晶圆

晶圆
晶圆

2007-11-17 13:07:00

漫谈晶圆---讲述沙子转变成晶体及晶圆和用于芯片制造级的抛光片

的生产步骤

介绍

高密度和大尺寸芯片的发展需要大直径的晶圆。在上世纪60年代开始使用的是1²直径的晶圆,而现在业界根据90年代的工艺要求生产200毫米直径的晶圆。300 毫米直径的晶圆也已经投入生产线了,而根据SIA的技术路线图,到2007年,300毫米将成为标准尺寸。以后预期会是400毫米或450毫米直径的晶圆。大直径的晶圆是由不断降低芯片成本的要求驱动的。然而,这对晶圆制备的挑战是巨大的。大直径意味着高重量,这就需要更多坚固的工艺设备。在晶体生长中,晶体结构上和电学性能一致性及污染的问题是一个挑战,这些挑战和几乎每一个参数更紧的工艺规格要求共存。与挑战并进和提供更大直径晶圆是芯片制造不断进步的关键。

半导体硅制备

半导体器件和电路在半导体材料晶圆的表层形成,半导体材料通常是硅。到指定的电阻率水平,必须是指定的晶体结构,必须是光学的平这些晶圆的杂质含量水平必须非常低,必须掺杂面,并达到许多机械及清洁度的规格要求。制造IC级的硅晶圆分四个阶段进行:

晶圆制备阶段

**矿石到高纯气体的转变

**气体到多晶的转变

**多晶到单晶,掺杂晶棒的转变

**晶棒到晶圆的制备

半导体制造的第一个阶段是从泥土里选取和提纯半导体材料的原料。提纯从化学反应开始。对于硅,化学反应是从矿石到硅化物气体,例如四氯化硅或三氯硅烷。杂质,例如其他金属,留在矿石残渣里。硅化物再和氢反应(图3.1)生成半导体级的硅。这样的硅的纯度达99.9999999%,是地球上最纯的物质之一。1它有一种称为多晶或多

晶硅(polysilicon)的晶体结构。

晶体材料

材料中原子的组织结构是导致材料不同的一种方式。有些材料,例如硅和锗,原子在整个材料里重复排列成非常固定的结构,这种材料称

为晶体(crystals)。

原子没有固定的周期性排列的材料称为非晶或无定形(amorphous)。

塑料是无定形材料的例子。

晶胞

对于晶体材料实际上可能有两个级别的原子组织结构。第一个是单个原子的组织结构。晶体里的原子排列在称为晶胞(unit cell)的结构的特定点。晶胞是晶体结构的第一个级别。晶胞结构在晶体里到处

重复。

另一个涉及晶胞结构的术语是晶格(lattice)。晶体材料具有特定的晶格结构,并且原子位于晶格结构的特定点。

在晶胞里原子的数量、相对位臵及原子间的结合能会引发材料的许多特性。每个晶体材料具有独一无二的晶胞。硅晶胞具有16个原子排列成金刚石结构(图3.2)。砷化镓晶体具有18个原子的晶胞结构

称为闪锌矿结构(图3.3)。

多晶和单晶

晶体结构的第二个级别和晶胞的构成有关。在本征半导体中,晶胞间不是规则的排列。这种情形和方糖杂乱无章的堆起来相似,每个方糖代表一个晶胞。这样排列的材料具有多晶结构。

当晶胞间整洁而有规则的排列时第二个级别的结构发生了(图3.4)。

那样排列的材料具有单晶结构。

单晶材料比多晶材料具有更一致和更可预测的特性。单晶结构允许在半导体里一致和可预测的电子流动。在晶圆制造工艺的结尾,晶体的一致性对于分割晶圆成无粗糙边缘的晶元是至关重要的(见18章)。

晶圆是制造IC的基本原料

硅是由沙子所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将这些纯硅制成长硅晶棒,成为制造积体电路的石英半导体的材料,经过照相制版,研磨,抛光,切片等程序,将多晶硅融解拉出单晶硅晶棒,然后切割成一片一片薄薄的晶圆。我们会听到几寸的晶圆厂,如果硅晶圆的直径越大,代表著这座晶圆厂有较好的技术。另外还有scaling技术可以将电晶体与导线的尺寸缩小,这两种方式都

可以在一片晶圆上,制作出更多的硅晶粒,提高品质与降低成本。所以这代表6寸、8寸、12寸晶圆当中,12寸晶圆有较高的产能。当然,生产晶圆的过程当中,良品率是很重要的条件。

晶圆是指硅半导体积体电路制作所用的硅晶片,由于其形状为圆形,故称为晶圆;在硅晶片上可加工制作成各种电路元件结构,而成为有特定电性功能之IC产品。晶圆的原始材料是硅,而地壳表面有用之不竭的二氧化硅。二氧化硅矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。晶圆制造厂再将此多晶硅融解,再于融液内掺入一小粒的硅晶体晶种,然后将其慢慢拉出,以形成圆柱状的单晶硅晶棒,由于硅晶棒是由一颗小晶粒在熔融态的硅原料中逐渐生成,此过程称为?长晶?。硅晶棒再经过研磨,抛光,切片后,即成为积体电路工厂的基本原料——硅晶

圆片,这就是?晶圆?。

一,晶圆制备关键术语和概念

晶体籽晶

晶胞熔融物

多晶晶体生长

单晶直拉法

晶体定向区熔法

<100>晶面液体掩盖直拉法

<111>晶面晶圆参考面

点缺陷晶圆参考面代码

晶体位错化学机械抛光

原生缺陷背损伤

边缘倒角切片

滑移空位

晶圆术语

1. 器件或叫芯片(Chip, die, device, microchip, bar):这个

名词指的是在晶圆表面占大部分面积的微芯片掩膜。

2. 街区或锯切线(Scribe lines, saw lines, streets, avenues):在晶圆上用来分隔不同芯片之间的街区。街区通常是空白的, 但有些公司在街区内放臵对准靶, 或测试的结构(见‘ Photomasking’一

章)。

3. 工程试验芯片(Engineering die, test die):这些芯片与正式器件(或称电路芯片)不同。它包括特殊的器件和电路模块用于对

晶圆生产工艺的电性测试。

4. 边缘芯片( Edge die):在晶圆的边缘上的一些掩膜残缺不全的芯片而产生面积损耗。由于单个芯片尺寸增大而造成的更多边缘浪费会由采用更大直径晶圆所弥补。推动半导体工业向更大直径晶圆发展的动力之一就是为了减少边缘芯片所占的面积。

5. 晶园的晶面( Wafer Crystal Plans):图中的剖面标示了器件下面的晶格构造。此图中显示的器件边缘与晶格构造的方向是确定的。

6. 晶圆切面/凹槽( Wafer flats/notches):例如图示的晶圆有主切

面和副切面,表示这是一个P型<100>晶向的晶圆(见第三章的切面代码)。300 毫米晶圆都是用凹槽作为晶格导向的标识。

二,晶体生长方式分类

半导体晶圆是从大块半导体材料切割而来的。那些半导体材料,或叫做晶棒,是从大块的具有多晶结构和未掺杂本征材料生长得来的。把多晶块转变成一个大单晶,给予正确的定向和适量的N型或P型掺杂,

叫做晶体生长。

使用三种不同的方法来生长单晶:直拉法、液体掩盖直拉法、区溶法。

1.直拉法(CZ)晶体生长方式概述

大部分的单晶是通过直拉法生长的.设备有一个石英坩埚,由负载高频波的环绕线圈来加热,或由电流加热器来加热。坩埚装载半导体材料多晶块和少量掺杂物。选择掺杂材料来产生N型或P型材料。开始在1415°C把多晶和搀杂物加热到液体状态,接下来籽晶安臵到刚接触到液面(叫做熔融物)。籽晶是具有和所需晶体相同晶向的小晶体,籽晶可由化学气相的技术制造。在实际应用中,它们是一片片以

前生长的单晶并重复使用。

当籽晶从熔融物中慢慢上升时,晶体生长开始了。籽晶和熔融物间的表面张力致使一层熔融物的薄膜附着到籽晶上然后冷却。在冷却过程中,在熔化的半导体材料的原子定向到籽晶一样的晶体结构。实际结果是籽晶的定向在生长的晶体中传播。在熔融物中的搀杂原子进入生长的晶体中,生成N型或P型晶体。

