、定理(大全)

第一篇数与代数 第一节数与式 一、实数 1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:- 3, ,0.231,0.737373…, , 等;无限不环循小数叫做无理数. 如: π, ,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数. 2.数轴:规定了原点、正方向和单位长度的直线叫数轴。实数和数轴上的点一一对应。 3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。正数的绝对值 是它本身;负数的绝对值是它的相反数;0的绝对值是0。如:丨- _丨= ;丨3.14-π丨=π-3.14. 4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。a的相反数是-a,0的相反数 是0。 5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫 做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记 数法. 如:407000=4.07×105,0.000043=4.3×10-5. 7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。 8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。 9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根. 10.开平方:求一个数a的平方根的运算,叫做开平方. 11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0. 12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13.开立方:求一个数a的立方根的运算叫做开立方. 14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)的平方根是士,误认为平方根为士 2,应知道=2. 15.二次根式: (1)定义:___________________________________________________叫做二次根式. 16.二次根式的化简: 17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式. 18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 19.二次根式的乘法、除法公式 20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 22.有理数减法法则:减去一个数,等于加上这个数的相反数.

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

综合除法与余数定理

学科:奥数 教学内容:综合除法与余数定理 【内容综述】 数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。 【要点讲解】 1、综合除法 在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可 以推得 (此处用表示关于x 的多项式)除以的商式系数和余数有如下 规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数乘以 b 加的第二项系数得商式的次高次项系数,以此类推最后得余数。 ★例1 计算() 分析 把除式变成形式用综合除法, 解:, ∴商式为,余式为-38 说明用综合除法计算时要注意: (1)被除式与除式按降幂排列后的缺项要用0补足; (2 )除式要变成的形式(b可以是负数) ★★例2 用综合除法计算 (1 ); (2 ) 解:(1 ) ∴商式为,余式为-3 (2 )用 除 ,只需先以 除, 再把求得的商用2除,而余数不变。

∴商式为,余式为。 说明一般地,多项式除以一次二项式,用综合除法先将多项式除以, 所得的商式除以p就是所求的商式,所得的余数就是所求的余数。 2、余数定理 若多项式f(x)除以的商式为p(x),余数为r,则 当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。 余数定理多项式除以()所得的余数等于。 特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。 由余数定理易知多项式除以的余数就是的多项式 的值。 余数定理告诉我们,可以不做除法求除以的余数;反过来在计算 复杂时也可以用综合法求。 ★★★例3 一个关于x的二次多项式,它被除余2,它被除时 余28,它还可被整除,求。 解:设由题意得 解得a=3,b=1,c=2。 ∴ 说明因能被整除,所以是的因式,于是可设 ,再由,,列出a,b的方程求解。 ★★★★例4 利用余数定理判断能否被a-b,a+b整除。 分析含,即把看成是含字母a的多项式,要判断 能否被a-b,a+b整除,即判断,是否为零。 解:令= 当a=b时,,故能被a-b整除;

数学竞赛定理

欧拉小定理:同一三角形的垂心、重心、外心,九点圆圆心四点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半,九点圆圆心到垂心与重心距离相等。 欧拉大定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr 九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。 费尔马点:已知P 为锐角△ABC 内一点,当∠APB =∠BPC =∠CPA =120°时,PA +PB +PC 的值最小,这个点P 称为△ABC 的费尔马点。 海伦公式:在△ABC 中,边BC 、CA 、AB 的长分别为a 、b 、c ,若p = 21(a +b +c ),则△ABC 的面积S = ))()((c p b p a p p --- 塞瓦定理:在△ABC 中,过△ABC 的顶点作相交于一点P 的直线,分别交边BC 、CA 、AB 与点D 、E 、F ,则 1=??FB AF EA CE DC BD 密格尔定理:若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点。 葛尔刚定理:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点。 西姆松定理:已知P 为△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥ACPF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,这条直线叫做西摩松线。 笛沙格定理:已知在△ ABC 与△A'B'C'中,AA'、BB'、CC'三线相交于点O ,BC 与B'C'、CA 与C'A'、AB 与A'B'分别相交于点X 、Y 、Z ,则X 、Y 、Z 三点共线 摩莱三角形:在已知△ABC 三内角的三等分线中,分别与BC 、CA 、AB 相邻的每两线相

