生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用
生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用

摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用

随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。

1 生物降解机理[3,4]

生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。

2 聚乳酸的基本性质

聚乳酸是以微生物的发酵产物L-乳酸为单体聚合成的一类聚合物,可以分为聚左旋乳酸(PLLA)、聚右旋乳酸(PDLA)和聚消旋乳酸(PDLLA)三种。具体性能[5]见表1。其中,常用易得的是PLLA和PDLLA。PLLA是半结晶性相当硬的材料。PLLA和PDLA的外消旋体是结晶性的,相反PDLLA是无定形的透明的材料[6]。聚乳酸的熔点较高,其物理性质介于PET (聚对苯二甲酸类塑料)和PA-6(尼龙塑料)之间,结晶度大、透明度极好,有良好的抗溶剂性、防潮、耐油脂、透气性,还具有一定的耐菌性、阻燃性和抗紫外性。聚乳酸的热稳定性好,适用于吹塑、吸塑、挤出纺丝、注塑和发泡等多种加工方法,可加工成薄膜、包装袋、包装盒、一次性快餐盒、饮料用瓶以及医用材料,使得其在服装、包装、玩具和医疗卫生等领域拥有广泛的应用前景。

3 聚乳酸的合成方法

PLA 一般可以通过乳酸的直接缩聚也可以由丙交酯经阴离子型阳离子型和配位型的开环聚合制得。一般来说乳酸直接聚合或丙交酯(lactide 简称LA) 的阴离子开环聚合所得到的PLA 分子量较低因此要合成高分子量高转化率的PLA 需要采用阳离子型或配位型开环聚合。

3.1 乳酸直接缩聚

乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡,不易得到高分子量的聚合物。在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加入催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸。它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融-固相缩聚法和反应挤出聚合法等。

直接缩聚法生产工艺简单但一般只能得到分子量小于 1 万的PLA 当缩聚温度低于120 时加入脱水剂ZnO 可以加快缩聚速度Ajioka 等[7]利用一步法制备出重均分子量达30 万的PLA 但难于进一步提高分子量且分子量分布较宽其性能不能满足生物医学上的某些需要。

3.2 丙交酯的开环聚合

目前研究合成聚乳酸的最多方法是丙交酯的开环聚合,其开环聚合的机理有阳离子聚合、阴离子聚合、配位聚合3种[8]。

3.2.1 阴离子开环聚合

1990年Kricheldorf H. R.[9]以BzOKPhOK tBuOK 和BuLi 为催化剂对L-LA 实施开环聚合。发现只有当引发剂的碱性较大时如tBuOK 和BuLi 才可能使L-LA 发生开环聚合,得到的聚合物分子量也较低,并且在聚合过程中发生聚合物部分消旋化的现象。Kricheldorf 等[10]报道了BuMgCl Bu2Mg Mg(Oet)2等对内酯的开环聚合,Mg 有一定的络合能力,反应活性有所提高,但缺点是反应时间过长。他使用格氏试剂BuMgCl催化LA 聚合发现有部分消旋现象得到产物的分子量低。推断该引发过程伴随有部分阴离子聚合机理,出现离域阴离子。

3.2.2 阳离子型开环聚合

阴离子开环聚合反应是以催化剂亲核进攻丙交酯的羰基,酰氧键断裂后生成的。这

类反应一般以强碱为催化剂,如Na2CO3、KOH、ROLi、ROK 等。现以ROLi 为例,反应为[11]:

L-丙交酯阴离子开环聚合经常伴有消旋现象,这是由于丙交酯环上的叔碳原子脱质子所致。这类催化剂反应速度快、活性高,可进行本体或溶液聚合,但副反应极为明显,不利于制备高分子量的聚合物。

3.2.3 配位插入开环聚合

配位插入开环聚合反应一般认为是单体上的氧原子与催化剂金属的空轨道配位络合,单体再在金属-碳或金属-烷氧链上进行插入和增长[12]。催化剂主要为过渡金属有机化合物和氧化物。这类反应的催化剂种类很多如烷基金属和烷基金属化合物。如AL(Oi2Pr)3,Sn(Oct)2、烷基稀土配位化合物、BuSnOMe、卟啉铝等。其中Sn(Oct)2已成为最常用、最有效的催化剂,其催化剂机理为:

卟啉铝作为配位开环聚合的一种催化剂,其引发聚合得到的聚合物的分子量分布非常窄。而且这种催化剂有很好的立构选择性。但是这类催化剂的活性不高。Kricheldorf 等用MgBu2和格氏试剂作为引发体系,发现在有冠醚作溶剂时它们能非常有效地催化L-丙交酯开环聚合得到分子量高达100 万的聚合物,但这类催化剂对实验条件要求非常高。由此可

以看出配位插入开环聚合在合成聚乳酸中发挥的重要作用。

4 聚乳酸的改性

4.1化学改性

4.1.1共聚改性

共聚改性是通过调节LA与其他单体的比例来改变聚合物的性能,或由其他单体向PLA 提供特殊功能基团,以此来改善PLA的亲水性、结晶性等性能。宋谋道等[13]采用PEG与丙交醋共聚,制得高分子质量的PLA一PEG一PLA嵌段共聚物。当PEG含量达到一定程度(如质量分数达到7.7%)后,共聚物出现了屈服拉伸,克服了PLA的脆性。这种脆性向韧性的转变说明,用PEG改性的PLA是一种综合性能可调控的生物降解材料。Yoshikuni Teramoto 等[14]用几种方法合成了纤维素双乙酸醋与PLA接枝共聚物。DSC(差示扫描量热仪)测试结果表明,改性后的共聚物均只具有单一的玻璃化转变温度,而且玻璃化转变温度有很大程度的降低,共聚物的摩尔乳酸基取代系数(MS)变大。当MS升高到14以上时,PLA侧链具有可结晶性。且共聚物的可拉伸性随着PLA含量提高有很大的提高,当MS》14时,最大断裂伸长达到2000%。

4.1.2表面改性

Ainingzhu等[15]通过壳聚糖上的自由氨基与4一叠氮苯甲酸上的梭基进行反应,将4-叠氮苯甲酸固定在壳聚糖上。利用4-叠氮苯甲酸的光敏性,采用紫外光照射涂抹在PLA薄膜表面的壳聚糖,叠氮基团光解,从而将PLA和壳聚糖共价连接起来。改性后壳聚糖上的轻基和氨基又可以引人其他的官能团,从而可以对PLA进行进一步的改性,如肝磷脂进一步改性后可在PLA表面形成聚合(高分子)电解质,能防止血小板附着在聚合物表面上,同时还加强了细胞的附着力。

4.2物理改性

4.2.1共混改性

共混改性是将两种或两种以上的聚合物进行混合,通过聚合物各组分性能的复合来达到改性的目的。共混物除具有各组分固有的优良性能外,还由于组分间某种协同效应而呈现新的效应。

淀粉是一种可自然降解的亲水性材料,它与PLA的共混物可完全生物降解。在淀粉与PLA共混物中PLA作为连续母相存在,而淀粉则作为填充剂。当淀粉含量超过60%,PLA 相变的不连续。PLA与淀粉之间的界面粘合力随着共混物的老化而降低,MDI可以改善这种界面粘合力,从而延缓PLA/淀粉共混物的老化,延缓机械性能的降低。Kelly S.Anderson 等[16],则研究了PLA与LL-DPE熔融共混物,发现半结晶的PIA不用增塑剂,通过共混即可改善其韧性,而无定形的PLA,则需要用PLLA、PE嵌段共聚物作增塑剂,才可以通过共混来改善其韧性。

