键盘扫描电路

键盘扫描电路
键盘扫描电路

键盘扫描电路

设计:2014-4-1

1.电路名称:键盘扫描电路

2.电路概述:(包括遵循的依据或标准,实现的功能)

利用矩阵键盘方式,实现12位按键输入,供用户对电能表进行充值等操作,广泛应用于一体式预付费键盘表及分体式CIU等产品中。

3.工作参数及指标

参比温度23℃±2℃

4.电路图

5.电路图的工作原理描述:

在上电模式下,程序SW1-SW4一直输出低电平,SW5-SW7检测高低电平,在没有按键被按下的情况下SW5-SW7都被上拉到高电平,当十二位按键中任意一位被按下时,SW1-SW4的低电平通过分压电阻使的SW5-SW7中某位由

高电平变为低电平,程序开始进入按键扫描,逐一使SW1-SW4输出低电平并结合SW-SW7的状态确认哪个按键被按下,程序扫描两次以防止误判。

在掉电模式下(适用于TDK654X系列芯片),由于TDK654X系列芯片进入低功耗后管脚无法控制,因此电路增加D1、D2两个双二级管,用于按键唤醒单片机,当低功耗模式下SW1-SW4无法输出低电平,此时键盘被按下时先通过D1、D2使PB脚电平由低到高变化唤醒单片机,单片机被唤醒后通过上电模式一样的程序扫描方式以确认具体是哪个按键被按下。

图一

图一中坐标1是PB口线的波形,坐标2是SW5口线的波形,在掉电情况下,当按一下S1按键,PB口产生一个3V的高电平脉冲(TDK芯片高电平为2V 以上),唤醒芯片程序初始化SW1-SW4,此时按键被按着因此SW5会有一个低电平脉冲,程序进入扫描后PB由于SW1-SW4轮流输出高的原因使PB持续高电平25ms左右,扫描完一轮后程序进入按键释放期150ms,SW1-SW4全部输出低,因此PB持续150ms低电平,然后程序进入第二轮扫描,由于SW1-SW4轮流输出高电平的原因,PB又会产生一个高电平,且高电平宽度宽度是SW5的4倍,扫描完两轮后又进入按键释放期,此时S1键被释放,程序按键处理完成进入低功耗模式,PB与SW5口线恢复到默认状态。

软件处理流程图:

7.使用时注意事项

1、如按键为硅胶接触方式时,印制板按键使用碳膜工艺处理,碳膜接触电阻

要求小于20欧姆。

2、印制板过孔尽量远离硅胶按键边缘,防止15KV空气放电实验时拉弧。

3、按键排列顺序可根据实际情况调整,软件应注意对应的真值表。

4、如果使用低功耗模式下管脚仍可正常操作的单片机不需要使用D1、D2、

C1、R1、R2、R3、R4。

5、C2、C3、C4为滤波电容,防止EMC测试时按键被干扰引起的误判或按键

不灵敏。

6、R5、R6、R

7、R

8、R

9、R10、R11为限流电阻,防止在生产过程中由于人

工插接按键板等原因引起的静电损坏芯片。

8.其他

碳膜按键进行过15天75度高温95%高湿测试,无异常。

基于FPGA的键盘扫描电路 EDA课程设计

信息科学与技术学院 EDA 课程设计报告 题目名称:基于FPGA 的键盘扫描电路 学生姓名:王彪 学 号:2010508115 专业年级:电信10级(2)班 指导教师:钟福如老师 时 间: 2010.1.13

目录 1 课程设计综述—————————————————————— 2 1.1 课程设计的题目———————————————————— 2 1.2 题目要求——————————————————————— 2 2 方案选择———————————————————————— 2 3 整体电路的设计及分析——--——————————————— 3 3.1 顶层电路图—————————————————————— 3 3.2 各模块功能原理分析—————————————————— 4 4 心得体会——————————————————————— 12

1.课程设计综述 1.1 课程设计的题目 基于FPGA的键盘扫描电路。 1.3 题目要求 (1)、键盘按钮数为4,系统时钟10MHz。 (2)、能识别出所按按钮。 (3)、按钮被按下后,视为此按钮输入一次,若按钮长时间不松,(时限1S)后每隔0.5S 视为再次输入,直至按钮松开。 (4)、要求能对按钮按下时指令的抖动能正确处理。对持续时间小于50ms的输入不作响应。 (5)、各键设置不同优先级,多键同时按下时,视为优先级较高的按键被按下。2.方案选择 根据题目要求,需要4个按钮的键盘,通过查阅资料我选择通用的2*2行列式键盘,判断键盘中有无按键按下是通过行线送入扫描信号,然后从列线读取状态得到的。其方法是依次给行线送低电平,检查列线的输入。如果列线信号全为高电平,则代表低电平信号所在的行中无按键按下;如果列线有输入为低电平,则低电平信号所在的行和出现低电平的列的交点处有按键按下。原理框图如下所示:

实验报告七-键盘扫描及显示实验

信息工程学院实验报告 课程名称:微机原理与接口技术 实验项目名称:键盘扫描及显示实验 实验时间: 班级: 姓名: 学号: 一、实 验 目 的 1. 掌握 8254 的工作方式及应用编程。 2. 掌握 8254 典型应用电路的接法。 二、实 验 设 备 了解键盘扫描及数码显示的基本原理,熟悉 8255 的编程。 三、实 验 原 理 将 8255 单元与键盘及数码管显示单元连接,编写实验程序,扫描键盘输入,并将扫描结果送数码管显示。键盘采用 4×4 键盘,每个数码管显示值可为 0~F 共 16 个数。实验具体内容如下:将键盘进行编号,记作 0~F ,当按下其中一个按键时,将该按键对应的编号在一个数码管上显示出来,当再按下一个按键时,便将这个按键的编号在下一个数码管上显示出来,数码管上可以显示最近 6 次按下的按键编号。 键盘及数码管显示单元电路图如图 7-1 和 7-2 所示。8255 键盘及显示实验参考接线图如图 7-3 所示。 图 7-1 键盘及数码管显示单元 4×4 键盘矩阵电路图 成 绩: 指导老师(签名):

图 7-2 键盘及数码管显示单元 6 组数码管电路图 图 7-3 8255 键盘扫描及数码管显示实验线路图 四、实验内容与步骤 1. 实验接线图如图 7-3 所示,按图连接实验线路图。

图 7-4 8255 键盘扫描及数码管显示实验实物连接图 2.运行 Tdpit 集成操作软件,根据实验内容,编写实验程序,编译、链接。 图 7-5 8255 键盘扫描及数码管显示实验程序编辑界面 3. 运行程序,按下按键,观察数码管的显示,验证程序功能。 五、实验结果及分析: 1. 运行程序,按下按键,观察数码管的显示。

矩阵键盘电路设计

课程设计 题目矩阵键盘电路设计教学院计算机学院 专业计算机应用技术班级 姓名 指导教师 2010 年01 月12 日

前言.................................................................... 第一章需求分析......................................................... 功能描述......................................................... 功能分析......................................................... 第二章系统的原理及分析................................................. 用到的知识点的介绍,知识点使用的总体思路 第三章详细设计......................................................... 硬件设计 系统结构图,元器件的选择等 软件设计 所设计的软件关键模块的程序流程 第四章测试............................................................ 运行结果分析等 第五章总结............................................................. 参考文献................................................................ 附录 关键程序代码........................................................

键盘扫描电路

键盘扫描电路 设计:2014-4-1 1.电路名称:键盘扫描电路 2.电路概述:(包括遵循的依据或标准,实现的功能) 利用矩阵键盘方式,实现12位按键输入,供用户对电能表进行充值等操作,广泛应用于一体式预付费键盘表及分体式CIU等产品中。 3.工作参数及指标 参比温度23℃±2℃ 4.电路图 5.电路图的工作原理描述: 在上电模式下,程序SW1-SW4一直输出低电平,SW5-SW7检测高低电平,在没有按键被按下的情况下SW5-SW7都被上拉到高电平,当十二位按键中任意一位被按下时,SW1-SW4的低电平通过分压电阻使的SW5-SW7中某位由

高电平变为低电平,程序开始进入按键扫描,逐一使SW1-SW4输出低电平并结合SW-SW7的状态确认哪个按键被按下,程序扫描两次以防止误判。 在掉电模式下(适用于TDK654X系列芯片),由于TDK654X系列芯片进入低功耗后管脚无法控制,因此电路增加D1、D2两个双二级管,用于按键唤醒单片机,当低功耗模式下SW1-SW4无法输出低电平,此时键盘被按下时先通过D1、D2使PB脚电平由低到高变化唤醒单片机,单片机被唤醒后通过上电模式一样的程序扫描方式以确认具体是哪个按键被按下。 图一 图一中坐标1是PB口线的波形,坐标2是SW5口线的波形,在掉电情况下,当按一下S1按键,PB口产生一个3V的高电平脉冲(TDK芯片高电平为2V 以上),唤醒芯片程序初始化SW1-SW4,此时按键被按着因此SW5会有一个低电平脉冲,程序进入扫描后PB由于SW1-SW4轮流输出高的原因使PB持续高电平25ms左右,扫描完一轮后程序进入按键释放期150ms,SW1-SW4全部输出低,因此PB持续150ms低电平,然后程序进入第二轮扫描,由于SW1-SW4轮流输出高电平的原因,PB又会产生一个高电平,且高电平宽度宽度是SW5的4倍,扫描完两轮后又进入按键释放期,此时S1键被释放,程序按键处理完成进入低功耗模式,PB与SW5口线恢复到默认状态。