为了实现均匀掺杂、完美晶体和直径控制,籽晶和坩埚(伴随着

拉速)在整个晶体生长过程中是以相反的方向旋转的。工艺控制需要一套复杂的反馈系统,综合转速、拉速及熔融物温度参数。

拉晶分三段,开始放肩形成一薄层头部,接着是等径生长,最后是收尾。直拉法能够生成几英尺长和直径大到十二英寸或更多的晶体。200毫米晶圆的晶体将会重达450磅,需要花费三天时间生长。

2.液体掩盖直拉法(LEC)

液体掩盖直拉法2用来生长砷化镓晶体。实质上它和标准的直拉法(CZ)一样,但为砷化镓做了重要改进。由于熔融物里砷的挥发性,改进是必须的。在晶体生长的温度条件下,镓和砷起反应,砷会挥发

出来造成不均匀的晶体。

对这个问题有两个解决办法。一个是给单晶炉加压来抑制砷的挥发,另一个是液体掩盖直拉法工艺(图3.9)。液体掩盖直拉法使用一层氧化硼(B2O3)漂浮在熔融物上面来抑制砷的挥发。在这个方法中,

单晶炉里需要大约一个大气压。

3.区熔法晶体生长方式概述

区熔法晶体生长2是在本文中介绍的技术历史上早期发展起来的几种工艺之一,仍然在特殊需要中使用。直拉法的一个缺点是坩埚中的氧进入到晶体中,对于有些器件,高水平的氧是不能接受的。对于这些特殊情况,晶体必须用区熔法技术来生长以获得低氧含量晶体。区熔法晶体生长(图3.10)需要一根多晶棒和浇铸在模子里的掺杂物。籽晶熔合到棒的一端。夹持器装在单晶炉里。当高频线圈加热多晶棒和籽晶的界面时,多晶到单晶的转变开始了。线圈沿着多晶棒的

轴移动,一点点把多晶棒加热到液相点。在每一个熔化的区域,原子排列成末端籽晶的方向。这样整个棒以开始籽晶的定向转变成一个单

晶。

区熔法晶体生长不能够象直拉法那样生长大直径的单晶,并且晶体有较高的位错密度,但不需用石英坩埚会生长出低氧含量的高纯晶体。

低氧晶体可以使用在高功率的晶闸管和整流器。

三,单晶硅棒加工成单晶硅抛光硅片工艺流程

加工流程

单晶生长→切断→外径滚磨→平边或V型槽处理→切片

倒角→研磨腐蚀--抛光→清洗→包装

晶棒成长工序:它又可细分为:

1)、融化(Melt Down):将块状的高纯度复晶硅臵于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。

2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长100-200mm,以消除晶种内的晶粒排列取向差异。

3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12

吋等)。

4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。

5)、尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此

即得到一根完整的晶棒。

1.切断:目的是切除单晶硅棒的头部、尾部及超出客户规格的部分,将单晶硅棒分段成切片设备可以处理的长度,切取试片测量单晶

硅棒的电阻率含氧量。

切断的设备:内园切割机或外园切割机

切断用主要进口材料:刀片

2.外径磨削:由于单晶硅棒的外径表面并不平整且直径也比最终抛光晶片所规定的直径规格大,通过外径滚磨可以获得较为精确的直径。在晶体生长过程中,整个晶体长度中直径有偏差(图

3.14)。晶圆制造过程有各种各样的晶圆固定器和自动设备,需要严格的直径

控制以减少晶圆翘曲和破碎。

直径滚磨是在一个无中心的滚磨机上进行的机械操作。机器滚磨晶体

到合适的直径,无需用一个固定的中心点夹持晶体在车床型的滚磨机

上。

外径滚磨的设备:磨床

晶体定向,电导率和电阻率检查

在晶体提交到下一步晶体准备前,必须要确定晶体是否达到定向和电

阻率的规格要求。

晶体定向(图3.15)是由X射线衍射或平行光衍射来确定的。在两种方法中,晶体的一端都要被腐蚀或抛光以去除损伤层。下一步晶体被安放在衍射仪上,X射线或平行光反射晶体表面到成像板(X射线)或成像屏(平行光)。在成像板或成像屏上的图案显示晶体的晶面(晶向)。在图3.15显示的图案代表<100>晶向。

许多晶体生长时有意偏离重要的<100>和<100>晶面一点角度。这些偏晶向在晶圆制造过程中会带来很多好处,特别是在离子注入工艺中,

原因会在工艺应用章中涉及到。

晶棒粘保证放在一个切割块上来晶圆从晶体正确的晶向切割。

由于晶体是经过掺杂的,一个重要的电学性能检查是导电类型(N或P)来保证使用了正确的掺杂物。热点探测仪连接到极性仪用来在晶体中产生空穴或电子(和类型相关),在极性仪上显示导电类型。进入晶体的掺杂物的数量由电阻率测量来确定,使用四探针仪。见13章此测量技术的描述。在第2章(图2.7)讲到的曲线表示了电阻

率和N型P型硅掺杂含量的关系。

由于在晶体生长工艺中掺杂量的变异,电阻率要延着晶体的轴向测量。这种变异导致晶圆进入几个电阻率规格范围。在后面的工序,晶圆将根据电阻率范围分组来达到客户的规格要求。

3.平边或V型槽处理:即滚磨定向指示一旦晶体在切割块上定好晶向,就沿着轴滚磨出一个参考面(图3.16)。这个参考面将会在每个晶圆上出现,叫做主参考面。参考面的位臵延着一个重要的晶面,这是通过晶体定向检查来确定的。在制造工艺中,参考面对晶向起可见的参考作用。它用来放臵第一步的光刻图案掩膜版,所以芯片的晶向总是沿着一个重要的晶面。

在许多晶体中,在边缘有第二个较小的参考面。第二个参考面对于主参考面的位臵是一种代码,它不仅用来区别晶圆晶向而且区别导电类

型。这种代码在图3.17中显示。

对于大直径的晶圆,在晶体上滚磨出一个缺口来指示晶向。指方位及指定加工,用以单晶硅捧上的特定结晶方向平边或V型。

处理的设备:磨床及X-RAY绕射仪。

4.切片:指将单晶硅棒切成具有精确几何尺寸的薄晶片。用有金刚石涂层的内圆刀片把晶圆从晶体上切下来(图3.18)。这些刀片是中心有圆孔的薄圆钢片。圆孔的内缘是切割边缘,用金刚石涂层。内圆刀片有硬度,但不用非常厚。这些因素减少刀口(切割宽度)尺

寸,也就减少一定数量的晶体被切割工艺所浪费。

对于300毫米直径的晶圆,使用线切割来保证小锥度的平整表面和最

少量的刀口损失。

切片的设备:内园切割机或线切割机

晶圆刻号

大面积的晶圆代在晶圆制造工艺中有高价值,区别它们是防止误操作所必需的,并且可以保持精确的可追溯性。使用条形码和数字矩阵码(图3.19)的激光刻号被采用了。3对300毫米的晶圆,激光点是一

致认同的方法。

5.倒角或圆边(Edge Profiling)::指将切割成的晶片税利边修整成圆弧形,防止晶片边缘破裂及晶格缺陷产生,增加磊晶层及光

阻层的平坦度。

倒角的主要设备:倒角机

6.研磨:指通过研磨能除去切片和轮磨所造的锯痕及表面损伤层,有效改善单晶硅片的曲度、平坦度与平行度,达到一个抛光过程可以处理的规格。半导体晶圆的表面要规则,且没有切割损伤,并要完全平整。第一个要求来自于很小尺度的制造器件的表面和次表面层。它们的尺度在0.5到2微米之间。为了获得半导体器件相对尺寸

的概念,想象图3.20的剖面和房子一样高,大概8英尺,在那个范围内,在晶圆的工作层都存在顶部一到二英寸或更小的区域。

平整度是小尺寸图案是绝对的必要条件(见11章)。先进的光刻工艺把所需的图案投影到晶圆表面,如果表面不平,投影将会扭曲就象电影图像在不平的银幕上没法聚焦一样。

研磨的设备:研磨机(双面研磨)