4.2.2增塑改性

增塑改性就是在高聚物中混溶一定量的高沸点、低挥发性的低分子量物质,从而改善其机械性能与加工性能。

4.2.3复合改性

纤维复合改性主要是为了提高材料的机械性能。碳纤维因为其高强度和优良的生物相容性成为很好的PLA增强材料。无机填料掺人PLA中熔融共混制备复合材料,填料的种类影响复合物的机械性能。掺入子和晶须类填料后复合材料的拉伸模量分别可达 3.1-3.7GPa和3.7-4.5GPa,弯曲模量为4.1-4.8GPa和4.8-6.1GPa。掺人晶须类填料时复合材料的拉伸模量、拉伸强度以及弯曲模量与填料的体积分数成比例地增长。PLA与无机填料间的表面粘合力比较差,因而无机填料的增强效果也比较差[17]。

5 聚乳酸的应用

5.1服装领域中的应用(聚乳酸纤维)

聚乳酸纤维(简称PLA 纤维),是一种新型的生态环保型纤维,它以谷物、甜菜等为原料,先将其发酵制得乳酸,然后经缩合、聚合反应制成聚乳酸,再利用耦合剂制成具有良好机械性能的较高分子量聚乳酸,最后经过化学改质,将其强度、保水性提升并将其纤维化[18]。

聚乳酸纤维的最大特点是同时具备天然纤维和化学纤维两方面的优点,其强度和聚酯纤维接近,达6.23cN/dtex;有极好的悬垂性、滑爽性、吸湿透气性、耐晒性、抑菌和防霉性;具有丝绸般的光泽;回弹性好;有较好的卷曲性和卷曲持久性;耐磨性好;不易变形,尺寸稳定性好;UV(抗紫外)稳定性好;抗起毛起球;比PET密度小,所以由其制得的服装具有质轻、柔软、穿着舒适、干爽之感;可以用分散性染料于100℃不加载体染色;成型加工性好;热粘结温度可以控制;其熔融温度为120-170℃,熔点低(175℃)。

5.2 包装工程中的应用

高分子材料在包装行业中的应用越来越多,但是大量废弃的包装材料给环境造成了巨大污染。只靠消极的减少使用量是不能根本解决问题的,只有采用降解性高分子才是可行的。

目前,各种包装材料是聚乳酸最大、最有潜力的应用市场。聚乳酸阻气阻水性、透明性及可印刷性良好,且其基本原料乳酸是人体固有的生理物质之一,对人体无毒无害,在食品包装市场上大有用武之地。

5.3生物可降解高分子材料在医学领域中的应用

5.3.1 药物控释

药物控释是生物可降解材料的重要应用。大部分植入体内的药物控释制剂是用可降解聚合物制成的,已有一些天然的和合成的高分子材料被各国药品管理部门批准为药用辅料,还有相当数量的控释材料正在研究开发中。

聚乳酸及其共聚物被用作一些半衰期短、稳定性差、易降解及毒副作用大的药物控释制剂的载体,有效地拓宽了给药途径,减少了给药次数和给药量,提高了药物的生物利用度,最大限度地减少药物对全身特别是肝、肾的毒副作用[19,20]。聚乳酸作为缓释剂的优点有:①熔融温度低,且易溶于溶剂中。②聚乳酸水解产物为乳酸,对人体无害。③低聚乳酸容易制备。

在药物控制释放载体方面需要低相对分子质量的聚乳酸,以期在体内迅速降解[21]。为了调节药物的释放速度,宋存先等[22]用己内酯与丙交酯嵌段共聚物制备了18-甲基炔酮、氢化可的松等药物微球,通过调节聚己内酯多元醇与聚乳酸的比例改变药物的释放速度。

5.3.2骨折内固定装置

众所周知,长期以来国内外一直采用不锈钢金属材料作骨折内固定材料,由于其应力遮挡保护易形成骨质疏松,且愈合后需二次手术。采用生物可降解材料制成的骨夹板在骨愈合

过程中它具有足够的强度和硬度,可支持骨折部位承受正常生理活动的外力,在骨愈合后夹板开始降解并失去强度,外来的承重力逐渐由夹板转移到自体骨上,使新愈合的自体骨的功能自然恢复到正常水平;夹板最后从植入部位消失,免去二次手术的麻烦。

由纯的PLA制成的骨夹板其初始强度较低,只能用于非承重部位的骨折内固定,通过和其他医用生物材料的复合,可以改善PLA的力学性能,例如用聚乙醇酸(PG纤维、碳纤维、羟基磷灰石等增强PLA,可大幅度提高材料的初始强度,具有相当的承载能力,可与金属的强度媲美。

5.3.3外科手术缝合线

聚乳酸及其共聚物最早在医学上的应用就是外科缝合线,由于聚乳酸的生物降解性,在伤口愈合后自动降解并吸收,不用拆线,无需第二次手术,同时聚合物具有较强的初始抗张强度且稳定地维持一段时间,能有效控制聚合物降解速率,随着伤口的愈合,缝线缓慢降解。商品名为Vicryl的缝合线是由美国Ethico Inc.公司生产的,它是乙交酯与丙交酯的共聚物。

近年来,研究主要集中在以下几方面:①为提高缝合线的机械强度,需合成高分子量聚乳酸,改进加工工艺。②光学活性聚合物的合成,半结晶的聚右旋乳酸、聚左旋乳酸比无定形聚消旋乳酸具有较高的机械强度、较大的拉伸比率及较低的收缩率,更适合手术缝合线。

③缝合线的多功能化。在缝合线中掺入抗炎药来抑制局部炎症及异物排斥反应,在缝合线中加入增塑剂,如骨胶原、低相对分子质量聚乳酸及其他无机盐增加缝合线的韧性和调节聚合物的降解速率。

参考文献:

[1] Sinha RS,BousminaM.Biodegradable polymers and their layered silicate nanocomposites[A].

In greening the 21st centuryMaterials world,Progress inMaterials Science,2005,50:962-1079

[2] 李孝红,袁明龙,熊成东等.聚乳酸及其共聚物的合成和在生物医学上的应用[J].高分子

学报,1999,(3) :24~32

[3] 王建.生物可降解高分子及其应用[ J].四川纺织工业杂志,2003,(3):14~17

[4] 刘佳,张薇.新型生物降解材料聚乳酸综述[J].贵州化工,2008年6月第33卷第3期

[5] 史铁钧,董智贤.聚乳酸的性能、合成方法及应用[J].化工新型材料,2000,29(5):13-16.

[6]李洪权,全大萍,廖凯荣,等.化工新型材料,1999,1999,27(8):3

[7] Ajioka M,Enomoto K,Suzuki K,Yamaguchi A.,Bull Chem. Soc. Jpn. [J],1995,68:

2125

[8]周晓军.聚乳酸的合成研究[D].北京:北京化工大学硕士论文,2007.