矩阵键盘设计实验报告

南京林业大学 实验报告 基于AT89C51 单片机4x4矩阵键盘接口电路设计 课程机电一体化设计基础 院系机械电子工程学院 班级 学号 姓名

指导老师杨雨图 2013年9月26日

一、实验目的 1、掌握键盘接口的基本特点,了解独立键盘和矩 阵键盘的应用方法。 2、掌握键盘接口的硬件设计方法,软件程序设计 和贴士排错能力。 3、掌握利用Keil51软件对程序进行编译。 4、用Proteus软件绘制“矩阵键盘扫描”电路,并用测试程序进行仿真。 5、会根据实际功能,正确选择单片机功能接线,编制正确程序。对实验结果 能做出分析和解释,能写出符合规格的实验报告。 二、实验要求 通过实训,学生应达到以下几方面的要求: 素质要求 1.以积极认真的态度对待本次实训,遵章守纪、团结协作。 2.善于发现数字电路中存在的问题、分析问题、解决问题,努力培养独立 工作能力。 能力要求 1.模拟电路的理论知识 2.脉冲与数字电路的理念知识 3.通过模拟、数字电路实验有一定的动手能力 4.能熟练的编写8951单片机汇编程序 5.能够熟练的运用仿真软件进行仿真 三、实验工具 1、软件:Proteus软件、keil51。 2、硬件:PC机,串口线,并口线,单片机开发板 四、实验内容

1、掌握并理解“矩阵键盘扫描”的原理及制作,了解各元器件的参数及格 元器件的作用。 2、用keil51测试软件编写AT89C51单片机汇编程序 3、用Proteus软件绘制“矩阵键盘扫描”电路原理图。 4、运用仿真软件对电路进行仿真。 五.实验基本步骤 1、用Proteus绘制“矩阵键盘扫描”电路原理图。 2、编写程序使数码管显示当前闭合按键的键值。 3、利用Proteus软件的仿真功能对其进行仿真测试,观察数码管的显示状 态和按键开关的对应关系。 4、用keil51软件编写程序,并生成HEX文件。 5、根据绘制“矩阵键盘扫描”电路原理图,搭建相关硬件电路。 6、用通用编程器或ISP下载HEX程序到MCU。 7、检查验证结果。 六、实验具体内容 使用单片机的P1口与矩阵式键盘连接时,可以将P1口低4位的4条端口线定义为行线,P1口高4位的4条端口线定义为列线,形成4*4键盘,可以配置16个按键,将单片机P2口与七段数码管连接,当按下矩阵键盘任意键时,数码管显示该键所在的键号。 1、电路图

单片机矩阵键盘扫描程序

#include #include #define uint unsigned int #define uchar unsigned char sbit E=P2^7; //1602使能引脚 sbit RW=P2^6; //1602读写引脚 sbit RS=P2^5; //1602数据/命令选择引脚 uint keyflag ; //键盘正在读取标志位,如果Keyflag为1 ,表示正在读取键盘,停止其他功能; char x,y,m,n,c; //Keyflag为0,读取键盘结束,恢复其他功能 char flag1=0; //频率范围10~1000Hz uchar Hrate = 0; //一个周期内高点平占据时间 uchar Lrate = 0; //一个周期内低电平占据时间 uint FREQ0; //定时器T0的计数变量// uint FREQ1; //定时器T1的计数变量// sbit P2_1=P2^0; //设置P2.1,作为信号输出口// uint disbuf[3]; uint figure=0; int sum2=0; int sum1=0; int flag=0; uint count=0; uint max=0; uint disbuf_temp=0; /******************************************************************** * 名称: 1602显示延时函数delay() * 功能: 延时,延时时间大概为5US。

* 输出: 无 ***********************************************************************/ void delay() { _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); } /******************************************************************** * 名称: bit Busy(void) * 功能: 这个是一个读状态函数,读出函数是否处在忙状态 * 输入: 输入的命令值 * 输出: 无 ***********************************************************************/ bit Busy(void) { bit busy_flag = 0; RS = 0; RW = 1; E = 1; delay(); busy_flag = (bit)(P0 & 0x80); E = 0; return busy_flag; } /******************************************************************** * 名称: wcmd(uchar del) * 功能: 1602命令函数 * 输入: 输入的命令值 * 输出: 无 ***********************************************************************/ void wcmd(uchar del) { while(Busy()); RS = 0; RW = 0; E = 0; delay(); P0 = del; delay(); E = 1;

