历年高考数学试题库-数学试题

历年高考数学试题库-数学试题
历年高考数学试题库-数学试题

历年高考数学试题库-数学试题

全国普通高校招生考试数学考试历年考题

相关说明

添加时间

1990年全国高考理科试题及答案

附答案(rar文件)

2005-4-19

1991年全国高考理科试题及答案

附答案(rar文件)

2005-4-19

1992年全国高考理科试题及答案

附答案(rar文件)

2005-4-19

1993年全国高考理科试题及答案

附答案(rar文件)

2005-4-19

1993年全国高考文科试题及答案

附答案(rar文件)

2005-4-19

1994年全国高考理科试题及答案附答案(rar文件)

2005-4-19

1994年全国高考文科试题及答案附答案(rar文件)

2005-4-19

1995年全国高考理科试题及答案附答案(rar文件)

2005-4-19

1995年全国高考文科试题及答案附答案(rar文件)

2005-4-19

1996年全国高考理科试题及答案附答案(rar文件)

2005-4-19

1996年全国高考文科试题及答案附答案(rar文件)

2005-4-19

1997年全国高考理科试题及答案附答案(rar文件)

2005-4-19

1997年全国高考文科试题及答案附答案(rar文件)

2005-4-19

1998年全国高考理科试题及答案附答案(rar文件)

2005-4-19

1998年全国高考文科试题及答案附答案(rar文件)

2005-4-19

1999年全国高考理科试题及答案附答案(rar文件)

2005-4-19

1999年全国高考文科试题及答案

附答案(rar文件)

2005-4-19

2000年北京春季高考理科试题及答案附答案(rar文件)

2005-4-19

2000年北京春季高考文科试题及答案附答案(rar文件)

2005-4-19

2000年广东高考理科试题及答案

附答案(rar文件)

2005-4-19

2000年全国高考理科试题及答案

附答案(rar文件)

2005-4-19

2000年全国高考文科试题及答案

附答案(rar文件)

2005-4-19

2000年上海高考理科试题及答案

附答案(rar文件)

2005-4-19

2000年上海高考文科试题及答案

附答案(rar文件)

2005-4-19

2001年高考全国卷考题及答案(数学理工农医类)附答案(rar文件)

2005-4-19

2001年高考全国卷数学试题及答案(文史财经类)附答案(rar文件)

2005-4-19

2001年高考数学(理)试卷及答案(天津卷)

附答案(rar文件)

2005-4-19

2001年高考数学(文)试卷及答案(上海卷)附答案(rar文件)

2005-4-19

2001年高考数学(文)试卷及答案(天津卷)附答案(rar文件)

2005-4-19

2002年春季高考北京卷试题及答案(数学文史类)附答案(rar文件)

2005-4-19

2002年春季高考上海卷试题及答案(数学)

附答案(rar文件)

2005-4-19

2002年高考北京卷试题及答案(数学理工类)

附答案(rar文件)

2005-4-19

2002年高考北京卷试题及答案(数学文史类)

附答案(rar文件)

2005-4-19

2002年高考全国卷试题及答案(数学理工类)

附答案(rar文件)

2005-4-19

2002年高考全国卷试题及答案(数学文史类)附答案(rar文件)

2005-4-19

2002年高考数学(理)试题及答案(上海卷)

附答案(rar文件)

2005-4-19

2002年高考数学(文)试题及答案(上海卷)

附答案(rar文件)

2005-4-19

2003年北京高考文科试题及答案

附答案(rar文件)

2005-4-19

2003年辽宁高考试题及答案

附答案(rar文件)

2005-4-19

2003年全国高考理科试题及答案

附答案(rar文件)

2005-4-19

2003年全国高考文科试题及答案

附答案(rar文件)

2005-4-19

2003年上海高考理科试题及答案

附答案(rar文件)

2005-4-19

2003年上海高考文科试题及答案

附答案(rar文件)

2005-4-19

2004北京春季数学高考题及答案(文)附答案(rar文件)

2005-4-23

2004北京春季数学高考题及答案(理)附答案(rar文件)

2005-4-23

2005年高考数学-北京卷(理)

附答案(DOC文件)

2005-08-30

2005年高考数学-北京卷(文)附答案(DOC文件)

2005-08-30

2005年高考数学-福建卷(理)附答案(DOC文件)

2005-08-30

2005年高考数学-福建卷(文)附答案(DOC文件)

2005-08-30

2005年高考数学-广东卷

附答案(DOC文件)

2005-08-30

2005年高考数学-湖北卷(理)附答案(DOC文件)