[9] Kricheldorf H. R.,et al,Makromol. Chem. [J],1990,191(5):1057

[10] Kricheldorf H. R.,Lee S-R.,Polymer [J],1995,36:2995

[11] 魏军. 聚L-乳酸的合成研究[D].南京:南京工业大学,2005.

[12] 王俊凤,张军,张学龙,等.聚乳酸合成的研究进展[J].化工时刊,2007,21(6):51-56.

[13] 程蓉,钱欣.聚乳酸的改性及应用进展.化工进展,2001,21(11):824-458

[14] Yoshikuni Teramoto YoshiyukiNishi.Cellulosediacetate-gra(lactieacid)s:synthesis Of

wide-ranging eompositions and their thermal and meehaniealProPerties.Polymer,2003

44(9):2701一2709

[15] AipingZhu,MingZhang,JunWu,etal.Covalent immobilization of chitosan/heparin complex

with a photosensitive hetero-bifunetional crossslinking reagent on PLA surface.Biolnaterials 2002,23(23):4657-4665

[16] KellyAnderson ,ShawnH.LmMarcA.Hillmyer.Toughening of polylactide by melt blending

with linear low-density polyethy-lene.Joumal of Applied Polymer Scienee,2003,89(14):3757~3768

[17] HioshiUrayallla,ChenghuanMa,Yoshiharu Kimura.Meehanieal and Thernal Properties of

poly(L-lactide)Incorporating Various Inorsanie Fillers with Partiele and

WlliskerShapes.Macmmoleeular Materials and Engineenng,2003,288(7):562一568

[18] 周国军,章友鹤.聚乳酸纤维的特性与纺纱加工技术[J].现代纺织技术,2005;(6):59.

[19] 周栋,汪钢,赵东锷等,胶原膜、聚乙醇酸,聚乳酸共聚物在组织工程心脏瓣膜支架

材料中的应用[J]中国临床康复,2002,6(12);2371

[20] 刘竞龙,余斌,高成杰,骨组织工程材料修复骨缺损;大鼠成骨细胞与聚乳酸和聚乙

醇酸共聚合物支架联合培养观察[J]中国临床康复,2002,6(16)2371

[21] 曹燕琳,尹静波,颜世峰.生物可降解聚乳酸的改性及其应用研究进展[J].高分子通报,

2006,19(10):90-97

[22] 宋存先,陈惠英,冯新德.ε-己内酯与 D,L-丙交酯嵌段共聚物的合成及其作为生物

降解性恒定释放药物的高分子载体的评价[J].高分子通讯,1983,27(3):177-183

完全生物降解材料聚乳酸的改性及应用

完全生物降解材料聚乳酸的改性及应用 1、聚乳酸 聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料。PLA这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖,再经过乳酸菌发酵后变成乳酸,然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中,30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下,又成为淀粉的起始原料,不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 1.1聚乳酸的制备 目前聚乳酸的生产和制备主要有两条路线:(1)间接法即丙交酯开环聚合法(ROP法);(2)直接聚合法(PC法)。两类方法皆以乳酸为原料。丙交酯开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体2丙交酯,丙交酯再开环聚合得到聚乳酸,此方法中要求高纯度的丙交酯。直接法使用高效脱水剂使乳酸或其低聚物分子间脱水,以本体或溶液聚合的方式制备聚乳酸。 1.2聚乳酸的基本性质 由于乳酸具有旋光性,因此对应的聚乳酸有三种:PDLA、PLLA、PDLLA(消旋)。常用易得的是PDLLA和PLLA,分别由乳酸或丙交酯的消旋体、左旋体制得。 聚乳酸(PLA)是一种真正的生物塑料,其无毒、无刺激性,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。由于聚乳酸优良的生物相容性,其降解产物能参与人体代谢,已被美国食品医药局(FDA)批准,可用作医用手术缝合线、注射用胶囊、微球及埋植剂等。 同时聚乳酸存在的缺点是:(1)聚乳酸中有大量的酯键,亲水性差,降低了它与其它物质的生物相容性;(2)聚合所得产物的相对分子量分布过宽,聚乳酸本身为线型聚合物,这都使聚乳酸材料的强度往往不能满足要求,脆性高,热变形温度低(0146MPa负荷下为54℃),抗冲击性差;(3)降解周期难以控制;(4)价格太贵,乳酸价格以及聚合工艺决定了PLA的成本较高。这都促使人们对聚乳酸的改性展开深入的研究。

含氟高分子生物材料的表面改性研究进展

第38卷第10期2010年10月化 工 新 型 材 料N EW CH EM ICAL M A T ERIA L S Vo l 38No 10 21 作者简介:文晓文(1985-),女,在读硕士研究生,研究方向为含氟功能高分子材料。联系人:张永明,教授,博士生导师。 含氟高分子生物材料的表面改性研究进展 文晓文 李 虹 艾 飞 陈 欢 张永明* (上海交通大学化学化工学院,上海200240) 摘 要 含氟高分子材料因具有优异的稳定性和物理机械性能而成为目前研究和应用广泛的医用生物材料,但是,生物相容性的不足影响和限制了其作为体内长期植入材料的应用。因此,提高含氟高分子材料的生物相容性,尤其是通过表面改性的方法提高其生物相容性是一项有意义的研究课题。分别从改性手段和改性物质两方面综述了近年来国内外含氟高分子生物材料表面改性的研究发展。 关键词 含氟高分子材料,表面改性,生物相容性 Surface modification of fluoropolymer biomaterials Wen Xiao w en Li H o ng Ai Fei Chen H uan Zhang Yongming (Shang hai Jiao T ong U niv ersity ,Shanghai 200240) Abstract Fluoro po ly mer is w idely used as biomedical mater ials due to its o ut standing mechanical pr operty ,chemi cal st abilit y and biolog ical inertness.H owev er,the biocompatibility of fluor opolymer is not satisfied when it is used as lo ng term implant biomedical mater ial.T herefor e,to impro ve t he fluor opolymer s bio compatibility via differ ent strateg ies,especially via surface modificatio n is of sig nificant impo rtance.Recent prog r esses in surface mo dificatio n on fluor opolymers wer e review ed and wer e detailed illustr ated in tw o aspects including t he mo dif ication methods and modifier s. Key words fluor opolymer ,surface modificatio n,biocompatibilit y 含氟高分子材料具有优良的机械性能和化学稳定性,因而成为高分子生物材料中的研究热点。在现有的医用材料中,含氟高分子材料已被广泛应用于人造血管、组织充填物、人造血液、载药体、眼科修复,超声核磁检测等方面[1 3]。总体而言,含氟高分子材料无毒无害,表面能低,所制成的材料在体内呈现惰性,不被生物降解也不引起严重生理反应。但是,现有含氟高分子材料的生物相容性还不能完全令人满意。为了解决这一难题,以含氟高分子材料为基质材料,通过合适的表面改性手段,既保留了含氟材料本体的优点,又赋予其表面更好的生物相容性和特殊功能,可以获得具有理想性能的生物材料[4]。 Kang E T [5] 曾详细介绍了基于分子设计的氟材料表面改 性,但对含氟高分子生物材料研究还比较少。由于含氟材料特殊的表面性能和化学稳定性,对其进行表面改性较一般材料困难,可行方法有限。本文综述了含氟高分子生物材料的表面改性研究概况,并就改性手段和改性物质两方面进行简要介绍。 1 含氟高分子生物材料的改性手段 从改性手段上,主要分为物理吸附法和化学接枝法。物理吸附最为简便也最早使用。例如,可将一次性手术用品直接浸泡肝素溶液,在其表面形成肝素涂层,可以减少使用时与血液接触产生的凝血和不良反应,但失效快,只限临时使用[1]。与物理吸附相比,化学接枝法更为有效,可控性强,稳 定性好,可构建具有生物活性的分子结构,从而达到改变材料生物相容性的目的,目前应用较多。化学接枝法包括等离子 法、辐射法、臭氧活化法、表面A T R P 法、化学试剂法、偶联剂法等,其中前四种较为常用。 1 1 等离子体法 等离子体法是目前使用最广泛的方法。等离子体是电子、离子、自由基、紫外线等的集合体,它能在材料表面引起化学反应和聚合反应。等离子法在材料表面进行接枝聚合主要包括两步:(1)在材料表面引入活性基团;(2)单体在活性基团上开始聚合。T u C Y 等[6]用氧气等离子处理膨体四氟乙烯(eP T F E)表面,将处理后的材料浸入单体溶液进行表面接枝聚合,成功地在表面接枝聚丙烯酰胺,改变了ePT F E 的表面性能,提高了细胞与表面的结合能力。 Zou X P 等[7]通过等离子体法将甲基丙烯酸聚乙二醇酯(P EGM A )接枝到聚四氟乙烯(P T F E)表面:预先将PT F E 表面进行氢气等离子处理,再利用氩气等离子引发PEG M A 在该表面接枝聚合,可以通过控制氩气等离子的射频电源功率和辉光放电时间来控制表面接枝密度。蛋白吸附实验证明,通过表面接枝PEG M A ,可有效降低PT FE 表面对蛋白质的吸附从而提高生物相容性,如图1所示。 K onig U 等[8]用水等离子体处理PT FE 膜,产生自由基,然后进行丙烯酸气相表面接枝反应,在P T FE 膜表面形成稳定均相的聚丙烯酸层,厚度约70nm,用于固定蛋白质。Ko nig U [9]还研究了几种常用等离子体对PT F E 表面的处理效果,结