第13讲51单片机按键电路

标题:键盘接口电路 教学目标与要求: 1.键盘去抖动和连接、控制方式 2.独立式按键及其接口电路 3.矩阵式键盘及其接口电路 授课时数:2 教学重点:.矩阵式键盘及其接口电路 教学内容及过程: 一、键盘接口概述 1、按键开关去抖动问题 机械式按键再按下或释放时,由于机械弹性作用的影响,通常伴随有一定时间的触点机械抖动,然后其触点才稳定下来。其抖动过程如图9-11所示,抖动时间的长短与开关的机械特性有关,一般为5 10 ms 在触点抖动期间检测按键的通与断状态,可能导致判断出错,即按键一次按下或释放被错误地认为是多次操作,这种情况是不允许出现的。为了克服按键触点机械抖动所致的检测误判,必须采取去抖动措施。这一点可从硬件、软件两方面予以考虑。在键数较少时,可采用硬件去抖,而当键数较多时,采用软件去抖。在硬件上可采用在键输出端加R-S触发器(双稳态触发器)或单稳态触发器构成去抖动电路。图9-12是一种由R-S触发器构成的去抖动电路,当触发器一旦翻转,触点抖动不会对其产生任何影响。 软件上采取的措施是:在检测到有按键按下时,执行一个10 ms左右(具体时间应视所使用的按键进行调整)的延时程序后,再确认该键电平是否仍保持闭合状态电平,若仍保持闭合状态电平,则确认该键处于闭合状态。同理,在检测到该键释放后,也应采用相同的步 骤进行确认,从而可消除抖动的影响。

2.编制键盘程序 一个完善的键盘控制程序应具备以下功能: (1) 检测有无按键按下,并采取硬件或软件措施,消除键盘按键机械触点抖动的影响。 (2) 有可靠的逻辑处理办法。每次只处理一个按键,其间对任何按键的操作对系统不产生影响,且无论一次按键时间有多长,系统仅执行一次按键功能程序。 (3) 准确输出按键值(或键号),以满足跳转指令要求。 二、独立式按键 单片机控制系统中,往往只需要几个功能键,此时,可采用独立式按键结构。 1. 独立式按键结构 独立式按键是直接用I/O口线构成的单个按键电路,其特点是每个按键单独占用一根I/O口线,每个按键的工作不会影响其它I/O口线的状态。独立式按键的典型应用如图7.4所示。 独立式按键电路配置灵活,软件结构简单,但每个按键必须占用一根I/O口线,因此,在按键较多时,I/O口线浪费较大,不宜采用。 2.矩阵式键盘 I/O端线分为行线和列线,按键跨接在行线和列线上,按键按下时,行线与列线发生短路。特点: ①占用I/O端线较少; ②软件结构教复杂。 适用于按键较多的场合。 3.键盘扫描控制方式 ⑴程序控制扫描方式 键处理程序固定在主程序的某个程序段。 特点:对CPU工作影响小,但应考虑键盘处理程序的运行间隔周期不能太长,否则会影响对键输入响应的及时性。 ⑵定时控制扫描方式 利用定时/计数器每隔一段时间产生定时中断,CPU响应中断后对键盘进行扫描。 特点:与程序控制扫描方式的区别是,在扫描间隔时间内,前者用CPU工作程序填充,后者用定时/计数器定时控制。定时控制扫描方式也应考虑定时时间不能太长,否则会影响对键输入响应的及时性。 ⑶中断控制方式 中断控制方式是利用外部中断源,响应键输入信号。 特点:克服了前两种控制方式可能产生的空扫描和不能及时响应键输入的缺点,既能及时处理键输入,又能提高CPU运行效率,但要占用一个宝贵的中断资源。 三、独立式按键及其接口电路 1、按键直接与I/O口连接

基于FPGA的键盘扫描程序的设计

摘要 在现代电子工业的控制电路中,键盘扫描和显示电路对系统的调试和设置有着重要的作用。随着EDA技术的发展,基于FPGA的扫描键盘因其结构简单,能有效防止机械键盘按键抖动带来的数据错误等优点在许多电子设备中都得到了广泛的应用。 本文主要是设计一个基于FPGA的键盘扫描程序,该设计在EDA工具Quarutus II9.0上开发完成,以Creat-SOPC2000实验箱上的4*4矩阵键盘为硬件实体,设计键盘扫描程序,将程序划分为时序产生模块、键盘扫描模块、弹跳消除模块、键值译码模块四个模块,时序产生模块为键盘扫描和弹跳消除模块产生时钟信号,键盘扫描模块采用行扫描法对4*4矩阵键盘进行扫描,键值译码模块将所按键值译码为共阳极8位7段数码管的显示码,几个模块组合起来实现键盘扫描的设计要求。最后对程序进行仿真分析和硬件验证。仿真结果表明,该系统具有集成度高、稳定性好、设计灵活和设计效率高等优点。 关键词: FPGA,Quartus II,VHDL,键盘扫描

ABSTRACT In the modern electronics industry controlling-circuit, the keyboard scanning and display circuit plays an important role in debugging and setting the system. With the development of EDA technology, FPGA-based scanning keyboard have been widely used in many electronic devices because of its simple structure, and it also can effectively prevent mechanical keyboard jitter caused by data errors. This article primarily designed an FPGA-based keyboard scan procedures, this design is developed on the EDA tools—— Quarutus II9.0 and designed the keyboard scan program, using the Creat-SOPC2000 experimental box 4 * 4 matrix keyboard as the hardware entity .the program is divided into four modules as the timing generation module, a keyboard scanning module, bounce cancellation module and the decoding module. The timing generation module generates the clock signal for the keyboard scanning and bounce elimination module, the keyboard scanning module using the line scanning method to sweep the 4* 4 matrix keyboard, key decoder module decodes the key value for the common anode eight 7-segment display code. Several modules assembles together to meet the keyboard scanning design requirements. Finally, conducting simulation analysis by the program and verifying the hardware.Simulation results show that the system has many advantages such as high integration, good stability, high efficiency, flexible design and high design efficiency. Keywords: FPGA,Quartus II,VHDL,keyboard scanning