2005-08-30

2005年高考数学-湖北卷(文)附答案(DOC文件)

2005-08-30

2005年高考数学-湖南卷(理)附答案(DOC文件)

2005-08-30

2005年高考数学-湖南卷(文)附答案(DOC文件)

2005-08-30

2005年高考数学-江苏卷

附答案(DOC文件)

2005-08-30

2005年高考数学-江西卷(理)附答案(DOC文件)

2005-08-30

2005年高考数学-江西卷(文)附答案(DOC文件)

2005-08-30

2005年高考数学-辽宁卷

附答案(DOC文件)

2005-08-30

2005年高考数学-全国卷(1)(理)附答案(DOC文件)

2005-08-30

2005年高考数学-全国卷(1)(文)附答案(DOC文件)

2005-08-30

2005年高考数学-全国卷(2)(理)无答案(DOC文件)

2005-08-30

2005年高考数学-全国卷(2)(文)无答案(DOC文件)

2005-08-30

2005年高考数学-全国卷(3)(理)附答案(DOC文件)

2005-08-30

2005年高考数学-全国卷(3)(文)附答案(DOC文件)

2005-08-30

2005年高考数学-山东卷(理)

附答案(DOC文件)

2005-08-30

2005年高考数学-山东卷(文)

附答案(DOC文件)

2005-08-30

2005年高考数学-上海卷(理)

附答案(DOC文件)

2005-08-30

2005年高考数学-上海卷(文)

附答案(DOC文件)

2005-08-30

2005年高考数学-台湾卷

2005年高考数学-天津卷(理)附答案(DOC文件)

2005-08-30

2005年高考数学-天津卷(文)附答案(DOC文件)

2005-08-30

2005年高考数学-浙江卷(理)附答案(DOC文件)

2005-08-30

2005年高考数学-浙江卷(文)附答案(DOC文件)

2005-08-30

2005年高考数学-重庆卷(理)附答案(DOC文件)

2005-08-30

2005年高考数学-重庆卷(文)附答案(DOC文件)

2005-08-30

2005年春季数学-北京卷(理)

附答案(DOC文件)

2005-08-30

2005年春季数学-北京卷(文)

附答案(DOC文件)

2005-08-30

2005年春季数学-上海卷

附答案(DOC文件)

2005-08-30

2006年普通高等学校招生全国统一考试-数学卷(含详解)共35套试卷DOC文件

2006-10-25

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

数列历年高考真题分类汇编

专题六 数列 第十八讲 数列的综合应用 答案部分 2019年 1.解析:对于B ,令2 104x λ-+=,得12 λ=, 取112a = ,所以211 ,,1022n a a == ?? ?…, 10n n a a +->,{}n a 递增, 当4n … 时,11132122 n n n n a a a a +=+>+=,

所以54 65109 323232a a a a a a ?>???> ???? ?>??M ,所以6 10432a a ??> ???,所以107291064a > >故A 正确.故选A . 2.解析:(1)设数列{}n a 的公差为d ,由题意得 11124,333a d a d a d +=+=+, 解得10,2a d ==. 从而* 22,n a n n =-∈N . 由12,,n n n n n n S b S b S b +++++成等比数列得 () ()()2 12n n n n n n S b S b S b +++=++. 解得()2 121n n n n b S S S d ++= -. 所以2* ,n b n n n =+∈N . (2 )*n c n = ==∈N . 我们用数学归纳法证明. ①当n =1时,c 1=0<2,不等式成立; ②假设() *n k k =∈N 时不等式成立,即12h c c c +++

全国三卷理科数学高考真题及答案

普通高等学校招生全国统一考试 理科数学 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只有一项是符合 题目要求的。 1.已知集合, , 则 A . B . C . D . 2. A . B . C . D . 3.中国古建筑借助榫卯将木构件连接起来, 构件的凸出部分叫榫头, 凹进部分叫卯眼, 图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体, 则咬合时带卯眼的木构件的俯视图可以是 4.若, 则 A . B . C . D . 5.的展开式中的系数为 A .10 B .20 C .40 D .80 6.直线分别与轴, 轴交于, 两点, 点在圆上, 则面积的取值范围是 A . B . C . D . 7.函数的图像大致为 {}|10A x x =-≥{}012B =, ,A B =I {}0{}1{}12,{}012, ,()()1i 2i +-=3i --3i -+3i -3i +1 sin 3 α= cos2α=8 9 79 79 -89 -5 22x x ? ?+ ?? ?4x 20x y ++=x y A B P ()2 222x y -+=ABP △[]26,[]48 , ??42 2y x x =-++