生物医用材料

生物医用高分子材料课程总结 一、生物医用材料定义 生物医用材料:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗;生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。 研究内容包括:各种器官的作用;生物医用材料的性能;组织器官与材料之间的相互作用 分类方法:按材料的传统分类法分为: (1)合成高分子材料(如聚氨酯、聚酯、聚乳酸、聚乙醇酸、) (2)天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖) (3)金属与合金材料(4)无机材料(5)复合材料 按材料的医用功能分为: (1)血液相容性材料(2)软组织相容性材料(3)硬组织相容性材料 (4)生物降解材料(5)高分子药物 二、生物相容性与安全性 生物相容性,是生物医用材料与人体之间相互作用产生各种复杂的生物、物理、化学反应的一种概念。生物医用材料必须对人体无毒、无致敏、无刺激、无遗传毒性、无致癌性,对人体组织、血液、免疫等系统不产生不良反应。 主要包括:1.组织相容性:指材料用与心血管系统外的组织和器官接触。要求医用材料植入体内后与组织、细胞接触无任何不良反应。典型的例子表现在材料与炎症,材料与肿瘤方面。影响组织相容性的因素:1)材料的化学成分;2)表面的化学成分;3)形状和表面的粗糙度: 2.血液相容性:材料用于心血管系统与血液直接接触,主要考察与血液的相互作用材料,影响因素:材料的表面光洁度;表面亲水性;表面带电性,具体作用机理表现在:血小板激活、聚集、血栓形成;凝血系统和纤溶系统激活、凝血机能增强、凝血系统加快、凝血时间缩短;红细胞膜破坏、产生溶血;白细胞减少及功能变化;补体系统的激活或抑制;对血浆蛋白和细胞因子的影响。主要发生在凝血过程,生物材料与血小板,生物材料与补体系统的作用过程。 三、生物医用材料表面改性 生物材料长期(或临时)与人体接触时,必须充分满足与生物体环境的相容性,即生物体不发生任何毒性、致敏、炎症、致癌、血栓等生物反应,这取决于材料表面与生物体环境的相互作用。研究表明:生物材料表面的成分、结构、表面形貌、表面的能量状态、亲(疏)水性、表面电荷等表面化学、物理及力学特性均会影响材料与生物体之间的相互作用。通过物理、化学、生物等各种技术手段改善材料表面性质,可大幅度改善生物材料与生物体的相容性。 主要体现在: 1表面形貌与生物相容性:表面平整光洁的材料与组织接触容易形成炎症和肿瘤,粗糙的材料表面则促使细胞和组织与材料表面附着和紧密结合。不仅增加了接触面积,更会在粗糙表面择优粘附成骨细胞、上皮细胞。粗糙表面的形态对细胞生长有“接触诱导”作用,即细胞在材料表面的生长形态受材料表面形态的调控。例如: 1),与骨接触的医用生物材料表面要求粗糙,表面具有一定粗糙度可促进骨与材料的接触,可显著促进矿化作用。 2)与血液接触的医用生物材料,一般要求材料的表面应尽可能光滑。因为光滑的表面产生的激肽释放酶少,从而使凝血因子转变较少。但孔表面有促进内皮细胞生长的作用。

组织工程用聚乳酸系生物可降解高分子材料修饰研究进展

组织工程用聚乳酸系生物可降解高分子材料修饰研究进展 姚芳莲孟继红毛君淑#姚康德# (天津大学化工学院#天津大学高分子材料研究所天津 300072) 聚乳酸(PLA)和聚羟基乙酸(PGA)及它们的共聚物(PLG)为研究得最多的生物分解性脂肪族聚酯。它们已为美国FDA批准可用作外科缝合线及药物释放载体。近年来在组织工程中被广泛用于支架(scaffold)和细胞构建结构物。此类生物降解聚合物随组织重建在体内分步降解吸收。这些材料的本体性能和力学性质与降解速率有关。而材料的表面特性则因其与体内细胞接触而对材料与细胞间的相互作用情况起关键作用,因而对这类植入体内材料的表面修饰就显得特别主要。乳酸类聚合物的表面疏水性强,影响了其与细胞的亲和性,要扩大乳酸系聚合物在组织工程中的应用,对其与细胞亲和力的改进是一关键问题。由于聚乳酸分子链上缺乏反应位点,使得对其进行修饰变得非常困难。一般常用于聚合物表面修饰的方法,如调节材料表面亲水/疏水性及电荷、将细胞粘连因子和细胞增殖因子等生物活性因子固定于材料表面等,对乳酸类聚酯的表面修饰难于奏效。基于物理吸附的修饰方法是由范德华力维持吸附分子与基材间的作用,所以结合力弱,被结合分子易脱落,影响材料的长期使用性能,不能满足应用需要。因而,寻求聚乳酸系聚合物合适的修饰技术,包括用嵌段或接枝聚合方法对其化学结构进行本体修饰、表面修饰或复合改性,从而改善聚乳酸基生物降解材料对目标细胞的亲和性,使其在组织工程相关应用中发挥作用具有重要意义。 1 嵌段共聚物 纤连蛋白细胞粘连微区为精氨酸-甘氨酸-天冬氨酸(RGD)二肽,它可由含 侧链羧基的乳酸和苹果酸的共聚物而固定化。天冬氨酸与苄醇的80%H 2SO 4 水溶液 于70?C脱水缩合得其L-β天冬氨酸苄酯,将其在硫酸水溶液中与NaNO 2 反应得L-β 苹果酸苄酯(2),它与溴代乙酰氯在三乙胺存在下,于醚中反应得L-β溴乙酰苄 基苹果酸酯(3),它在二甲基甲酰胺中与NaHCO 3 反应则得其环状二聚体(BMD)(4)。将它与L-丙交酯(L-LAC)在己酸亚锡催化下于160?C开环聚合而后水解得 PMLA[1]。其中含苹果酸10%,数均分子量为31,700。以二环己基碳二亚胺(DCC)法或氯甲酸酯(ECF)法可将RGD在其薄膜上固定化。以后法为例,固定化量达6.3μg RGD/1mg PMLA。以1.0×105的NIH3T3细胞种植后,在D-MEM基中,37?C 下 5% CO 2 气氛中培养1h, 细胞培养后的薄膜用戊二醛固定化,对照薄膜上粘连细胞仅为种植细胞的1%,而固定化7.29μg后表面粘连细胞数增大30倍。可见利用聚(苹果酸-共-乳酸)侧链上的羧基使聚乳酸表面修饰,利于细胞粘连因子、细胞分化诱导因子和增殖因子固定化。