主要原料:研磨浆料(主要成份为氧化铝,铬砂,水),滑浮液。

7.腐蚀:指经切片及研磨等机械加工后,晶片表面受加工应力而

形成的损伤层,通常采用化学腐蚀去除。

腐蚀的方式:(A)酸性腐蚀,是最普遍被采用的。酸性腐蚀液由硝酸(HNO3),氢氟酸(HF),及一些缓冲酸(CH3COCH,H3PO4)

组成。

(B)碱性腐蚀,碱性腐蚀液由KOH或NaOH加纯水

组成。

8.抛光:指单晶硅片表面需要改善微缺陷,从而获得高平坦度晶片的抛光。最终的抛光步骤是一个化学腐蚀和机械磨擦的结合。晶圆装在旋转的抛光头上,下降到抛光垫的表面以相反的方向旋转。抛

光垫材料通常是有填充物的聚亚安酯铸件切片或聚氨酯涂层的无纺布。二氧化硅抛光液悬浮在适度的含氢氧化钾或氨水的腐蚀液中,滴

到抛光垫上。

碱性抛光液在晶圆表面生成一薄层二氧化硅。抛光垫机以持续的机械磨擦作用去除氧化物,晶圆表面的高点被去除掉,直到获得特别平整的表面。如果一个半导体晶圆的表面扩大到10000英尺(飞机场跑道的长度),在总长度中将会有正负2英寸的平整度偏差。

获得极好平整度需要规格和控制抛光时间、晶圆和抛光垫上的压力、旋转速度、抛光液颗粒尺寸、抛光液流速、抛光液的PH值、抛光垫

材料和条件。

化学机械抛光是业界发展起来的制造大直径晶圆的技术之一。在晶圆制造工艺中,新层的建立会产生不平的表面,使用CMP以平整晶体表面。在这个应用中,CMP被翻译成化学机械平面化(Planarization)。

背处理

在许多情况下,只是晶圆的正面经过充分的化学机械抛光。背面留下从粗糙或腐蚀到光亮的外观。对于某些器件的使用,背面可能会受到特殊的处理导致晶体缺陷,叫做背损伤。背损伤产生位错的生长辐射进入晶圆,这些位错起象是陷阱,俘获在制造工艺中引入的可移动金属离子污染。这个俘获现象又叫做吸杂(图3.22)。背面喷沙是一种标准的技术,其它的方法包括背面多晶层或氮化硅的淀积。

双面抛光

对大直径晶圆许多要求之一是平整和平行的表面。许多300毫米晶圆的制造采用了双面抛光,以获得局部平整度在25´25毫米测量面时小于0.25微米到0.18微米的规格要求。4缺点是在后面的工序中必须使用不划伤和不污染背面的操作技术。

抛光的设备:多片式抛光机,单片式抛光机。

抛光的方式:粗抛:主要作用去除损伤层,一般去除量约在10

-20um;

精抛:主要作用改善晶片表面的微粗糙程度,一般

去除量1um以下

主要原料:抛光液由具有SiO2的微细悬硅酸胶及NaOH(或KOH 或NH4OH)组成,分为粗抛浆和精抛浆。

9.清洗:在单晶硅片加工过程中很多步骤需要用到清洗,这里的清洗主要是抛光后的最终清洗。清洗的目的在于清除晶片表面所有的

污染源。

清洗的方式:主要是传统的RCA湿式化学洗净技术。

主要原料:H2SO4,H2O2,HF,NH4HOH,HCL

晶圆评估

在包装以前,需要根据用户指定的一些参数对晶圆(或样品)进行检查。图3.24列举了一个典型的规格要求。

主要的考虑是表面问题如颗粒,污染和雾。这些问题能够用强光或自

动检查设备来检测出。

氧化

晶圆在发货到客户之前可以进行氧化。氧化层用以保护晶圆表面,防止在运输过程中的划伤和污染。许多公司从氧化开始晶圆制造工艺,购买有氧化层的晶圆就节省了一个生产步骤。氧化工艺在第7章解

释。

包装

虽然花费了许多努力生产高质量和洁净的晶圆,但从包装方法本身来说,在运输到客户的过程中,这些品质会丧失或变差。所以,对洁净的和保护性的包装有非常严格的要求。包装材料是无静电、不产生颗粒的材料,并且设备和操作工要接地,放掉吸引小颗粒的静电。晶圆

包装要在洁净室里进行。

晶圆外延

尽管起始晶圆的质量很高,但对于形成互补金属氧化物半导体(CMOS)器件而言还是不够的,这些器件需要一层外延层。许多大晶圆供应商有能力在供货前对晶圆外延。此器件技术在16章中讨论。

损耗产生的原因

多晶硅--单晶硅棒

多晶硅加工成单晶硅棒过程中:如产生损耗是重掺埚底料、头尾料则无法再利用,只能当成冶金行业如炼铁、炼铝等用作添加剂;如产生损耗是非重掺埚底料、头尾料可利用制成低档次的硅产品,此部

分应按边角料征税。

重掺料是指将多晶硅原料及接近饱和量的杂质(种类有硼,磷,锑,砷。杂质的种类依电阻的N或P型)放入石英坩埚内溶化而成的

料。

重掺料主要用于生产低电阻率(电阻率<0.011欧姆/厘米)的

硅片。

损耗:单晶拉制完毕后的埚底料约15%。

四,晶体定向研究

对于一个晶圆,除了要有单晶结构之外,还需要有特定的晶向(crystal orientation)。通过切割如图3.4的单晶块可以想象这个概念。在垂直平面上切割将会暴露一组平面,而角对角切割将会暴露一个不同的平面。每个平面是独一无二的,不同在于原子数和原子间的结合能。每个平面具有不同的化学、电学和物理特性,这些特性将赋予晶圆。晶圆要求特定的晶体定向。

晶面通过一系列称为密勒指数的三个数字组合来表示。如图3.5有两个简单的立方晶胞嵌套在XYZ坐标中。两个在硅晶圆中最通常使用的晶向是<100>和<111>晶面。晶向描述成1-0-0面和1-1-1面,括弧

表示这三个数是密勒指数。

<100>晶向的晶圆用来制造MOS器件和电路,而<111>晶向的晶圆用来制造双极型器件和电路。砷化镓晶体只能沿<100>晶面切割。

注意在图3.6<100>晶面有一个正方形,而<111>晶面有一个三角形。当晶圆破碎时这些定向会如图3.6展现出来。<100>晶向的晶圆碎成四方形或正好90度角破裂。<111>晶向的晶圆碎成三角形。

晶体定向(图3.15)是由X射线衍射或平行光衍射来确定的。在两种方法中,晶体的一端都要被腐蚀或抛光以去除损伤层。下一步晶体被安放在衍射仪上,X射线或平行光反射晶体表面到成像板(X射线)或成像屏(平行光)。在成像板或成像屏上的图案显示晶体的晶面(晶向)。在图3.15显示的图案代表<100>晶向。

许多晶体生长时有意偏离重要的<100>和<100>晶面一点角度。这些偏晶向在晶圆制造过程中会带来很多好处,特别是在离子注入工艺中,

原因会在工艺应用章中涉及到。

晶棒粘放在一个切割块上来保证晶圆从晶体正确的晶向切割。

五,晶体和晶圆质量

半导体器件需要高度的晶体完美。但是即使使用了最成熟的技术,完美的晶体还是得不到的。不完美,叫做晶体缺陷,会产生不平均的二氧化硅膜生长、差的外延膜的淀积、晶圆里不均匀的掺杂层及其它问题而导致工艺问题。在完成的器件中,晶体缺陷会引起有害的电流漏出,可能阻止器件在正常电压下工作。有三类重要的晶体缺陷:

1. 点缺陷

2. 位错

3. 原生缺陷

点缺陷

点缺陷的来源有两类。一类来源是由晶体里杂质原子挤压晶体结构引起应力所致;第二类来源称为空位,在这种情况下,有某个原子在晶

体结构的位臵上缺失了。

空位是一种发生在每一个晶体里的自然现象。不幸的是空位无论在晶体或晶圆加热和冷却都会发生,例如在制造工艺过程中。减少空位是

低温工艺背后的一个推动力。

位错

位错是在单晶里一组晶胞排错位臵。这可以想象成在一堆整齐排列的方糖中有一个排列和其它的发生了微小的偏差。

位错在晶圆里的发生由于晶体生长条件和晶体里晶格应力,也会由于制造过程中的物理损坏。碎片或崩边成为晶格应力点会,产生一条位错线,随着后面的高温工艺扩展到晶圆内部。位错能通过表面一种特殊的腐蚀显示出来。典型的晶圆具有每平方厘米200到1000的位错