综合除法与余数定理

综合除法与余数定理Revised on November 25, 2020

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。

(2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式,但一次项系数不是1,能不能利用综合除法计算呢 例2、求)23()1623103(23-÷+-+x x x x 的商式Q 和余式R 。 解:把除式缩小3倍,那么商就扩大3倍,但余式不变。因此先用3 2-x 去除被除式,再把所得的商缩小3倍即可。 ∴Q=542-+x x , R=6。 下面我们将综合除法做进一步的推广,使除式为二次或者二次以上的多项式时也能够利用综合除法来求商和余式。

初中数学竞赛——余数定理和综合除法

第1讲 余数定理和综合除法 知识总结归纳 一.除法定理: ()f x 和()g x 是两个一元多项式,且()0g x ≠,则恰好有两个多项式()q x 及()r x ,使 ()()()()f x q x g x r x =?+,其中()0r x =,或者()r x 比()g x 次数小。 这里()f x 称为被除式,()g x 称为除式,()q x 称为商式,()r x 称为余式. 二.余数定理: 对于一元n 次多项式1110()n n n n f x a x a x a x a --=++++,用一元多项式x c -去除()f x ,那么余式是一个数。设这时商为多项式()g x ,则有 ()()()()f x x c g x f c =-+ 也就是说,x c -去除()f x 时,所得的余数是()f c . 三.试根法的依据(因式定理): 如果()0f c =,那么x c -是()f x 的一个因式.反过来,如果x c -是()f x 的一个因式,那么()0f c =。 四.试根法的应用: 假定1110()n n n n f x a x a x a x a --=++++是整系数多项式,又设有理数p c q =是()f x 的根(p q 、是互质的两个整数),则p 是常数项0a 的因数,q 是首项系数n a 的因数. 特别的,如果1n a =,即()f x 是首1多项式,这个时候1q =,有理根都是整数根。 典型例题 一. 多项式的除法 【例1】 已知32()4523f x x x x =+--,2()21g x x x =++,试求()f x 除以()g x 所得的商式()Q x 和余式 ()R x .

高中数学竞赛定理

重 心 定义:重心是三角形三边中线的交点, 可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 已知:△ABC 中,D 为BC 中点,E 为AC 中点,AD 与BE 交于O ,CO 延长线交AB 于F 。求证:F 为AB 中点。 证明:根据燕尾定理, S △AOB=S △AOC , 又S △AOB=S △BOC , ∴S △AOC=S △BOC , 再应用燕尾定理即得AF=BF ,命题得证。 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、三角形到三边距离之积最大的点。 5、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((321x x x ++)/3,(321y y y ++)/3);空间直角坐标系——横坐标:(321x x x ++)/3 纵坐标:(321y y y ++)/3 竖坐标:(321z z z ++)/3 外 心 定义:外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。 外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。 外心性质:三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。 设1d ,2d ,3d 分别是三角形三个顶点连向另外两个顶点向量的数量积 1c =2d 3d ,2c =1d 3d ,3c =1d 2d ;c=1c +2c +3c 重心坐标:( (32c c +)/2c ,(31c c +)/2c ,(21c c +)/2c ) 垂 心 定义:三角形的三条高的交点叫做三角形的垂心。 性质: 锐角三角形垂心在三角形部 直角三角形垂心在三角形直角顶点 钝角三角形垂心在三角形外部

初中数学竞赛余数定理和综合除法

第1讲 余数定理和综合除法 知识总结归纳 一.除法定理: ()f x 和()g x 是两个一元多项式,且()0g x ≠,则恰好有两个多项式()q x 及()r x ,使 ()()()()f x q x g x r x =?+,其中()0r x =,或者()r x 比()g x 次数小。 这里()f x 称为被除式,()g x 称为除式,()q x 称为商式,()r x 称为余式. 二.余数定理: 对于一元n 次多项式1110()n n n n f x a x a x a x a --=++++L ,用一元多项式x c -去除()f x ,那么余式是一个数。设这时商为多项式()g x ,则有 ()()()()f x x c g x f c =-+ 也就是说,x c -去除()f x 时,所得的余数是()f c . 三.试根法的依据(因式定理): 如果()0f c =,那么x c -是()f x 的一个因式.反过来,如果x c -是()f x 的一个因式,那么()0f c =。 四.试根法的应用: 假定1110()n n n n f x a x a x a x a --=++++L 是整系数多项式,又设有理数p c q =是()f x 的根(p q 、是互质的两个整数),则p 是常数项0a 的因数,q 是首项系数n a 的因数. 特别的,如果1n a =,即()f x 是首1多项式,这个时候1q =,有理根都是整数根。 典型例题 一. 多项式的除法 【例1】 已知32()4523f x x x x =+--,2()21g x x x =++,试求()f x 除以()g x 所得的商式()Q x 和余式 ()R x .