材料表面的硅烷化改性

实验64 材料表面的硅烷化改性 一.实验目的 1.利用硅烷偶联剂改性有机或无机材料。 2.制备无机-有机杂化粉体或薄膜材料。 二.实验原理 很多纳米材料都是重要的无机化工产品,是橡胶.塑料.油漆.油墨.造纸.农药及牙膏等行业不可缺少的优良原料。以SiO2纳米颗粒为例,纯粹制备的SiO2颗粒表面上存在着大量的羟基基团,呈极性.亲水性强,众多的颗粒相互联结成链状,链状结构彼此又以氢键相互作用,形成由聚集体组成的立体网状结构,在这种立体网状结构中分子间作用力很强,应用过程中很难均匀分散在有机聚合物中,颗粒的纳米效应很难发挥出来。如何将纳米SiO2均匀分散在高分子材料中,以提高聚合物材料的各项性能是一个重要的研究方向。 硅烷偶联剂发展至今已有一百多种产品,按Y有机官能团的不同,可分为链系基类硅烷偶联剂.氨基硅烷偶联剂.环氧基类硅烷偶联剂.烷基丙烯酰氧基类硅烷偶联剂及双官能基型硅烷偶联剂等。 硅烷偶联剂处理技术原理简单.操作方便,其与材料表面的作用机理一直是研究的重点,目前关于硅烷在材料表面行为的理论有很多假设,主要有化学键理论.物理吸附理论.表面浸润理论.可逆水解平衡理论和酸碱相互作用理论等。 硅烷偶联剂分子含有两种反应性基团,化学结构可以用X3SiRY来表示,其中,X是可进行水解反应并生成硅烃基(Si-OH)的基团,如卤素.氨基.烷氧基和乙酰氧基等,硅醇基团可和无机物(如无机盐类.硅酸盐.金属及金属氧化物等)发生化学反应,生成稳定的化学键,将硅烷与无机材料连接起来。Y是非水解基团,可与有机基团如乙烯基.氨基.巯基.环氧基等起反应,从而提高硅烷与聚合物的粘连性。R是具有饱和键或不饱和键的碳链,将官能团Y 和Si原子连接起来。因此硅烷偶联剂分子被认为是连接无机材料和有机材料的“分子桥”,能将两种性质悬殊的材料牢固地连接在一起,形成无机相/硅烷偶联剂/有机相的结合形态,从而增加了后续有机涂层与基地材料的结合力。 一般来说,硅烷分子中的两个端基团既能分别参与各自的反应,也能同时起反应。通过适当的控制反应条件,可在不改变Y官能团的前提下取代X官能团,或者在保留X官能团的情况下,使Y官能团改性。若在水性介质中对Y官能团改性,那么X基团同时水解。则硅烷的作用过程依照四步反应模型来解释: ①与硅相连的3个Si-X基团水解成Si-OH; ②Si-OH之间缩合反应,脱水生成Si-OH的低聚硅烷; ③低聚物中的Si-OH与基体表面的-OH形成氢键; ④加热固化过程中发生脱水反应,与基材以共价键连接。 界面上硅烷偶联剂只有一个硅与基材表面键合,剩下两个Si-OH可与其他硅烷中的Si-OH 缩合形成Si-O-Si结构。 常用的硅烷偶联剂主要有; (十二烷基三甲氧基硅烷) (乙烯基三乙氧基硅烷)

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。 2 聚乳酸的基本性质

材料改性与表面工程

材料改性与表面工程 镁合金被誉为“21世纪最具发展潜力和前途的绿色工程材料”。他是金属结构材料中最轻的一种,镁合金从早期被应用于航空航天工业到目前在汽车材料、光学仪器、电子电信、军工工业等方面的应用有了很大发展。但是镁合金的耐蚀性耐磨性硬度及耐高温性能较差,在某种程度上又制约了镁合金材料的广泛应用。采用冷喷涂技术在镁合金表面喷涂覆盖上一层致密的保护膜,是解决镁合金腐蚀和磨损问题,提高镁合金铸件使用寿命,拓宽镁合金应用范围的关键之一。 1.冷喷涂原理和特点 超音速冷喷涂(简称冷喷涂)是近年发展起来的一种新型涂层制备工艺,常以金属材料(如钛、镍、钨、钴、铜、合金等)[1-5]为喷涂材料进行金属表面改性和功能涂层的制备。 冷喷涂技术[6]就是将经过一定低温预热的高压(1.5~3.5MPa)气体(N2、He 或压缩气体)分两路,一路通过送粉器,携带经预热(100~600℃)的粉末粒子(1~50 m)从轴向送入高速气流中;另一路通过加热器使气体膨胀,提高气流速度(300~1200 m/s),最后两路气流进入喷枪,在其中形成气─固双相流,在完全固态下撞击基体,通过较大的塑性变形而沉积于基体表面形成涂层。在喷涂过程中,喷枪距离为5~30 mm。 冷喷涂实现低温状态下的金属涂层沉积,具有如下主要优点:其一,喷涂粉末在加工过程中工作温度低,几乎无氧化现象,涂层表面组织均匀;其二,涂层密度大、结合强度高;其三,涂层材料适用广泛,可制备硬度大、耐磨性高、强度高的涂层;其四,可以加工具有特殊物理化学性质的涂层;其五,组织稳定;其六,涂层表面具有残余的压应力,使耐疲劳性增加;其七,喷涂粉末可以回收再利用。 2.国内外用冷喷涂技术在镁合金基体上喷涂铝合金涂层的研究现状 Yongshan Tao[7]等人用冷喷涂的方法在AZ91D镁合金表面沉积一层纯铝涂层,发现涂层中存在微米尺寸的裂纹和孔洞,涂层颗粒边界处中形成了新的界面和亚晶相;在质量分数为3.5%的中性NaCl溶液中浸渍后发现涂层的抗点蚀性能比具有相似纯度的铝块好。在浸渍过程中,由于在涂层中存在着相互独立的微米级或纳米级的孔洞而发生了传质现象。在浸渍十天之后,由于涂层致密细颗粒的结构,它仍然可以为AZ91D 镁合金基体提供良好的耐蚀性保护。 他们还在铝粉中加入α-Al2O3作为增强颗粒,发现涂层和纯铝涂层相比有较小的气孔率,由于α-Al2O3在基体上的渗透和侵蚀,涂层和基体之间的结合力也增强;α-Al2O3在铝基体上的捣固和增强作用涂层具