矩阵键盘的工作原理和扫描确认方式

9.3.1 矩阵键盘的工作原理和扫描确认方式 来源:《AVR单片机嵌入式系统原理与应用实践》M16华东师范大学电子系马潮 当键盘中按键数量较多时,为了减少对I/O 口的占用,通常将按键排列成矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行或列线上的电平变化可以确定哪个按键被按下。 图9-7 为一个 4 x 3 的行列结构,可以构成12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个16 键的键盘。很明显,在按键数量多的场合,矩阵键盘与独立式按键键盘相比可以节省很多的I/O 口线。 矩阵键盘不仅在连接上比单独式按键复杂,它的按键识别方法也比单独式按键复杂。在矩阵键盘的软件接口程序中,常使用的按键识别方法有行扫描法和线反转法。这两种方法的基本思路是采用循环查循的方法,反复查询按键的状态,因此会大量占用MCU 的时间,所以较好的方式也是采用状态机的方法来设计,尽量减少键盘查询过程对MCU 的占用时间。 下面以图9-7 为例,介绍采用行扫描法对矩阵键盘进行判别的思路。图9-7 中,PD0、PD1、PD2 为3 根列线,作为键盘的输入口(工作于输入方式)。PD3、PD4、PD5、PD6 为4根行线,工作于输出方式,由MCU(扫描)控制其输出的电平值。行扫描法也称为逐行扫描查询法,其按键识别的过程如下。 √将全部行线PD3-PD6 置低电平输出,然后读PD0-PD2 三根输入列线中有无低电平出现。只要有低电平出现,则说明有键按下(实际编程时,还要考虑按键的消抖)。如读到的都是高电平,则表示无键按下。 √在确认有键按下后,需要进入确定具体哪一个键闭合的过程。其思路是:依

扫描式矩阵键盘课程设计

扫描式矩阵键盘课程设 计 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

4X4扫描式矩阵键盘课程设计课程设计名称: 4_4扫描式矩阵键盘设计 姓名: DUKE 班级:电子1008班 学号: 10086 成绩: 日期: 2014年1月6日 摘要 随着21世纪的到来,电子信息行业将是人类社会的高科技行业之一,式设施现代化的基础,也是人类通往科技巅峰的直通路。电子行业的发展从长远来看很重要,但最主要的还是科技问题。 矩阵式键盘提高效率进行按键操作管理有效方法,它可以提高系统准确性,有利于资源的节约,降低对操作者本身素质的要求。是它能准时、实时、高效地显示按键信息,以提高工作效率和资源利用率。 矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,显示在LED数码管上。单片机控制依据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。 4*4矩阵式键盘采用AT89C51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用C语言编程。单片机将检测到的按键信号

转换成数字量,显示于LED显示器上。该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。 目录 第一章:系统功能要求-------------------------------------------------------- 1.1 4*4 矩阵式键盘系统概述------------------------------------------------ 1.2 本设计任务和主要内容--------------------------------------------------- 第二章:方案论证--------------------------------------------------------------- 第三章:系统硬件电路的设计------------------------------------------------ 3.1 单片机控制系统原理----------------------------------------------------- 3.2 原理图绘制说明---------------------------------------------------------- 3.3 画出流程图---------------------------------------------------------------- 3.4 原理图绘制---------------------------------------------------------------

键盘扫描显示实验原理及分析报告

键盘扫描显示实验原理及分析报告 一、实验目的-------------------------------------------------------------1 二、实验要求-------------------------------------------------------------1 三、实验器材-------------------------------------------------------------1 四、实验电路-------------------------------------------------------------2 五、实验说明-------------------------------------------------------------2 六、实验框图-------------------------------------------------------------2 七、实验程序-------------------------------------------------------------3 八、键盘及LED显示电路---------------------------------------------14 九、心得体会------------------------------------------------------------- 15 十、参考文献--------------------------------------------------------------15