初中数学公式大全(绝对经典)

初中数学公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

7.综合除法与余数定理

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 41264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同 -7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面, 同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,

初中数学定理大集合

初中数学基本定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论 2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理 n边形的内角的和等于(n-2)×180° 51、推论任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等 54、推论夹在两条平行线间的平行线段相等 55、平行四边形性质定理3 平行四边形的对角线互相平分

初中数学竞赛定理大全.docx

欧拉( Euler )线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形 的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的 一半。 费尔马点: 已知 P 为锐角△ ABC内一点,当∠APB=∠ BPC=∠ CPA=120°时, PA +P B+PC的值最小,这个点 P 称为△ ABC的费尔马点。 海伦( Heron)公式: 塞瓦( Ceva)定理: 在△ ABC中,过△ ABC的顶点作相交于一点P 的直线,分别 交边 BC、CA、AB与点 D、E、F,则(BD/DC)·(CE/EA) ·(AF/FB) =1;其逆亦真。密格尔( Miquel )点:

若 AE、 AF、ED、 FB四条直线相交于 A、B、C、 D、E、F 六点, 构成四个三角形,它们是△ABF、△ AED、△ BCE、△ DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。 葛尔刚( Gergonne)点 : △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则 AE、 BF、 CD三线共点,这个点称为葛尔刚点。 西摩松( Simson)线: 已知 P 为△ ABC外接圆周上任意一点, PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则 D、E、F 三点共线,这条直线叫做西摩松线。 黄金分割: 把一条线段 (AB) 分成两条线段,使其中较大的线段 (AC)是原线段(AB) 与较小线段 (BC)的比例中项,这样的分割称为黄金分割。 帕普斯( Pappus)定理: 已知点 A 、A 、A 在直线 l 1上,已知点 B 、B 、B 在直线 l 2 上, 123123 且 A1 B2与 A2 B 1交于点 X,A1B3与 A3B1交于点 Y,A2 B 3于 A3 B2交于 点 Z,则 X、Y、Z 三点共线。

综合除法与余数定理修订版

综合除法与余数定理修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是 )(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++-

∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。

综合除法与余数定理含答案

综合除法与余数定理 数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。 1、综合除法 在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可 以推得(此处用表示关于x的多项式)除以的商式系数和余数有如 下规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数 乘以b加的第二项系数得商式的次高次项系数,以此类推最后得余数。 例1 计算() 分析把除式变成形式用综合除法, 解:, ∴商式为,余式为-38 说明用综合除法计算时要注意: (1)被除式与除式按降幂排列后的缺项要用0补足; (2)除式要变成的形式(b可以是负数) 例2用综合除法计算 (1); (2) 解:(1) ∴商式为,余式为-3 (2)用除,只需先以除,再把求得的商用2除,而余数不变。

∴商式为,余式为。 说明一般地,多项式除以一次二项式,用综合除法先将多项式除以 ,所得的商式除以p就是所求的商式,所得的余数就是所求的余数。 2、余数定理 若多项式f(x)除以的商式为p(x),余数为r,则 当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。 余数定理多项式除以()所得的余数等于。 特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。 由余数定理易知多项式除以的余数就是的多项式 的值。 余数定理告诉我们,可以不做除法求除以的余数;反过来在计算 复杂时也可以用综合法求。 例3一个关于x的二次多项式,它被除余2,它被除时余28, 它还可被整除,求。 解:设由题意得 解得 a=3,b=1,c=2。 ∴ 说明因能被整除,所以是的因式,于是可设 ,再由,,列出a,b的方程求解。 例4利用余数定理判断能否被a-b,a+b整除。 分析含,即把看成是含字母a的多项式,要判断 能否被a-b,a+b整除,即判断,是否为零。