8.某群体中的每位成员使用移动支付的概率都为 , 各成员的支付方式相互独立, 设为该群体的10位成员中使用移动支付的人数, , , 则 A .0.7 B .0.6 C .0.4 D .0.3 9.的内角的对边分别为, , , 若的面积为 , 则 A . B . C . D . 10.设是同一个半径为4的球的球面上四点, 为等边三角形且其面积为 则三棱锥体积的最大值为 A . B . C . D . 11.设是双曲线 ()的左, 右焦点, 是坐标原点.过作的一条渐近线的垂线, 垂足为.若, 则的离心率为 A B .2 C D 12.设, , 则 A . B . C . D . 二、填空题:本题共4小题, 每小题5分, 共20分。 p X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224 a b c +-C =π2π3π4π6A B C D ,, ,ABC △D ABC -12F F ,22 221x y C a b -=:00a b >>, O 2F C P 1PF =C 0.2log 0.3a =2log 0.3b =0a b ab +<<0ab a b <+<0a b ab +<<0ab a b <<+

历年高考真题(数学文化)

历年高考真题(数学文化) 1.(2019湖北·理)常用小石子在沙滩上摆成各种形状研究数, 如他们研究过图1中的1, 3, 6, 10, …, 由于这些数能表示成三角形, 将其称为三角形数;类似地, 称图2中的1, 4, 9, 16…这样的数为正方形数, 下列数中既是三角形数又是正方形数的是( ) A.289 B.1024 C.1225 D.1378 2.(2019湖北·文)《九章算术》“竹九节”问题:现有一根9节的竹子, 自上而下各节的容积成等差数列, 上面4节的容积共3升, 下面3节的容积共4升, 则第5节的容积为 A .1升 B .6667升 C .4447升 D .3337 升 3.(2019湖北·理)《九章算术》“竹九节”问题:现有一根9节的竹子, 自上而下各节的容积成等差数列, 上面4节的容积共3升, 下面3节的容积共4升, 则第5节的容积为 升. 4.(2019?湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数, 以十六乘之, 九而一, 所得开立方除之, 即立圆径, “开立圆术”相当于给出了已知球的体 积V , 求其直径d 的一个近似公式 3 916V d ≈.人们还用过一些类似的近似公式.根据π =3.14159…..判断, 下列近似公式中最精确的一个是( ) A. 3 916V d ≈ B.32V d ≈ C.3157300V d ≈ D.31121V d ≈ 5.(2019?湖北)在平面直角坐标系中, 若点P (x , y )的坐标x , y 均为整数, 则称点P 为格点.若一个多边形的顶点全是格点, 则称该多边形为格点多边形.格点多边形的面积记为S , 其内部的格点数记为N , 边界上的格点数记为L .例如图中△ABC 是格点三角形, 对应的S=1, N=0, L=4. (Ⅰ)图中格点四边形DEFG 对应的S , N , L 分别是________; (Ⅱ)已知格点多边形的面积可表示为c bL aN S ++=其中a , b , c 为常数.若某格点多边形对应的N=71, L=18, 则S=________(用数值作答). 6.(2019?湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土, 这是我国现存最早的有系统的数学典籍, 其中记载有求“囷盖”的术:置如其周, 令相乘也, 又以高乘之, 三十六成一, 该术相当于给出了由圆锥的底面周长L 与高h , 计算其体积

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

历年全国高考数学试卷附详细解析

2015年高考数学试卷 一、选择题(每小题5分,共40分) 1.(5分)(2015?原题)复数i(2﹣i)=() A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i 2.(5分)(2015?原题)若x,y满足,则z=x+2y的最大值为() A.0 B.1 C.D.2 3.(5分)(2015?原题)执行如图所示的程序框图输出的结果为() A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8) 4.(5分)(2015?原题)设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的() A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5.(5分)(2015?原题)某三棱锥的三视图如图所示,则该三棱锥的表面积是()

A.2+B.4+C.2+2D.5 6.(5分)(2015?原题)设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 7.(5分)(2015?原题)如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是() A.{x|﹣1<x≤0} B.{x|﹣1≤x≤1} C.{x|﹣1<x≤1} D.{x|﹣1<x≤2} 8.(5分)(2015?原题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是() A.消耗1升汽油,乙车最多可行驶5千米 B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油