生物可降解材料聚乳酸的制备改性及应用演示教学

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。 关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化

聚乳酸的基本性质与改性研究

增加其力学强度,同时使降解速度减缓。PLA在高热下不稳定,即使低于熔融温度下加工也会使分子量下降较大。但随分子量升高,材料在加工中的降解速度也会变慢。 PLA具有良好的生物相容性,在生物体内PLA分解成乳酸,经生物酶的分解生成CO2和H2O,从体内排出。临床试验未发现有严重的急性组织反应和毒理反应,但PLLA仍有可能导致一些无菌性炎症反应。如用PLA材料做颧骨固定术后3年会产生无痛的局域肿块,皮下组织也出现降解缓慢的 结晶PLA颗粒,而引发噬菌作用。研究无法确定产生组织反应的真正原因,但PLA降解后产生小颗粒是无菌性炎症反应出现的根本原因。植入部位不同也决定了组织反应类型和强度,植入皮下PLA时炎症发生率偏高,在髓 内固定组织吞噬细胞较少,则反应发生率较低。 PLA是一种完全生物降解的热塑性高分子,具有良好的机械性能,透明性和生物相容性,广泛应用于生物医药行业中。PLA还具有较高的拉伸强度、压缩模量,但PLA还具有取多缺点。具有光学活性的PLA,结晶度较高,降解周期长,脆性大,而消旋PLA强度差,质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能基团,也不具有亲水性,降解速度需要控制。为了改善产品的脆性,调节其生物降解周期,更好地拓宽其应用面,各国研究者纷纷致力于PLA的改性事业。通过对PLA进行增塑、共聚、共混、分子修饰、复合等改性方法可实现对PLA的降解性能、亲水性及力学性能的改进,还可获得成本低廉的产品,从而更好地满足在医

学领域或环保方面的应用需求。 1.2 PLA热力学特性 PLA中碳原子为手性碳原子,因此PLA可分为左旋、右旋和内消旋等种类。其中非立体异构PLA的玻璃化转变温度由共聚单体的性能和聚合度决定。PLA立体异构体共聚物的Tg一般在60℃,与乳酸含量多少无关。 PLA的熔点与聚合物的分子量大小、光纯度、结晶程度等有关。共聚单体纯度也影响合成PLA的熔点。一般情况下,光纯度较高的PLLA的熔点较高,可到180℃,随D型乳酸增大后,合成的内消旋PLA的熔点有明显下降趋势,比如当内消旋异构体含量为2%,Tm下降至160℃,含量升至15%时,熔点降低至127℃。 但当PLLA和PDLA以1:1的比例混合后,形成外消旋PLA,其熔点可提高至230℃。因为混合物中PLLA和PDLA之间发生明显的立体络合,无定形区的链节之间之间相互作用导致该区域高密度的链堆砌,结构更加紧密,导致Tg升高。 1.3 PLA的热稳定性 同PET一样,由于PLA分子链中主要为羟基和羧基脱水缩合形成的酯键,化学活化能低,在高温下易发生化学键断裂反应,使分子量降低。特别是在有水分子存在的情况下,易发生水解反应,使PLA降解速度加快。有实验显示PLA在干燥条件下起始失重温度为285℃,但未经干燥的PLA的起始失重温度降低至260℃。因此在生产过程中水分对PLA的影响不可忽视,

医用钛合金表面改性及其生物摩擦学的研究进展_陈昌佐

第26卷第1期2014年1月 腐蚀科学与防护技术 CORROSION SCIENCE AND PROTECTION TECHNOLOGY V ol.26No.1 Jan.2014 专题介绍 医用钛合金表面改性及其生物摩擦学的 研究进展 陈昌佐1,2丁红燕2周广宏2庄国志1印风2 1.江苏大学材料科学与工程学院镇江212013; 2.淮阴工学院江苏省介入医疗器械研究重点实验室淮安223003 摘要:综述了医用钛合金常用的化学改性和物理改性方法,介绍了改性后涂层的生物摩擦学性能,并对医用钛合金在提高耐磨性方面的改性技术进行了展望。提出了工艺改进和新材料开发等方面的建议。 关键词:医用钛合金表面改性耐磨性 中图分类号:TH171.1,TG146.2文献标识码:A文章编号:1002-6495(2014)01-0069-04 1前言 目前临床骨科应用最广泛的生物材料多为金属材料,其主要包括不锈钢、钴基合金、钛合金以及形状记忆合金等[1,2]。不锈钢、钴基合金等在临床应用中还存在着诸多问题,如:生物相容性差、组织反应严重、强烈的致敏、致癌反应和易产生应力遮挡等[3]。Ti及钛合金具有低的弹性模量、良好的生物相容性和耐蚀性等优点,在临床应用上得到了广泛使用,如:硬组织替换、血管支架、心脏瓣膜以及各种矫形器械等。 医用钛合金虽然具有优良的耐蚀性和比强度,但其耐磨性相对较差。植入物在磨损条件下容易产生大量的含Ti,Al和V的黑色磨屑,从而导致无菌松动直至关节置换失败。此外,Al,V元素具有潜在的细胞毒性,可能导致表面磷灰石无法生成,特别是Al易引起老年痴呆症。通过钛合金的表面改性或优化材料的成分,减少人工关节在使用过程中的磨粒产生,改善磨损粒子的尺度分布,减轻磨粒的生物学反应是延长人工关节使用寿命的关键[4,5]。表面改性技术可在保留医用钛合金原有的优良性能基础上改善其临床使用性能。本文评述了目前常用的钛合金表面改性方法及其生物摩擦学的研究现状,并对其未来发展趋势进行了展望。 2常用的钛合金表面改性技术及其生物摩擦学性能 2.1化学改性方法 2.1.1微弧氧化法微弧氧化(MAO)技术,或称为等离子氧化技术,是一种在材料表面获得陶瓷涂层的技术。该技术可以在Al,Mg,Ti等金属及其合金表面原位生长一层陶瓷薄膜[6]。MAO陶瓷膜不仅耐磨、耐蚀性好,而且Ca,P元素可直接进入到氧化膜层中,从而提高了生物相容性,在临床植入体手术中已有少量的探索性应用[7]。 Zhou等[8]在TC4合金上通过微弧氧化方法合成了TiO2涂层,并在SBF模拟体液中考察了MAO涂层的摩擦学性能,结果表明,与未经处理的TC4比较,涂层在模拟体液中的摩擦系数降低,磨损体积减少。王凤彪等[9]利用微弧氧化工艺在钛合金表面制备了羟基磷灰石(HA)膜,研究了薄膜在模拟体液中浸泡后的耐磨性。结果表明,膜层随浸泡时间延长而逐渐变厚;浸泡后膜层的摩擦系数随摩擦时间延长先升高后降低,耐磨性呈升高趋势。 2.1.2溶胶凝胶法溶胶-凝胶法(sol-gel)一般以钛醇盐及其相应的溶剂为原料,加入少量水及不同的酸和络合剂等,经搅拌和陈化制成稳定的溶胶,然后用浸渍提拉、旋转涂层或喷涂等方法将溶胶施于经过清洁处理的基体表面,最后经干燥焙烧,在基体表面形成一层薄膜[10]。 刘颖等[11]通过溶胶凝胶工艺和浸渍提拉技术,以钛酸丁酯为前躯体,加入聚乙二醇作为模板剂,在TC4合金基片上制备了TiO2微纳图案化薄膜,并对薄膜的摩擦学性能进行了研究。结果表明,制备的薄膜明显改善了钛合金的摩擦磨损性能。张文光等[12]利用静动摩擦系数测定仪评价了TC4合金经碱液热处理、溶胶-凝胶和热氧化3种不同方法处理后的摩擦学性能,结果表明,TiO2溶胶-凝胶薄膜在较高载荷下的耐磨性能较差,而在较低载荷下的耐磨性能较好。 定稿日期:2013-03-29 基金项目:国家自然科学基金项目(51175212)资助 作者简介:陈昌佐,1989年生,硕士生,研究方向为材料的生物摩擦学 通讯作者:丁红燕,E-mail: nanhang1227@https://www.360docs.net/doc/2e460915.html,.