密度。

腐蚀出的位错出现在晶圆的表面上,形状代表了它们的晶向。<111>的晶圆腐蚀出三角形的位错,<100>的晶圆出现方形的腐蚀坑(图

3.6)。

原生缺陷

在晶体生长中,一定的条件会导致结构缺陷。有一种叫滑移,参考图3.13沿着晶体平面的晶体滑移。另一个问题是孪晶,这是一个从同一界面生长出两种不同方向晶体的情形。这两种缺陷都是晶体报废的

原因。

晶圆代工厂排名

2010年全球十大晶圆代工厂 新公司是做晶圆代工的,作为新知识补充或者纪念新工作,就爱Top10特别整理了一下2010年全球十大晶圆代工厂,也算帮助大家了解一下高科技时代很重要的一个组成部分。 IC Inghts 2010年全球前十大晶圆代工排名出炉,台积电继续稳居第一,联电依然排行第二,合并特许半导体后的全球晶圆(Globalfoundries)挤入第三,但营收与联电才差4亿多美元,三星屈居第十。 IC Insights指出,三星多年以来一直希望成为晶圆代工领域的重要企业,虽然去年获得了苹果、高通和赛灵思等重要客户,仍仅位居全球第十大晶圆代工厂。但三星今年有新的晶圆厂计划,近期还传出三星将跨入模拟晶圆代工,未来三星排名仍有机会攀升。

以下是2010年的前十大晶圆代工具体排名: Top1 台积电,收入133.07亿美元,同比增长48% 台湾集成电路制造股份有限公司 (LSE:TMSD),简称台积电或台积,英文简写“TSMC”,为世界上最大的独立半导体晶圆代工企业,与联华电子并称“晶圆双雄”。本部以及主要营业皆设于台湾新竹市新竹科学工业园区。台积公司目前总产能已达全年430万片晶圆,其营收约占全球晶圆代工市场的百分之六十。 Top2 台联电,收入 39.65亿美元,同比增长41% UMC---联华电子公司,简称台联电。是世界著名的半导体承包制造商。该公司利用先进的工艺技术专为主要的半导体应用方案生产各种集成电路(IC)。联华电子拥有先进的承包生产技术,可以支持先进的片上系统(SOC)设计,其中包括0.13 微米 (micron)铜互连、嵌入式 DRAM、以及混合信号/RFCMOS。 Top3 Globalfoundries,收入35.1亿美元,同比增长219% GlobalFoundries是从美国AMD公司分拆出的半导体晶圆代工公司,成立于2009年3月2日,母公司分别为AMD及阿布达比的Advanced Technology Investment Company(ATIC),其中ATIC占公司股权65.8%,两公司均享有均等投票权。2010年1月13日,GlobalFoundries收购了新加坡特许半导体。 公司除会生产AMD产品外,也会为其它公司(如ARM、Broadcom、NVIDIA、高通公司、意法半导体、德州仪器等)担当晶圆代工。现时投产中的晶圆厂为德国德

晶圆封装测试工序和半导体制造工艺流程

A.晶圆封装测试工序 一、 IC检测 1. 缺陷检查Defect Inspection 2. DR-SEM(Defect Review Scanning Electron Microscopy) 用来检测出晶圆上是否有瑕疵,主要是微尘粒子、刮痕、残留物等问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。 3. CD-SEM(Critical Dimensioin Measurement) 对蚀刻后的图案作精确的尺寸检测。 二、 IC封装 1. 构装(Packaging) IC构装依使用材料可分为陶瓷(ceramic)及塑胶(plastic)两种,而目前商业应用上则以塑胶构装为主。以塑胶构装中打线接合为例,其步骤依序为晶片切割(die saw)、黏晶(die mount / die bond)、焊线(wire bond)、封胶(mold)、剪切/成形(trim / form)、印字(mark)、电镀(plating)及检验(inspection)等。 (1) 晶片切割(die saw) 晶片切割之目的为将前制程加工完成之晶圆上一颗颗之晶粒(die)切割分离。举例来说:以0.2微米制程技术生产,每片八寸晶圆上可制作近六百颗以上的64M微量。 欲进行晶片切割,首先必须进行晶圆黏片,而后再送至晶片切割机上进行切割。切割完后之晶粒井然有序排列于胶带上,而框架的支撐避免了胶带的皱褶与晶粒之相互碰撞。 (2) 黏晶(die mount / die bond) 黏晶之目的乃将一颗颗之晶粒置于导线架上并以银胶(epoxy)粘着固定。黏晶完成后之导线架则经由传输设备送至弹匣(magazine)内,以送至下一制程进行焊线。 (3) 焊线(wire bond) IC构装制程(Packaging)则是利用塑胶或陶瓷包装晶粒与配线以成集成电路(Integrated Circuit;简称IC),此制程的目的是为了制造出所生产的电路的保护层,避免电路受到机械性刮伤或是高温破坏。最后整个集成电路的周围会向外拉出脚架(Pin),称之为打线,作为与外界电路板连接之用。

2017年中国十大半导体公司排名

2017年中国十大半导体公司排名 2017年已接近尾声,接下来就让小编带你看看最新的中国十大半导体公司排名吧!1、环旭电子(601231)环旭电子股份有限公司是全球ODM/EMS领导厂商,专为国内外品牌电子产品或模组提供产品设计、微小化、物料采购、生产制造、物流与维修服务。环旭电子成立于2003年,现为日月光集团成员之一,于2012年成为上海证券交易所A股上市公司。环旭电子股份有限公司以信息、通讯、消费电子及汽车电子等高端电子产品EMS、JDM、ODM为主,主要产品包括WiFi ADSL、WiMAX、WiFi AP、WiFi Module、Blue-Tooth Module、LED LighTIng & Inverter、Barcode Scanner、DiskDrive Array、网络存储器、存储芯片、指纹辨识器等。2、长电科技(600584)成立于1972年,2003年在上交所主板成功上市。历经四十余年发展,长电科技已成为全球知名的集成电路封装测试企业。长电科技面向全球提供封装设计、产品开发及认证,以及从芯片中测、封装到成品测试及出货的全套专业生产服务。长电科技致力于可持续发展战略,崇尚员工、企业、客户、股东和社会和谐发展,合作共赢之理念,先后被评定为国家重点高新技术企业,中国电子百强企业,集成电路封装技术创新战略联盟理事长单位,中国驰名商标,中国出口产品质量示范企业等,拥有国内唯一的高密度集成电路国家工

程实验室、国家级企业技术中心、博士后科研工作站等。由江阴长江电子实业有限公司整体变更设立为股份有限公司,是中国半导体第一大封装生产基地,国内著名的晶体管和集成电路制造商,产品质量处于国内领先水平。长电科技拥有目前体积最小可容纳引脚最多的全球顶尖封装科技,在同行业中技术优势十分突出。3、歌尔股份(002241)有限公司成立于2001年6月,2008年5月在深交所上市,主要从事微型声学模组、传感器、微显示光机模组等精密零组件,虚拟现实/增强现实、智能穿戴、智能音响、机器人/无人机等智能硬件的研发、制造和销售,目前已在多个领域建立了全球领先的综合竞争力。自上市以来,歌尔保持高速成长,年复合增长率达44.5%。4、中环股份(002129)天津中环半导体股份有限公司成立于1999年,前身为1969年组建的天津市第三半导体器件厂,2004年完成股份制改造,2007年4月在深圳证券交易所上市,股票简称“中环股份”,代码为002129。是生产经营半导体材料和半导体集成电路与器件的高新技 术企业,公司注册资本482,829,608元,总资产达20.51 亿。天津中环股份有限公司致力于半导体节能和新能源产业,是一家集半导体材料-新能源材料和节能型半导体器件-新能 源器件科研、生产、经营、创投于一体的国有控股企业。5、三安光电(600703)三安光电股份有限公司(以下简称“三安光电”或公司,证券代码:600703)是具有国际影响力的全色系