新课标数学历年高考试题汇总及详细答案解析

2014年普通高等学校招生全国统一考试 理科(新课标卷Ⅱ) 第Ⅰ卷 一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} 【答案】D 把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。所以选D. 2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5 C. - 4+ i D. - 4 - i 【答案】B . ,5-4-1-∴,2-,2212211B z z i z z z i z 故选关于虚轴对称,与==+=∴+=Θ 3.设向量a,b 满足|a+b |a-b ,则a ?b = ( ) A. 1 B. 2 C. 3 D. 5 【答案】A . ,1,62-102∴,6|-|,10||2 222A b a 故选联立方程解得,==+=++==+Θ 4.钝角三角形ABC 的面积是12 ,AB=1, ,则AC=( ) A. 5 B. C. 2 D. 1 【答案】B

. .5,cos 2-4 3π ∴ΔABC 4π .43π,4π∴, 22 sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。 为等腰直角三角形,不时,经计算当或=+======???==Θ 5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 【答案】 A . ,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=?= 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 13 【答案】 C ..27 10 π54π34-π54π.342π944.2342π. 546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为== ∴=?+?=∴=?=∴πΘΘ

高考理科历年数学真题及答案

绝密★启用前 2019年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。得到如下饼图: 建设前经济收入构成比例建设后经济收入构成比例

则下面结论中不正确的是() 新农村建设后,种植收入减少 新农村建设后,其他收入增加了一倍以上 新农村建设后,养殖收入增加一倍 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 7某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

A.5 B.6 C.7 D.8 10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形ABC 的斜边BC , 直角边AB,AC 。△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ, 在整个图形中随机取一点, 此点取自Ⅰ 、Ⅱ 、Ⅲ的概率分别记为 123 ,,p p p ,则()

历年高考数学真题全国卷版

历年高考数学真题全国 卷版 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 普通高等学校招生全国统一考试 一、 选择题 1、复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A ={1.3. m },B ={1,m} ,A B =A, 则m= A 0或3 B 0或3 C 1或3 D 1或3 3 椭圆的中心在原点,焦距为 4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24 y =1 D 212x +2 4y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 (5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项 和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中,AB 边的高为CD ,若 a ·b=0,|a|=1,|b|=2,则

天津市近五年高考数学真题分类汇总

天津市近五年高考数学试题分类汇总 [2011 ?天津卷]i是虚数单位,复数1 3i 1 i = C. 1 2i A. 2 i B. 2 i 【答案】A. 1 3i 【解析】'3i(1 3i)(1 i) 42i2 i. 1 i(1 i)(1 i)2 【2010】(1) i是虚数单位,复数 1 3i( 1 2i (A)1 + i(B)5+ 5i (C)-5-5i(D)-1 —i 5i 【2009,1】i是虚数单位,5=( ) 2 i (A) 1+2i(B) -1-2i(C) 1-2i 选择题1:—复数 【考点定位】本小题考查复数的运算,基础 题。) D. 1 2i (D) -1+2i 解析:旦5^ 2 i 5 1 2i,故选择D o 【2008 】 1. ?3 i是虚数单位i i 1() i是虚数单位,i1 (A) 1 (B) 1(C) i(D) i A 【2007】 2i3 1.i是虚数单位,——() 1 i A.1i B.1 i C.1 【答 案】 C 【分 析】2i32i3(1 i)2i(1 i)i 1,故选C 1i (1 i)(1 i)2 D. 1 i 2 (1)i 3 1,i 4 i,i1 复数运算技巧: 4n i 1,i 4n 1 4n 2 i,i 4n 3 hi n n 1n 2n 3 ■ i■ i■ i■ i0 复数概念、复数运算、共轭复数、复数几何意义。 (2)(1 i)2 2i

i i A.充分而不必要条件 B.必要而不充分条件 .1 i i,r _ i ⑷设 -1+凋 3 2 1, — 2 3 , 0 2 , 选择题 2: 充要条件与命题 [2011 ? 天津卷]设x,y R,则 2 2 “x 2 且 y 2 ”是“ x y 4 的 充分而不必要条件 A . B .必要而不充分条件 C . 充分必要条件 D .即不充分也不必要条件 【答案 】A 【解 析 】当x 2且y 2时, 「疋有x y 4 ;反过来当 【2010】(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 (A) 若f(x)是偶函数,则f(-x)是偶函数 (B) 若f(x)不是奇函数,则f(-x)不是奇函数 (C) 若f(-x)是奇函数,贝U f(x)是奇函数 (D) 若f(-x)不是奇函数,则f(x)不是奇函数 B 【2009】(3)命题“存在x 0 R , 2x0 0”的否定是 (A )不存在 x 0 R, 2x0 >0 (B )存在 X 。R, 2x0 0 (C )对任意的x R, 2x 0 (D )对任意的x R, 2x >0 【考点定位】本小考查四种命题的改写,基础题。 解析:由题否定即“不存在 x 0 R ,使2x0 0”,故选择D o 【2007 】3." —"是"ta n 2cos — "的 3 2 x 2 y 2 4,不一定有x 2且y 2,例如x 4, y 0也可以,故选A 【2008】(4)设 a,b 是两条直线, 是两个平面,则a b 的一个充分条件是 C (A) a , b 〃 , (C) a ,b , // (B) a ,b , // (D) a ,b 〃 ,