生物降解高分子材料——聚乳酸

生物降解高分子材料——聚乳酸 摘要:生物降解材料聚乳酸的性质及其制备方法的研究进程,其中主要介绍了通过开环聚合反映制取聚乳酸的方法以及聚乳酸易降解的特性,此外还讲了我国在聚乳酸方面的研究,最后介绍了聚乳酸在医药等方面的重大应用以及聚乳酸的发展前景。 关键词:环境材料生物降解聚乳酸前景 正文: 人类经济和社会的发展常常以扩大开发自然资源和无偿利用环境作为发展模式,这一方改造了空前巨大的物质财富和前所未有的社会文明,另一方面也造成了全球性自然环境的破坏。资源与能源是制造材料和推动材料发展的两大支柱。同时,材料的生产和使用过程也会带来众多的环境问题。因而,传统材料的生态化和开发新型生态材料以缓解日益恶化的环境问题,即材料与环境如何协调发展的问题日益受到人们重视,出现了“环境材料(ecomaterial)”的概念和环境材料学这一新兴的交叉学科,要求材料在满足使用性能要求的同时具有良好的全寿命过程的环境协调性,赋予材料及材料产业以环境协调功能。环境材料是未来新材料的重要方面之一。开发既有良好的使用性能,又具有较高的资源利用率,且对生态一步发展,能够更有效地利用有限的资源和能源,尽可能地减少环境负荷,实现材料产业和人类社会的可持续发展。 随着人类驾驭自然的本领按几何级数增长,向自然环境摄取的物质和抛弃的废弃物就越多。人类对自然环境的影响和干预越大,自然

环境对人类的反作用就越大[1]。当自然环境达到无法承受的程度时,在漫漫岁月里建立起来的生态平衡,就会遭到严重的破坏。材料的性能在很大程度上决定于环境的影响,环境包括“社会环境”和自然环境。其中人所组成的社会因素的总体称为社会环境。自然因素的总体称为自然环境,目前认为是以大气、水、土壤、地形、地质、矿产等一次要素为基础,以植物、动物、微生物等作为二次要素的系统的总体。为了得到更好的环境,开始从不同的环境材料开始研究.。 一、聚乳酸的合成与制备方法 乳酸的直接缩合是作为早期制备PLA的简单方法,但一般只能得到低聚物(数均分子量小于5000,分子量分布约2.0),而且聚合温度高于180℃时,通常导致产物带色。到目前为止,PLA主要是通过LA 的开环聚合制得。依据引发剂的不同,LA的开环聚合可分为正离子聚合、负离子聚合和配位聚合。目前,聚乳酸以乳酸或其衍生物乳酸酯为原料(最常见的是采用左旋乳酸为原料),通过化学合成得到聚合物。高力学性能的聚乳酸是指旋光纯度高的聚L酸(PIJA),单体为£一乳酸。合成工艺大致可以分为间接合成法和直接合成法。直接合成法,也被称作一步聚合法,是利用乳酸直接脱水缩合反应合成聚乳酸。直接法优点操作简单,成本低。缺点乳酸纯度要求高,反应时间长,反应温度控制要求严格[2]。 LA正离子开环聚合是烷氧键断开,每次增长是在手性碳上,因此外消旋成了不可避免的,而且随聚合温度的升高而增加。另外的不足之处在于:能引发LA正离子聚合的引发剂不多,而且难以得到高

聚乳酸的基本性质与改性研究

PLA的基本性质与改性研究 1.1 物理性质[1,9] 无定形PLA的密度为1.248g/cm3,结晶PLLA的密度为1.290g/cm3,因此PLA的密度一般在两者之间。PLA为浅黄色或透明的物质,玻璃化温度约为55℃、熔点约175℃,不溶于水、乙醇、甲醇等,易水解成乳酸[6]。其性质如表1-1所示: 表1-1 PLA的基本性能 Table 1.1 The basic properties of PLA 性能PLLA PDLLA 熔点/℃170-190 <170 玻璃化转变温度/℃50~65 50~60 密度(g/cm3) 1.25~1.29 1.27 溶度参数(MPa0.5) 19~20.5 21.2 拉伸强度(kg/mm2) 12~230 4~5 弹性模量(kg/mm2) 700~1000 150~190 断裂伸长率(%) 12~26 5~10 结晶度(%) 60 / 完全降解时间(月) >24 12~16 乳酸有两种旋光异构体即左旋(L)和右旋(D)乳酸,聚合物有三种立体构型:右旋PLA(PDLA)、左旋PLA(PLLA)、内消旋PLA(PDLLA)。右旋PLA和左旋PLA是两种具有光学活性的有规立构聚合物,比旋光度分别为+157℃、-157℃。在熔融和溶液条件下均可形成结晶,结晶度高达60%左右。内消旋PLA是无定形非结晶材料,T g为58℃,由于内消旋结构打乱了分子链的规整度,无法结晶因此不存在熔融温度。纯的PLA为乳白色半透明粒子,PLA经双向拉伸加工可具有良好的表面光泽性、透明性、高刚性、抗油和耐润滑侵蚀性。 结晶性对PLA材料力学性能和降解性能(包括力学强度衰减、降解速率)的影响很大,PLA性脆、冲击强度差,特别是无定形非晶态的PDLLA力学强度明显低于晶态的PLLA,用特殊增强工艺制备的Φ3.2mmPLLA,PDLLA棒材的最大弯曲强度分别是270MPa和140 MPa,PLLA弯曲强度几乎是PDLLA的2倍。结晶也使降解速度变慢,研究称PDLLA 材料在盐水中降解时,分子量半衰期一般为3至10周,而PLLA由于结晶存在至少为20周。随分子量增大,PLA的力学强度也会随之提高,如PLA要想作为可使用的材料其分子量至少要达到10万左右。PLA材料的另一个突出优点是加工途径广泛,如挤出、纺丝、双轴拉伸等。在加工过程中分子取向不仅会大大增加其力学强度,同时使降解速