晶圆级封装产业

晶圆级封装产业(WLP) 晶圆级封装产业(WLP),晶圆级封装产业(WLP)是什么意思 一、晶圆级封装(Wafer Level Packaging)简介晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。WLP 一、晶圆级封装(Wafer Level Packaging)简介 晶圆级封装(WLP,Wafer Level Package) 的一般定义为直接在晶圆上进行大多数或是全部的封装测试程序,之后再进行切割(singulation)制成单颗组件。而重新分配(redistribution)与凸块(bumping)技术为其I/O绕线的一般选择。WLP封装具有较小封装尺寸(CSP)与较佳电性表现的优势,目前多用于低脚数消费性IC的封装应用(轻薄短小)。 晶圆级封装(WLP)简介 常见的WLP封装绕线方式如下:1. Redistribution (Thin film), 2. Encapsulated Glass substrate, 3. Gold stud/Copper post, 4. Flex Tape等。此外,传统的WLP封装多采用Fan-in 型态,但是伴随IC信号输出pin 数目增加,对ball pitch的要求趋于严格,加上部分组件对于封装后尺寸以及信号输出脚位位置的调整需求,因此变化衍生出Fan-out 与Fan-in + Fan-out 等各式新型WLP封装型态,其制程概念甚至跳脱传统WLP 封装,目前德商英飞凌与台商育霈均已经发展相关技术。 二、WLP的主要应用领域 整体而言,WLP的主要应用范围为Analog IC(累比IC)、PA/RF(手机放大器与前端模块)与CIS(CMOS Ima ge Sensor)等各式半导体产品,其需求主要来自于可携式产品(iPod, iPhone)对轻薄短小的特性需求,而部分NOR Flash/SRAM也采用WLP封装。此外,基于电气性能考虑,DDR III考虑采用WLP或FC封装,惟目前JEDEC仍未制定最终规格(注:至目前为止,Hynix, Samsung与Elpida已发表DDR III产品仍采F BGA封装),至于SiP应用则属于长期发展目标。此外,采用塑料封装型态(如PBGA)因其molding compo und 会对MEMS组件的可动部份与光学传感器(optical sensors)造成损害,因此MEMS组件也多采用WLP

中国 12 吋晶圆厂分布、产能、发展总整理

中国12 吋晶圆厂分布、产能、发展总整理 2016-10-18 10:02 来自: 互联网 导读:从国际大厂英特尔、三星到台湾的联电、力晶和台积电,半导体厂商在中国投资、设厂的消息频频跃上新闻版面,先前国际半导体协会(SEMI)的数据更显示,2016、2017 年新建的晶圆厂至少就有19 座,其中高达10 座都将... 从国际大厂英特尔、三星到台湾的联电、力晶和台积电,半导体厂商在中国投资、设厂的消息频频跃上新闻版面,先前国际半导体协会(SEMI)的数据更显示,2016、2017 年新建的晶圆厂至少就有19 座,其中高达10 座都将落脚中国,产能主力的12 吋晶圆厂近期动土、宣布计画的消息更是不断,目前到底建了几座,几座正在兴建、产能何时开出? 英特尔、三星与SK 海力士大厂早已在中国插旗,并将主力放在记忆体产业,特别的是英特尔大连12 吋晶圆厂在2010 年完工当时,厂房规划用以生产65 奈米製程CPU,但在产能利用率低落下,2015 年10 月英特尔宣布与大连市政府合作,投资55 亿美元转型生产3D-NAND Flash 并在今年7 月底重新宣告投产。中国本土厂商现有12 吋厂的为中芯国际与华力微,两者分别在上海都有厂房,中芯在北京还有B1、B2 两座晶圆厂,其中B2 厂製程已至28 奈米。

而称中国最先进製程晶圆厂的中芯,在近日也发布了动土消息,将在上海兴建新晶圆厂,初期就瞄准14 奈米製程,且产能规划涵盖10/7 奈米,估计2017 年底完工、2018 年正式投产,被视为挑战即将登陆的晶圆代工龙头台积电。台积电在台湾政府法规松绑后,正式在今年中宣布赴中国南京独资建12 吋晶圆厂,并在7 月举行动土,厂房预计2018 年完工,也宣告16 奈米届时将在陆量产。 联电2014 年早已透过与当地政府合资方式,成立厦门联芯率先抢滩中国在厦门建厂,厂房预计将在今年底就能完工。5 月联电宣布与福建晋华集成电路签署技术合作协定,协助晋华集成开发DRAM 相关製程技术,在泉州市建立12 吋晶圆厂,从事利基型DRAM 代工。力晶与合肥市政府合作,成立晶合集成在当地打造12 吋晶圆厂,从事最高90 奈米面板驱动代工服务。 看到众家厂商前仆后继进军中国,晶圆代工二哥格罗方德在 5 月底也宣布与中国重庆市政府签署合作备忘录(MOU),将目前台湾DRAM 厂茂德出售的重庆旧厂房升级为12 吋晶圆厂,厂房预计2017 年完工。

晶圆的生产工艺流程汇总

晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长--晶棒裁切与检测--外径研磨--切片--圆边--表层研磨--蚀刻--去疵--抛光--清洗--检验--包装1、晶棒成长工序:它又可细分为: 1)、融化(MeltDown ):将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。 2)、颈部成长(Neck Growth):待硅融浆的温度安定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺 寸(大凡约6mm左右),维持此直径并拉长100-200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(CrownGrowth):颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12 吋等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持不变的晶棒直径,只到晶棒长度达到预定值。 5)、尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根统统的晶棒。2、晶棒裁切与检测(Cutting&Inspection ) :将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping :由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(WireSawSlicing :由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。

什么是晶圆级晶片尺寸封装

什么是晶圆级晶片尺寸封装(Wafer Level Chip Scale Packaging) 1. 晶圆级晶片尺寸封装(Wafer Level Chip Scale Packaging)是先在整片晶圆上进行封装和测试,然后经切割并将IC直接用机台以pick up & flip方式将其放置于Carrier tape中,并以Cover tape保护好后,提供后段SMT (Surface Mounting technology)直接以机台将该IC自Carrier tape取料后,置放于PCB上。 WLCSP选用较大的锡铅球来形成接点藉以进行电性导通,其目的是增加元件与基板底材之间的距离,进而降低并承受来自于基板与元件间因热膨胀差异产生的应力,增加元件的可靠性。利用重分布层技术则可以让锡球的间距作有效率的安排,设计成矩阵式排列(grid array)。采用晶圆制造的制程及电镀技术取代现有打金线及机械灌胶封模的制程,不需导线架或基板。晶圆级封装只有晶粒般尺寸,且有较好的电性效能,因系以每批或每片晶片来生产, 故能享有较低之生产成本。 2.特点:

WLCSP 少掉基材、铜箔等,使其以晶圆形态进行研磨、切割后完成的IC 厚度和一般QFP 、BGA……等等比较起来为最薄、最小、最轻,较符合未来产品轻、薄之需求;且因其不需再进行封装,即可进行后段SMT 制程,故其成本价格可以较一般传统封装为低。 ● 封装技术比较: 封装方式 优 点 缺 点 传统封装(QFP 、BGA ) 1. 技术成熟 2. 制程稳定 1. 无法达到未来细间距要求 2. 制程较复杂 3. 完成的IC 成本高 晶圆级晶片尺寸封装 1. 尺寸小 2. 成本低 3. 简化制程 4. 可达Fine Pitch 要求 1. I/O 数少(<100) 3.产品应用面: 3.1 Power supply (PMIC/PMU, DC/DC converters, MOSFET' s,...) 3.2 Optoelectronic device 3.3 Connectivity (Bluetooth, WLAN) 3.4 Other features (FM, GPS, Camera) 4.生产流程简介