经典的矩阵键盘扫描程序

键盘是单片机常用输入设备,在按键数量较多时,为了节省I/O口等单片机资源,一般采取扫描的方式来识别到底是哪一个键被按下。即通过确定被按下的键处在哪一行哪一列来确定该键的位置,获取键值以启动相应的功能程序。 4*4矩阵键盘的结构如图1(实物参考见万用板矩阵键盘制作技巧)。在本例中,矩阵键盘的四列依次接到单片机的P1.0~P1.3,四行依次接到单片机的P1.4~P1.7;同时,将列线上拉,通过10K电阻接电源。 查找哪个按键被按下的方法为:一个一个地查找。 先第一行输出0,检查列线是否非全高; 否则第二行输出0,检查列线是否非全高; 否则第三行输出0,检查列线是否非全高; 如果某行输出0时,查到列线非全高,则该行有按键按下; 根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。 下面是具体程序:

void Check_Key(void) { unsigned char row,col,tmp1,tmp2; tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使 P1.4~P1.7中有一个为0 for(row=0;row<4;row++) // 行检测 { P1 = 0x0f; // 先将p1.4~P1.7置高 P1 =~tmp1; // 使P1.4~p1.7中有一个为0 tmp1*=2; // tmp1左移一位 if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测 { tmp2 = 0x01; // tmp2用于检测出哪一列为0 for(col =0;col<4;col++) // 列检测 { if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列 { key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表 return; // 退出循环 } tmp2*=2; // tmp2左移一位 } } } } //结束 这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

按键扫描方法

说到键盘扫描,相信大多数人第一反应就是行列矩阵扫描,这样我们可以用相对有限的IO口得到尽可能多的按键。键盘扫描是单片机技术的一种基本处理方法,学校的单片机课程都会有相应章节进行阐述,只要按照课本上讲述的方法,一般都能设计出比较可靠的键盘扫描电路与程序。 课本上的键盘扫描方法(见下图接法二)不能说是尽善尽美,从易懂性、成本、程序难易程度等方面综合看应该是不错的方法,给人感觉是已经没有太多的改善空间,至少我是这么认为的。 然而前段时间一位台湾朋友画给我的键盘扫描矩阵电路(见下图接法二),让我又一次看到到自己的思维还有许多地方被自己的所谓“经验”束缚着。 单纯的从硬件接法看,两种接法并没有明显区别,接法一甚至要复杂一些,但如果结合到键盘扫描的程序来看,就会发现接法一确实更好。 两种接法我都没有把上拉电阻包含进来,来让我们看一下两种接法到底有什么不同: 接法二: 我们熟悉的传统扫键处理电路,假定键盘行列IO口标号分别为H1/H2/H3和V1/V2/V3,扫键流程通常如下。 2.1. H1设置为输出,H2/H3和V1/V2/V3设置为输入 2.2. H1分别输出1和0,读V1/V2/V3状态,如果Vy状态与H1一致,则认为H1与Vy交叉位置的键按下 2.3. H2设置为输出,H1/H3和V1/V2/V3设置为输入 2.4. H2分别输出1和0,读V1/V2/V3状态,如果Vy状态与H2一致,则认为H2与Vy交叉位置的键按下 2.5. H3设置为输出,H1/H2和V1/V2/V3设置为输入 2.6. H3分别输出1和0,读V1/V2/V3状态,如果Vy状态与H3一致,则认为H3与Vy交叉位置的键按下

实验四 键盘扫描及显示设计实验报告

实验四键盘扫描及显示设计实验报告 一、实验要求 1. 复习行列矩阵式键盘的工作原理及编程方法。 2. 复习七段数码管的显示原理。 3. 复习单片机控制数码管显示的方法。 二、实验设备 1.PC 机一台 2.TD-NMC+教学实验系统 三、实验目的 1. 进一步熟悉单片机仿真实验软件 Keil C51 调试硬件的方法。 2. 了解行列矩阵式键盘扫描与数码管显示的基本原理。 3. 熟悉获取行列矩阵式键盘按键值的算法。 4. 掌握数码管显示的编码方法。 5. 掌握数码管动态显示的编程方法。 四、实验内容 根据TD-NMC+实验平台的单元电路,构建一个硬件系统,并编写实验程序实现如下功能: 1.扫描键盘输入,并将扫描结果送数码管显示。 2.键盘采用 4×4 键盘,每个数码管显示值可为 0~F 共 16 个数。 实验具体内容如下: 将键盘进行编号,记作 0~F,当按下其中一个按键时,将该按键对应的编号在一个数码 管上显示出来,当再按下一个按键时,便将这个按键的编号在下一个数码管上显示出来,数 码管上可以显示最近 4 次按下的按键编号。 五、实验单元电路及连线 矩阵键盘及数码管显示单元

图1 键盘及数码管单元电路 实验连线 图2实验连线图 六、实验说明 1. 由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动。抖动时间的长短由按键的机械特性决定,一般为 5~10ms。这是一个很重要的时间参数,在很多场合都要用到。 键抖动会引起一次按键被误读多次。为了确保 CPU 对键的一次闭合仅做一次处理,必须去除键抖动。在键闭合稳定时,读取键的状态,并且必须判别;在键释放稳定后,再作处理。按