医用金属材料表面处理

医用钛合金材料表面改性 摘要:金属材料是生物医学材料中应用最早的。由金属具有较高的强度和韧性,适用于修复或换人体的硬组织,早在一百多年前人们就已用贵金属镶牙。随着抗腐蚀性强的不锈钢、弹性模量与骨组织接近铜铁合金,以及记忆合金材料、复合材料等新型生物医学金属材料的不断出现,其应用范围也在扩大。 关键词:钛合金材料,表面涂层处理,表面改性 (一)医用金属与合金表面涂层处理 金属及其合金在生物体内的生物活性、磨损、腐蚀问题尚未解决,需对其表面进行改性。表面改性不仅要抑制有害金属离子的溶出,而且要促进组织的再生和加强材料与组织结合。 生物钛合金材料的表面改性技术主要可以分为: (1)物理化学方法(2)形态学方法(3)生物化学方法。 1 物理化学方法——改善金属生物材料表面性能的主要方法 (1)热喷涂 热喷涂是利用一种热源的火焰将粉末状的金属或非金属喷涂材料加热熔融并软化,并用热源自身的动力或外加高速气流雾化,使喷涂材料的液滴以一定的速度喷向经过预处理干净的基体表面,依靠喷涂材料的物理变化和化学反应,与基体形成结合层的工艺方法。可分为电弧喷涂、等离子喷涂、火焰喷涂、爆炸喷涂等。 (2)脉冲激光融敷 是在低输出功率、高扫描速速的脉冲激光照射下,将涂敷材料融敷在基体表面的方法。 (3)离子溅射 离子溅射以高速离子轰击靶材,使涂敷材料粉粒溅射并沉积在金属基体 (4)喷砂法 用喷砂机将涂敷材料粉末直接高速喷出镶入基体表面。 (5)电化学法 电化学法是用电化学的方法,通过调节电解液的浓度、PH值、反应温度,电场强度,电流等来控制反应的制备方法。 (6)离子注入法 离子注入改性是将所需的元素在离子气化室中进行气化,通过高频放

生物可降解材料聚乳酸结晶行为研究进展_任杰

生物可降解材料聚乳酸结晶行为研究进展 任 杰*,杨 军,任天斌 (同济大学材料科学与工程学院纳米与生物高分子材料研究所,上海 200092) 摘要:聚乳酸是一种具有良好生物相容性、可生物降解的热塑性脂肪族聚脂,是一种环境友好材料。聚乳 酸的结晶性能对其力学性能和降解速率有着重要的影响,因而其结晶行为也逐渐成为人们研究的热点。本文 针对聚乳酸的结晶行为综述了聚乳酸及其共混、共聚体系的最新研究进展。 关键词:聚乳酸;共聚;共混;结晶 目前,生物医用高分子材料作为功能高分子材料的分支之一,发展非常迅速,广泛用作组织工程材料、人体器官、药物控制释放材料、仿生智能材料等。其中聚乳酸因具备良好的生物相容性、生物降解性、以及易加工性,在医学和包装材料等方面有着广泛的应用,是最有前途的可生物降解高分子材料之一。但是聚乳酸均聚物也存在不少缺陷,如亲水性差,力学强度低、韧性较差等。为了改善聚乳酸的这些性能,国内外许多学者对其进行了大量的共聚、共混改性研究。 除化学结构因素外,聚合物结晶和形态的不同,同样会导致各种性能的差异,而高聚物的结晶也始终是高分子领域研究的重要课题之一。聚乳酸的结晶性能对其力学性能和降解性能有着重要的影响。因此,研究影响聚乳酸结晶和形态的因素聚乳酸及其共聚、共混物的结晶行为,不论在理论方面,还是在实际应用方面,都将是十分有意义的。 根据立体构型的不同,聚乳酸(PLA)可以分为聚左旋乳酸(PLLA)、聚右旋乳酸(PDLA)和聚消旋乳酸(PDLLA)三种。其中,常用易得的是PLLA和PDLLA。PLLA是半结晶性的,T g为50~60 ,T m为170 ~180 ,而PDLLA是无定型的透明材料,T g为50~60 。因此本文主要对聚左旋乳酸(PLLA)的结晶行为,及共聚、共混改性对其结晶行为影响的最新研究进展进行综述。 1 聚左旋乳酸(PLLA)的结晶 PLLA的结晶行为不仅受其分子量及分子量分布的影响,还受诸多外在因素的影响,如冷却速率、结晶温度等。Tadakatu和Toru[1]运用DSC和POM等手段系统研究了PLLA的结晶特征。在非等温结晶过程中,冷却速率影响PLLA晶体的成核机理、最终的结晶度和晶体的形态。PLLA结晶度随着冷却速率的降低而显著增加,在冷却速率为3 5 min时结晶度仅为0 10,而冷却速率降至0 5 min时结晶度可达0 56。PLLA球晶尺寸在较低的冷却速率下(<2 min)随冷却速率的降低而增大。等温结晶测试表明,在105 时PLLA(M w=200000)有最大的结晶速率,且结晶速率随着PLLA分子量降低而增加;但是PLLA 最大的球晶增长速率出现在120 ,约为3 0 m min-1。Iannace等[2]研究表明,在等温结晶过程中,对于所有的结晶温度T c,PLLA的Avrami指数均接近3,表明PLLA晶体的生长方式是三维的,为典型的球晶生长特征。PLLA的半结晶期t1 2受T c影响很大。而等温和非等温方法的联合运用可以在更宽的温度范围内测量PLLA球晶的生长速率[3]。 基金项目:上海市重点基础研究资助项目(05DJ14006),上海市科委纳米专项资助项目(0552nm029); 作者简介:任杰(1965-),男,教授,博士生导师,主要研究方向为生物可降解高分子材料和聚合物纳米复合材料; *通讯联系人:T el:021 ********;Fax:021 ********;E mail:renjie65@https://www.360docs.net/doc/2e460915.html,.

聚乳酸(PLA)的合成及改性研究

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA 的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言

聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA 的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。

1、聚乳酸的研究背景 聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20 世纪初,法国人首先用缩聚的方法合成了PLA[1];在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展[2]。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法。 2、PLA的合成 以玉米、小麦、木芋等植物中提取的淀粉为原料.经过酶分解得到葡萄糖.再通过乳酸菌发酵转变为乳酸,然后经化学合成得到高纯度的PLA。 PLA的合成通常有:1)直接缩聚法[3-4]。以乳酸、乳酸酯和其他乳酸衍生物等为原料在真空条件下,采用溶剂使之脱水聚合成PLA。该法生产工艺简单、成本低,且合成的PLA中不含催化剂.但由于体系中存在杂质且乳酸缩聚是可逆反应,故该法很难得到高相对分子质量的PLA。具体反应式如下[5]: nHOCH(CH 3)COOH → H 一[OCH(CH 3 )CO]n 一OH + (n-1)H 2 O H一[OCH(CH 3 )CO]n一 一[OCH(CH 3 )CO]n一OH + H 2 O

相关文档
最新文档