半导体制造工艺流程

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 後段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随著产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之後,接著进行氧化(Oxidation)及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过WaferFab之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、IC构装制程 IC構裝製程(Packaging):利用塑膠或陶瓷包裝晶粒與配線以成積體電路目的:是為了製造出所生產的電路的保護層,避免電路受到機械性刮傷或是高溫破壞。 半导体制造工艺分类 半导体制造工艺分类 一双极型IC的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离)ECL(不掺金)(非饱和型)、TTL/DTL(饱和型)、STTL(饱和型)B在元器件间自然隔离 I2L(饱和型) 半导体制造工艺分类 二MOSIC的基本制造工艺: 根据栅工艺分类 A铝栅工艺 B硅栅工艺

目前中国大陆晶圆厂分布

目前中国大陆晶圆厂分布、产能及生产项目(8寸12寸,最全) Date: 2018-06-05 中国大陆正在成为全球半导体产业扩张宝地。继大陆最大晶圆代工厂中芯国际近一个月接连在上海、深圳建12寸厂后,晶圆代工厂联电16日也宣布,厦门12寸合资晶圆厂联芯集成电路制造(厦门)开始营运。

从上表中可以看出,中芯国际扩张可谓明显。那么,中芯国际启动此次大幅扩张策略的信心来自哪里呢?首先,中芯国际是国内芯片制造业的领头羊。其次,中芯国际股价大幅上扬。再次,中芯国际2020年有望进入全球代工前三。最后,中芯国际的产能扩充效果明显。因此,现阶段对中芯国际而言,可能扩充产能是提高销售额的有效方法之一,销售额的提升将有利于中芯国际的折旧能力提高,可以使其负担更大的投资。” 台积电(TSMC)是晶圆代工产业的2015年销售业绩龙头,去年销售额达到了264亿美元;从12英寸计,目前台积电的月产能约是100万片,但是依然供不应求,产能相当吃紧。台积电在南京市建设的12寸生产线,产能规划为2万片/月,预计于2018年量产16纳米制程,但是理论上来说,这样的产能扩充,似乎还不能满足大陆客户日益增长的市场需求,据称后续产能可能会扩到4万片。 联电晶圆代工厂,于11月16日宣布,厦门12寸合资晶圆厂联芯集成电路制造(厦门)开始营运(加入中国大陆现有12寸晶圆厂之列),这是首座两岸合资12寸晶圆厂。 英特尔、三星与SK 海力士大厂早已在中国插旗,并将主力放在存储产业。特别的是英特尔大连12 寸晶圆厂在2010 年完工当时,厂房规划用以生产65 纳米制程CPU ,但在产能利用率低落下,2015 年10 月英特尔宣布与大连市政府合作,投资55 亿美元转型生产3D-NANDFlash 并在今年7 月底重新宣告投产。中国本土厂商现有12 寸厂的为中芯国际与华力微,两者分别在上海都有厂房,中芯在北京还有B1、B2 两座晶圆厂,其中 B2 厂制程已至28纳米。 5月联电宣布与福建晋华集成电路签署技术合作协定,协助晋华集成开发DRAM 相关制程技术,在泉州市建立12 寸晶圆厂,从事利基型DRAM 代工,早在台积电之前,走“联电模式”在中国建厂的还有力晶,力晶与合肥市政府合作,成立晶合集成在当地打造12 寸晶圆厂,从事最高90 纳米面板驱动代工服务。 今年6月份GlobalFoundries公司与重庆政府签署了合作协议,联合建设一座12英寸晶圆厂,但是现在这个合作恐怕要黄了,GF公司只原意二手设备升级晶圆厂,但要占51%的股份,重庆政府认为他们的二手设备不值这么多,导致合作搁浅。 长江存储将以武汉新芯现有的12英寸先进集成电路技术研发与生产制造能力为基础,继续拓展武汉新芯目前的物联网业务布局,并着力发展大规模存储器。 士兰集成作为国内第一条民营8寸线落户杭州下沙,淮安德科玛则是图像传感器芯片项目,将填补我国自主产权CIS的空白。

光刻和晶圆级键合技术在3D互连中的研究

光刻和晶圆级键合技术在3D互连中的研究 作者:Margarete Zoberbier、Erwin Hell、Kathy Cook、Marc Hennemayer、Dr.-Ing. Barbara Neuber t,SUSS MicroTec 日益增长的消费类电子产品市场正在推动当今半导体技术的不断创新发展。各种应用对增加集成度、降低功耗和减小外形因数的要求不断提高,促使众多结合了不同技术的新结构应运而生,从而又催生出诸多不同的封装方法,因此可在最小的空间内封装最多的功能。正因如此,三维集成被认为是下一代的封装方案。 本文将探讨与三维互连技术相关的一些光刻挑战。还将讨论三维封装使用的晶圆键合技术、所面临的各种挑战、有效的解决方案及未来发展趋势。 多种多样的三维封装技术 为了适应更小引脚、更短互连和更高性能的要求,目前已开发出系统封装(SiP)、系统芯片(SoC)和封装系统(SoP)等许多不同的三维封装方案。SiP即“单封装系统”,它是在一个IC封装中装有多个引线键合或倒装芯片的多功能系统或子系统。无源元件、SAW/BA W滤波器、预封装IC、接头和微机械部件等其他元件都安装在母板上。这一技术造就了一种外形因数相对较小的堆叠式芯片封装方案。 SoC可以将所有不同的功能块,如处理器、嵌入式存储器、逻辑心和模拟电路等以单片集成的方式装在一起。在一块半导体芯片上集成系统设计需要这些功能块来实现。通常,So C设计与之所取代的多芯片系统相比,它的功耗更小,成本更低,可靠性更高。而且由于系统中需要的封装更少,因而组装成本也会有所降低。 SoP采用穿透通孔和高密度布线以实现更高的小型化。它是一种将整个系统安装在一个芯片尺寸封装上的新兴的微电子技术。过去,“系统”往往是一些容纳了数百个元件的笨重的盒子,而SoP可以将系统的计算、通信和消费电子功能全部在一块芯片上完成,从而节约了互连时间,减少了热量的产生。 最近穿透硅通孔(TSV)得到迅速发展,已成为三维集成和晶圆级封装(WLP)的关键技术之一。三维TSV已显现出有朝一日取代引线键合技术的潜力,因此它可以使封装尺寸进

晶圆详细介绍

目录 1.01晶圆 2.01制造过程 3.01著名晶圆厂商 4.01制造工艺 4.02表面清洗 4.03初次氧化 4.04热CVD 4.05热处理 4.06除氮化硅 4.07离子注入 4.08退火处理 4.09去除氮化硅层 4.10去除SIO2层 4.11干法氧化法 4.12湿法氧化 4.13氧化 4.14形成源漏极 4.15沉积 4.16沉积掺杂硼磷的氧化层 4.17深处理 5.01专业术语 1.01晶圆

晶圆(Wafer)是指硅半导体集成电路制作所用的硅芯片,由于其形状为圆形,故称为晶圆。晶圆是生产集成电路所用的载体,一般意义晶圆多指单晶硅圆片。 晶圆是最常用的半导体材料,按其直径分为4英寸、5英寸、6英寸、8英寸等规格,近来发展出12英寸甚至研发更大规格(14英吋、15英吋、16英吋、……20英吋以上等)。晶圆越大,同一圆片上可生产的IC就越多,可降低成本;但对材料技术和生产技术的要求更高,例如均匀度等等的问题。一般认为硅晶圆的直径越大,代表着这座晶圆厂有更好的技术,在生产晶圆的过程当中,良品率是很重要的条件。 2.01制造过程 二氧化硅矿石经由电弧炉提炼,盐酸氯化并经蒸馏后,制成了高纯度的多晶硅,其纯度高达99.999999999%,因在精密电子元件当中,硅晶圆需要有相当的纯度,不然会产生缺陷。晶圆制造厂再以柴可拉斯基法将此多晶硅熔解,再于溶液内掺入一小粒的硅晶体晶种,然后将其慢慢拉出,以形成圆柱状的单晶硅晶棒,由于硅晶棒是由一颗小晶粒在融熔态的硅原料中逐渐生成,此过程称为“长晶”。硅晶棒再经过切片、研磨、抛光后,即成为集成电路工厂的基本原料——硅晶圆片,这就是“晶圆”。 很简单的说,单晶硅圆片由普通硅砂拉制提炼,经过溶解、提纯、蒸馏一系列措施制成单晶硅棒,单晶硅棒经过切片、抛光之后,就成为了晶圆。 晶圆经多次光掩模处理,其中每一次的步骤包括感光剂涂布、曝光、显影、腐蚀、渗透、植入、刻蚀或蒸著等等,将其光掩模上的电路复制到层层晶圆上,制成具有多层线路与元件的IC晶圆,再交由后段的测试、切割、封装厂,以制成实体的集成电路成品,从晶圆要加工成为产品需要专业精细的分工。 3.01著名晶圆厂商 只制造硅晶圆基片的厂商 例如合晶(台湾股票代号:6182)、中美晶(台湾股票代号:5483)、信越化学等。