经典按键扫描程序

以下假设你懂C语言,因为纯粹的C语言描述,所以和处理器平台无关,你可以在MCS-51,AVR,PIC,甚至是ARM平台上面测试这个程序性能。以下以AVR的MEGA8作为平台讲解,没有其它原因,因为我手头上只有AVR的板子而已没有51的。用51也可以,只是芯片初始化部分不同,还有寄存器名字不同而已。 核心算法: unsigned char Trg; unsigned char Cont; void KeyRead( void ) { unsigned char ReadData = PINB^0xff; // 1 Trg = ReadData & (ReadData ^ Cont); // 2 Cont = ReadData; // 3 } 下面是程序解释:Trg(triger)代表的是触发,Cont(continue)代表的是连续按下。 1:读PORTB的端口数据,取反,然后送到ReadData 临时变量里面保存起来。(端口值与0XFF 按位异或,有按键按下为0,异或后相应的位就为1,相当于将读取的端口值取反) 2:算法1,用来计算触发变量的。一个位与操作,一个异或操作,我想学过C语言都应该懂吧?Trg为全局变量,其它程序可以直接引用。 3:算法2,用来计算连续变量。 看到这里,有种“知其然,不知其所以然”的感觉吧?代码很简单,但是它到底是怎么样实现我们的目的的呢?好,下面就让我们绕开云雾看青天吧。 我们最常用的按键接法如下:AVR是有内部上拉功能的,但是为了说明问题,我是特意用外部上拉电阻。(STM32可以将端口设置为输入上拉模式)那么,按键没有按下的时候,读端口数据为1,如果按键按下,那么端口读到0。下面就看看具体几种情况之下,这算法是怎么一回事。 (1)没有按键的时候 端口为0xff,ReadData读端口并且取反,很显然,就是 0x00 了。(0XFF^0XFF=0X00)Trg = ReadData & (ReadData ^ Cont); (初始状态下,Cont也是为0的)很简单的数学计算,因为ReadData为0,则它和任何数“相与”,结果也是为0的。 Cont = ReadData; 保存Cont 其实就是等于ReadData,为0; 结果就是: ReadData = 0; Trg = 0; Cont = 0; (2)第一次PB0按下的情况 端口数据为0xfe,ReadData读端口并且取反,很显然,就是 0x01 了。(0XFE^0XFF=0X01)Trg = ReadData & (ReadData ^ Cont); 因为这是第一次按下,所以Cont是上次的值,应为为0。那么这个式子的值也不难算,也就是 Trg = 0x01 & (0x01^0x00) = 0x01 Cont = ReadData = 0x01; 结果就是: ReadData = 0x01; Trg = 0x01;Trg只会在这个时候对应位的值为1,其它时候都为0 Cont = 0x01;

单片机4X4键盘扫描和显示课程设计

二、设计内容 1、本设计利用各种器件设计,并利用原理图将8255单元与键盘及数码管显示单元连接,扫描键盘输入,最后将扫描结果送入数码管显示。键盘采用4*4键盘,每个数码管可以显示0-F共16个数。将键盘编号,记作0-F,当没按下其中一个键时,将该按键对应的编号在一个数码管上显示出来,当在按下一个 键时,便将这个按键的编号在下一个数码管上显示,数码管上 可以显示最近6次按下的按键编号。 设计并实现一4×4键盘的接口,并在两个数码管上显示键盘所在的行与列。 三、问题分析及方案的提出 4×4键盘的每个按键均和单片机的P1口的两条相连。若没有按键按下时,单片机P1口读得的引脚电平为“1”;若某一按键被按下,则该键所对应的端口线变为地电平。单片机定时对P1口进行程序查询,即可发现键盘上是否有按键按下以及哪个按键被按下。 实现4×4键盘的接口需要用到单片机并编写相应的程序来识别键盘的十六个按键中哪个按键被按下。因为此题目还要求将被按下的按键显示出来,因此可以用两个数码管来分别显示被按下的按键的行与列

表示任意一个十六进制数)分别表示键盘的第二行、第三行、第四行;0xXE、0xXD、0xXB、0xX7(X表示任意一个十六进制数)则分别表示键盘的第一列、第二列、第三列和第四列。例如0xD7是键盘的第二行第四列的按键 对于数码管的连接,采用了共阳极的接法,其下拉电阻应保证芯片不会因为电流过大而烧坏。 五、电路设计及功能说明 4×4键盘的十六个按键分成四行四列分别于P1端口的八条I/O 数据线相连;两个七段数码管分别与单片机的P0口和P2口的低七 位I/O数据线相连。数码管采用共阳极的接法,所以需要下拉电阻 来分流。结合软件程序,即可实现4×4键盘的接口及显示的设计。 当按下键盘其中的一个按键时,数码管上会显示出该按键在4×4键 盘上的行值和列值。所以实现了数码管显示按键位置的功能 四、设计思路及原因 对于4×4键盘,共有十六个按键。如果每个按键与单片机的一个引脚相连,就会占用16个引脚,这样会使的单片机的接口不够用(即使够用,也是对单片机端口的极大浪费)。因此我们应该行列式的接法。行列式非编码键盘是一种把所有按键排列成行列矩阵的键盘。在这种键若没有按键按下时,单片机从P1口读得的引脚电平为“1”;若某一按键被按下,则该键所对应的端口线变为地电平。因此0xEX(X表示任意4×4键盘的第一行中的某个按键被按下,相应的0xDX、0xBX、0x7X(X 二、实验内容