初中数学定理、性质大全(人教版)

初中数学定理、性质大全(人教版) 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于

初中数学公式定理比赛

九年级基础知识竞赛 班级 姓名 学号 1. 小数是无理数 2.2a = a m .a n = (a m ) n = a 0 = a p -= 3. 一个单项式中,所有字母的指数的 叫做这个单项式的次数。 4.因式分解的常用方法(1)提公因式法:ab-bc = (2)运用公式法: a 2 - b 2 = a 2-2ab+b 2 = 5、分式的分子和分母都乘以(或除以)同一个 的整式,分式的值不变。 分式的分子、分母与分式本身的符号,改变其中任何 个,分式的值不变。 6.一元二次方程)0(02≠=++a c bx ax 的求根公式:x= 7.一元二次方程)0(02≠=++a c bx ax 中根的判别式,通常用“?”来表示,即?= 8. 如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么x 1+x 2= x 1x 2= 9.、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向 、不等式两边 都乘以(或除以)同一个正数,不等号的方向 、不等式两边都乘以(或除以)同一个负 数,不等号的方向 。 10.在一组数据,,,,21n x x x 这组数据的方差。通常用“2s ”表示,即2s = 11.点P(x,y)到x 轴的距离等于 ,点P(x,y)到y 轴的距离等于 ,点P(x,y)到原点的距离 等于 12.一般地,如果y= ,那么y 叫做x 的一次函数。y= ,y 叫做x 的正 比例函数。一次函数的图像都是 .一次函数有下列性质:(1)当k>0时,y 随x 的增 大而 (2)当k<0时,y 随x 的增大而 13、反比例函数中反比例系数的几何意义,过反比例函数)0(≠=k x k y 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S= 。 14二次函数的解析式有三种形式:(1)一般式:y= (2)顶点式:y= (3)交点式:y= 15如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即 当x= 时y= 。 16一元二次方程中的ac 4b 2-=?,在二次函数中表示图像与x 轴是否有交点。当?>0时, 图像与x 轴有 交点;当?=0时,图像与x 轴有 交点;当?<0时,图像与x 轴 交点。 17、线段垂直平分线上的点和这条线段 相等。和一条线段 相 等的点,在这条线段的垂直平分线上。 18.角平分线上的点到这个角的 相等。到一个角的 相等的点在这个角 的平分线上。 19过一点 一条直线与已知直线垂直. 直线外一点与直线上各点连接的所有线段中, 最短。

初中数学竞赛公式及定理精简版

一般定理及公式 1、多边形内角和定理 n边形的内角的和等于(n-2)×180° 2、推论任意多边的外角和等于360° 3、等腰梯形性质定理等腰梯形在同一底上的两个角相等 4、等腰梯形的两条对角线相等 5、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 6、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h 7、比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 8、合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 9、等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a 10、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 11、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 12、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 13、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 14、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 15、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 16、如果两个圆相切,那么切点一定在连心线上 17、①两圆外离 d>R+r ②两圆外切d=R+r③两圆相交 R-r<d<R+r(R>r) ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r) 18、相交两圆的连心线垂直平分两圆的公共弦 19、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 20、正三角形面积√3a/4 ,a表示边长 21、弧长计算公式:L=nπR/180 22、扇形面积公式:S扇形=nπR2/360=LR/2 23、内公切线长= d-(R-r) 外公切线长= d-(R+r) 三角函数定理及公式两角和公式sin(A+B)=sin A·cos B+cos A·sin Bsin(A-B)=sin A·cos B-sin B·cos Acos(A+B)=cos A·cos B-sin A·sin Bcos(A-B)=cos A·cos B+sin A·sin Btan(A+B)=(tan A+tan B)/(1-tanAtanB) tan(A-B)=(tan A-tan B)/(1+tan A·tan B) cot(A+B)=(cot A·cotB-1)/(cot B+cot A) cot(A-B)=(cot A·cot B+1)/(cot B-cot A) 倍角公式

综合除法(1)

综合除法与余数定理 一、知识提要与典型例题 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 (一)、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数 826322 4 1264414072++--+--++-444344421 ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。

最新综合除法与余数定理

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。

相关文档
最新文档