【完整版】2020-2025年中国晶圆制造行业全国市场开拓策略研究报告

(二零一二年十二月) 2020-2025年中国晶圆制造行业 全国市场开拓策略研究报告 系统全面的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业全国市场开拓策略概述 (5) 第一节研究报告简介 (5) 第二节研究原则与方法 (5) 一、研究原则 (5) 二、研究方法 (6) 第三节研究企业全国市场开拓策略的重要性及意义 (8) 第二章市场调研:2018-2019年中国晶圆制造行业市场深度调研 (9) 第一节晶圆制造概述 (9) 一、集成电路行业简介 (9) 二、集成电路的发展历史 (10) 三、集成电路行业的市场分类 (10) 第二节我国晶圆制造行业监管体制与发展特征 (12) 一、行业分类 (12) 二、行业主管部门及监管体制 (12) 三、行业主要法律和政策 (12) 四、行业技术水平及技术特点 (15) (1)行业技术水平 (16) (2)行业技术特点 (16) 五、行业的经营模式 (17) (1)集成电路设计子行业经营模式 (17) (2)集成电路制造子行业经营模式 (18) (3)集成电路封装测试子行业经营模式 (18) 六、行业周期性、区域性、季节性 (18) (1)周期性 (18) (2)区域性 (18) (3)季节性 (19) 七、行业与上、下游行业之间的关联性 (19) (一)上游行业对本行业的影响 (19) (二)下游行业对本行业的影响 (19) 八、进入该行业的主要壁垒 (20) (1)技术壁垒 (20) (2)资金和规模壁垒 (20) (3)人才壁垒 (20) (4)市场壁垒 (20) 第三节2018-2019年中国集成电路行业整体发展情况分析 (21) 一、中国已成全球规模最大、增速最快集成电路市场 (21) 二、中国集成电路市场占全球近六成5G时代带来更多机会 (22) 三、创新应用带动集成电路产业链全面提升 (24) 四、半导体产业发展环境正在持续改善 (27) 五、集成电路等企业优惠政策将延续 (29) 六、科创板助力集成电路产业变革三大要素造就国之强“芯” (32)

晶圆级封装WLP优势

晶圆级封装W L P优势 The Standardization Office was revised on the afternoon of December 13, 2020

晶圆级封装(WLP)优势 晶圆级封装(WLP)以BGA技术为基础,是一种经过改进和提高的CSP(芯片级封装),充分体现了BGA、CSP的技术优势。它具有许多独特的优点。 晶圆级封装(Wafer Level Package,WLP)采用传统的IC工艺一次性完成后道几乎所有的步骤,包括装片、电连接、封装、测试、老化,所有过程均在晶圆加工过程中完成,之后再划片,划完的单个芯片即是已经封装好的成品;然后利用该芯片成品上的焊球阵列,倒装焊到PCB板上实现组装。WLP的封装面积与芯片面积比为1:1,而且标准工艺封装成本低,便于晶圆级测试和老化。 晶圆级封装以BGA技术为基础,是一种经过改进和提高的CSP,充分体现了BGA、CSP的技术优势。它具有许多独特的优点: (1)封装加工效率高,它以晶圆形式的批量生产工艺进行制造; (2)具有倒装芯片封装的优点,即轻、薄、短、小; 图5 WLP的尺寸优势 (3)晶圆级封装生产设施费用低,可充分利用晶圆的制造设备,无须投资另建封装生产线; (4)晶圆级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提高设计效率,减少设计费用; (5)晶圆级封装从芯片制造、封装到产品发往用户的整个过程中,中间环节大大减少,周期缩短很多,这必将导致成本的降低;

(6)晶圆级封装的成本与每个晶圆上的芯片数量密切相关,晶圆上的芯片数越多,晶圆级封装的成本也越低。晶圆级封装是尺寸最小的低成本封装。晶圆级封装技术是真正意义上的批量生产芯片封装技术。 WLP的优势在于它是一种适用于更小型集成电路的芯片级封装(CSP)技术,由于在晶圆级采用并行封装和电子测试技术,在提高产量的同时显著减少芯片面积。由于在晶圆级采用并行操作进行芯片连接,因此可以大大降低每个I/O 的成本。此外,采用简化的晶圆级测试程序将会进一步降低成本。利用晶圆级封装可以在晶圆级实现芯片的封装与测试。

晶圆制备

半导体晶圆制备详解-芯片晶圆制备详解 漫谈晶圆制备 ---讲述沙子转变成晶体及晶圆和用于芯片制造级的抛光片的生产步骤 介绍 高密度和大尺寸芯片的发展需要大直径的晶圆。在上世纪60年代开始使用的是 1²直径的晶圆,而现在业界根据90年代的工艺要求生产200毫米直径的晶圆。300 毫米直径的晶圆也已经投入生产线了,而根据SIA的技术路线图,到2007年,300毫米将成为标准尺寸。以后预期会是400毫米或450毫米直径的晶圆。大直径的晶圆是由不断降低芯片成本的要求驱动的。然而,这对晶圆制备的挑战是巨大的。大直径意味着高重量,这就需要更多坚固的工艺设备。在晶体生长中,晶体结构上和电学性能一致性及污染的问题是一个挑战,这些挑战和几乎每一个参数更紧的工艺规格要求共存。与挑战并进和提供更大直径晶圆是芯片制造不断进步的关键。

半导体硅制备 半导体器件和电路在半导体材料晶圆的表层形成,半导体材料通常是硅。这些晶圆的杂质含量水平必须非常低,必须掺杂到指定的电阻率水平,必须是指定的晶体结构,必须是光学的平面,并达到许多机械及清洁度的规格要求。制造IC级的硅晶圆分四个阶段进行: 晶圆制备阶段 **矿石到高纯气体的转变 **气体到多晶的转变 **多晶到单晶,掺杂晶棒的转变 **晶棒到晶圆的制备 半导体制造的第一个阶段是从泥土里选取和提纯半导体材料的原料。提纯从化学反应开始。对于硅,化学反应是从矿石到硅化物气体,例如四氯化硅或三氯硅烷。杂质,例如其他金属,留在矿石残渣里。硅化物再和氢反应(图3.1)生成半导体级的硅。这样的硅的纯度达99.9999999%,是地球上最纯的物质之一。1它有一种称为多晶或多晶硅(polysilicon)的晶体结构。 晶体材料 材料中原子的组织结构是导致材料不同的一种方式。有些材料,例如硅和锗,原子在整个材料里重复排列成非常固定的结构,这种材料称为晶体(crystals)。 原子没有固定的周期性排列的材料称为非晶或无定形(amorphous)。塑料是无定形材料的例子。

晶圆级封装(WLP)优势

晶圆级封装(WLP)优势 晶圆级封装(WLP)以BGA技术为基础,是一种经过改进和提高的CSP(芯片级封装),充分体现了BGA、CSP的技术优势。它具有许多独特的优点。 晶圆级封装(Wafer Level Package,WLP)采用传统的IC工艺一次性完成后道几乎所有的步骤,包括装片、电连接、封装、测试、老化,所有过程均在晶圆加工过程中完成,之后再划片,划完的单个芯片即是已经封装好的成品;然后利用该芯片成品上的焊球阵列,倒装焊到PCB板上实现组装。WLP的封装面积与芯片面积比为1:1,而且标准工艺封装成本低,便于晶圆级测试和老化。 晶圆级封装以BGA技术为基础,是一种经过改进和提高的CSP,充分体现了BGA、CSP的技术优势。它具有许多独特的优点: (1)封装加工效率高,它以晶圆形式的批量生产工艺进行制造; (2)具有倒装芯片封装的优点,即轻、薄、短、小; 图5 WLP的尺寸优势 (3)晶圆级封装生产设施费用低,可充分利用晶圆的制造设备,无须投资另建封装生产线; (4)晶圆级封装的芯片设计和封装设计可以统一考虑、同时进行,这将提高设计效率,减少设计费用; (5)晶圆级封装从芯片制造、封装到产品发往用户的整个过程中,中间环节大大减少,周期缩短很多,这必将导致成本的降低; (6)晶圆级封装的成本与每个晶圆上的芯片数量密切相关,晶圆上的芯片数越多,晶圆级封装的成本也越低。晶圆级封装是尺寸最小的低成本封装。晶圆级封装技术是真正意义上的批量生产芯片封装技术。