51单片机矩阵键盘扫描程序

/*----------------------------------------------- 名称:矩阵键盘依次输入控制使用行列逐级扫描 论坛:https://www.360docs.net/doc/2f12006412.html, 编写:shifang 日期:2009.5 修改:无 内容:如计算器输入数据形式相同从右至左使用行列扫描方法 ------------------------------------------------*/ #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 #define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换 #define KeyPort P1 sbit LATCH1=P2^2;//定义锁存使能端口段锁存 sbit LATCH2=P2^3;// 位锁存 unsigned char code dofly_DuanMa[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};// 显示段码值0~F unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码 unsigned char TempData[8]; //存储显示值的全局变量 void DelayUs2x(unsigned char t);//us级延时函数声明 void DelayMs(unsigned char t); //ms级延时 void Display(unsigned char FirstBit,unsigned char Num);//数码管显示函数 unsigned char KeyScan(void);//键盘扫描 unsigned char KeyPro(void); void Init_Timer0(void);//定时器初始化 /*------------------------------------------------ 主函数 ------------------------------------------------*/ void main (void) { unsigned char num,i,j; unsigned char temp[8]; Init_Timer0(); while (1) //主循环 { num=KeyPro();

键盘扫描原理及应用键盘

本资源为网上搜集而来,如果该程序涉及或侵害到您的版权请立即写信通知我

键盘扫描 键盘是由按键构成,是单片机系统里最常用的输入设备。我们可以通过键盘输入数据或命令来实现简单的人-机通信。 1.按键及键抖动 按键是一种常开型按钮开关。平时,按键的两个触点处于断开状态,按下按键时两个触点才闭合(短路)。如图1-1所示,平常状态下,当按键K未被按下时,按键断开,PA0输入口的电平为高电平;当按键K被按下时,按键闭合,PA0输入口的电平为低电平。 图1-1 按键电路 图1-2 按键抖动 一般的按键所用开关都是机械弹性开关,由于机械触点的弹性作用,按键开

关在闭合时不会马上稳定地连接,在断开进也不会马上完全的断开,在闭合和断开的瞬间均有一连串的抖动。按键按下的电压信号波形图如图1-2所示,从图中可以看出按键按下和松开的时候都存在着抖动。抖动时间的长短因按键的机械特性不同而有所不同,一般为5ms~10ms。 如果不处理键抖动,则有可能引起一次按键被误读成多次,所以为了确保能够正确地读到按键,必须去除键抖动,确保在按键的稳定闭合和稳定断开的时候来判断按键状态,判断后再做处理。按键在去抖动,可用硬件或软件两种方法消除。由于使用硬件方法消除键抖动,一般会给系统的成本带来提高,所以通常情况下都是使用软件方法去除键抖动。 常用的去除键抖动的软件方法有很多种,但是都离不开基本的原则:就是要么避开抖动的时候检测按键或是在抖动的时候检测到的按键不做处理。这里说明一下常用的两种方法: 第一种方法是检测到按键闭合电平后先执行一个延时程序,做一个12ms~24ms的延时,让前抖动消失后再一次检测按键的状态,如果仍是闭合状态的电平,则认为真的有按键按下;若不是闭合状态电平,则认为没有键按下。若是要判断按键松开的话,也是要在检测到按键释放电平之后再给出12ms~24ms的延时,等后抖动消失后再一次检测按键的状态,如果仍为断开状态电平,则确认按键松开。这种方法的优点是程序比较简单,缺点是由于延时一般采用跑空指令延时,造成程序执行效率低。 第二种方法是每隔一个时间周期检测一次按键,比如每5ms扫描一次按键,要连续几次都扫描到同一按键才确认这个按键被按下。一般确认按键的扫描次数由实际情况决定,扫描次数的累积时间一般为50ms~60ms。比如,以5ms为基本时间单位去扫描按键的话,前后要连续扫描到同一个按键11次而达到50ms 来确认这个按键。按键松开的检测方法也是一样要连续多次检测到按键状态为断开电平才能确认按键松开。这种方法的优点是程序执行效率高,不用刻意加延时指令,而且这种方法的判断按键抗干扰能力要更好;缺点是程序结构较复杂。 在以下的介绍中,我们将使用第二种方法来去除键抖动。 2.键盘结构及工作原理 键盘一般有独立式和行列式(矩阵式)两种。当然还有其它的结构,比如交互式结构等等,不过其它的结构比较少用,在这里就不介绍了。在中颖的单片机中,有些单片机的LCD驱动引脚的SEGMENT口可以共享按键扫描口,当选择为按键扫描口时,可以使用这些口来扫描按键,所以在外部电路可以连接LCD和按键矩阵,采用分时扫描进行处理,下面也将介绍这个特殊应用的方法和注意的地方。 独立式键盘结构

相关文档
最新文档