WLP的优势在于它是一种适用于更小型集成电路的芯片级封装(CSP)技术,由于在晶圆级采用并行封装和电子测试技术,在提高产量的同时显著减少芯片面积。由于在晶圆级采用并行操作进行芯片连接,因此可以大大降低每个I/O的成本。此外,采用简化的晶圆级测试程序将会进一步降低成本。利用晶圆级封装可以在晶圆级实现芯片的封装与测试。

晶圆生产工艺与操作规范介绍

晶圆的生产工艺流程介绍 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长?-->?晶棒裁切与检测?-->?外径研磨?-->?切片?-->?圆边?-->?表层研 磨?-->?蚀刻?-->?去疵?-->?抛光?-->?清洗?-->?检验?-->?包装 1.晶棒成长工序:它又可细分为: 1).融化(Melt?Down) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。2).颈部成长(Neck?Growth) 待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长 100-200mm,以消除晶种内的晶粒排列取向差异。 3).晶冠成长(Crown?Growth) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12寸等)。 4).晶体成长(Body?Growth) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。5).尾部成长(Tail?Growth) 当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。

2.晶棒裁切与检测(Cutting?&?Inspection) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3.外径研磨(Surface?Grinding?&?Shaping) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4.切片(Wire?Saw?Slicing) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5.圆边(Edge?Profiling) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6.研磨(Lapping) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7.蚀刻(Etching) 以化学蚀刻的方法,去掉经上几道工序加工后在晶片表面因加工应力而产生的一层损伤层。 8.去疵(Gettering) 用喷砂法将晶片上的瑕疵与缺陷感到下半层,以利于后序加工。 9.抛光(Polishing)

晶圆级封装技术的发展现状

晶圆级封装技术的发展现状 2016-04-18 12:36来源:内江洛伯尔材料科技有限公司作者:研发部 晶圆级封装随着IC芯片技术的发展,芯片封装技术也不断达到新的水平,目前已可在单芯片上实现系统的集成。 在众多的新型封装技术中,晶圆级封装技术最具创新性、最受世人瞩目,是封装技术取得革命性突破的标志。晶圆级封装技术的构思是在整片晶圆上进行CSP封装技术的制造,也就是在晶圆级基本完成了大部分的封装工作。因此,晶圆级封装结构,则可省略覆晶技术点胶的步骤,目前可采用弹性体或是类弹性体来抵消应力,而这些弹性体的制程,可在整片晶圆上完成,因此省去了对一个个组件分别点胶的复杂制程。方形晶圆封装技术的设计理念,首先为增加组件与底材之间的距离,亦即选用更大的锡铅焊料球实现导电性,现有的晶圆级封装技术,采用重新布局技术来加大锡铅焊料球的间距,以达到加大锡铅焊料球体积的需求,进而降低并承受由基板与组件之间热膨胀差异而产生的应力,提高组件的可靠性。 晶圆级封装和晶圆级芯片尺寸封装(WLCSP)是同一概念,它是芯片尺寸封装的一个突破性进展,表示的是一类电路封装完成后仍以晶圆形式存在的封装,其流行的主要原因是它可将封装尺寸减小到和IC芯片一样大小以及其加工的成本低,晶圆级封装目前正以惊人的速度增长,其平均年增长率(CAGR)可达210%,推动这种增长的器件主要是集成电路、无源组件、高性能存储器和较少引脚数的器件。 目前有5种成熟的工艺技术可用于晶圆凸点,每种技术各有利弊。其中金线柱焊接凸点和电解或化学镀金焊接凸点主要用于引脚数较少的封装(一般少于40),应用领域包括玻璃覆晶封装(COG)、软膜覆晶封装(COF)和RF模块。由于这类技术材料成本高、工序时间长,因此不适合I/O引脚多的封装件。另一种技术是先置放焊料球,再对预成形的焊料球进行回流焊接,这种技术适用于引脚数多达300的封装件。目前用得最多的两种晶圆凸点工艺是电解或化学电镀焊料,以及使用高精度压印平台的焊膏印刷。 印刷焊膏的优点之一是设备投资少,这使很多晶圆凸点加工制造厂家都能进入该市场,为半导体制造厂家服务。随着WLP逐渐为商业市场所接受,全新的晶圆凸点专业加工服务需求持续迅速增长。的确,大多数晶圆凸点加工厂都以印刷功能为首要条件,并提供一项或多项其它技术。业界许多人士都认为焊膏印刷技术将主导多数晶圆凸点的应用。

全球及中国晶圆代工行业研究

年全球及中国晶圆代行业研究报告 2009-2010年全球及中国晶圆代工行业研究报告2010年是晶圆代工行业自2000年后最好的一年。预计2010年 晶圆代工行业产值为276亿美元,比2009年增长37.8%。整个半导体行业产值预计为2745亿美元,比2009年增长21.5% 2007-2010年全球15家晶圆代工厂收入统计与预测

2010年晶圆代工行业的突飞猛进,一方面是由于经济形势的好转,另一方面是许多半导体大厂都采取轻晶圆策 略(fab-lite)。多数厂商的轻晶圆厂策略是继续利用较旧的晶圆厂,或者在自家晶圆厂生产模拟产品,避免花大钱略(f b lit)多数厂商的轻晶圆厂策略是继续利用较旧的晶圆厂或者在自家晶圆厂生产模拟产品避免花大钱 投资新的晶圆厂。而在先进数字CMOS制程方面,都交给晶圆代工厂。因为65纳米以下制程(Process)的研发非常 耗费财力和人力,即便是半导体大厂也无能为力。最佳例子之一是德州仪器宣布32纳米以下制程产品将委托给台积 电代工。日本最大的半导体厂家瑞萨也在2010年7月宣布,未来尖端产品委托给台积电代工。未来长时间内,晶圆电代工日本最大的半导体厂家瑞萨也在2010年7月宣布未来尖端产品委托给台积电代工未来长时间内晶圆代工行业都会比半导体行业平均增幅要高。2010年晶圆代工行业也大幅度提高资本支出来提高技术和产能,台积电预计2010年资本支出高达59亿美元,联电达19亿美元,Global Foundries大约25亿美元,都是2009年的3倍左右。 2010年晶圆代工行业也出现了一些大的变化,Global Foundries(简称GF)开始崭露头角。这个脱胎自AMD的晶圆代工厂,自收购特许半导体后开始日益强大。GF的出现打破了晶圆代工业台积电、联电、特许、中芯国际四强纷争的局面。中芯国际开始被远远抛离,营收只有GF的一半,而技术远远落后GF。晶圆代工行业开始呈现三足鼎立的局面。联电面临来自GF的强力挑战,甚至台积电都不敢小觑GF。 GF要想超越联电也并非易事。首先GF收购的特许半导体经营状况一直不佳,2009年净亏损2.88亿美元,而联电2009年运营利润率达5.1%。2009年3季度特许半导体产能利用率为75%,而联电为89%。特许半导体原是新加坡政府主权基金淡马锡主导的企业,效率低下,自成立以来连续多年亏损。中芯国际连续13季度、5年本业亏损,特许半导体比中芯国际强不了多少。而联电则要好得多,连续5年盈利。GF要想把特许半导体改造成高效率的企业要花费一些时日。 其次是GF的技术和产能都无法和联电相提并论。联电有480万片晶圆的年产能,GF的特许拥有大约190万片晶圆的年产能,加上原AMD,估计有350万-380万片。GF虽然背靠阿布扎比这个大财主,但是晶圆产能的提升需要时间, GF的美国新工厂自2009年建设,2012年才能投产。

相关文档
最新文档