历年高考真题遗传题经典题型分类汇总(含答案)

历年高考真题遗传类基本题型总结 一、表格形式的试题 1.(2005年)已知果蝇中,灰身与黑身为一对相对性状(显性基因用B表示,隐性基因用b表示);直毛与分叉毛为一对相对性状(显性基因用F表示,隐性基因用f表示)。两只亲代果蝇杂交得到以下子代类型 请回答: (1)控制灰身与黑身的基因位于;控制直毛与分叉毛的基因位于。 (2)亲代果蝇的表现型为、。 (3)亲代果蝇的基因为、。 (4)子代表现型为灰身直毛的雌蝇中,纯合体与杂合体的比例为。 (5)子代雄蝇中,灰身分叉毛的基因型为、;黑身直毛的基因型为。 2.石刁柏(俗称芦笋,2n=20)号称“蔬菜之王”,属于XY型性别决定植物,雄株产量明显高于雌株。石刁柏种群中抗病和不抗病受基因A 、a控制,窄叶和阔叶受B、b控制。两株石刁柏杂交,子代中各种性状比例如下图所示,请据图分析回答: (1)运用的方法对上述遗传现象进行分析,可判断基因A 、a位于染色体上,基因B、b位于染色体上。 (2)亲代基因型为♀,♂。子代表现型为不抗病阔叶的雌株中,纯合子与杂合子的比例为。 3.(10福建卷)已知桃树中,树体乔化与矮化为一对相对性状(由等位基因D、d控制),蟠桃果形与圆桃果形为一对相对性状(由等位基因H、h控制),蟠挑对圆桃为显性,下表是桃树两个杂交组合的试验统计数据: (1)根据组别的结果,可判断桃树树体的显性性状为。 (2)甲组的两个亲本基因型分别为。 (3)根据甲组的杂交结果可判断,上述两对相对性状的遗传不遵循自由组台定律。理由是:如果这两对性状的遗传遵循自由组台定律,则甲纽的杂交后代应出现种表现型。比例应为。 4.(11年福建卷)二倍体结球甘蓝的紫色叶对绿色叶为 显性,控制该相对性状的两对等位基因(A、a和B、b)分别位于3号和8号染色体上。下表是纯合甘蓝杂交试验的统计数据: 请回答: (1)结球甘蓝叶性状的有遗传遵循____定律。 (2)表中组合①的两个亲本基因型为____,理论上组合①的F2紫色叶植株中,纯合子所占的比例为_____。 (3)表中组合②的亲本中,紫色叶植株的基因型为____。若组合②的F1与绿色叶甘蓝杂交,理论上后代的表现型及比例为____。

2011到2016历年高考数学真题

参考公式:如 果事件A、B互斥,那么球的表面积公式P(A B ) P(A)P(B) S 4R2 如果事件A、B相互独立,那么P(A B)P(A)P(B) 其中R表示球的半径球的体积公式 如果事件A在一次试验中发生的概率是p,那么V 3 4 R3 n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径 P(k)C n k n p k(1p)n k(k 0,1,2,…n) 2012年普通高等学校招生全国统一考试 一、选择题 1、复数 13i 1i = A2+I B2-I C1+2i D1-2i 2、已知集合A={1.3.m},B={1,m},A B=A,则m= A0或3B0 或3C1或3D1或3 3椭圆的中心在原点,焦距为4一条准线为x=-4,则该椭圆的方程为x2y2x2y2 A+=1 B+=1 1612128 x2y2x2y2 C+=1D+=1 84124 4已知正四棱柱ABCD-A B C D中,AB=2,CC= 11111与平面BED的距离为22E为CC的中点,则直线AC 1 1 A2B3C2D1 (5)已知等差数列{a}的前n项和为S,a =5,S=15,则数列 n n55 的前100项和为 (A)100 101 (B) 99 101 (C) 99101 (D) 100100 (6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则

(A) (B ) (C) (D) 3 (7)已知α 为第二象限角,sin α +sin β = ,则 cos2α = (A) - 5 3 (B ) - 5 5 5 9 9 3 (8)已知 F1、F2 为双曲线 C :x 2-y 2=2 的左、右焦点,点 P 在 C 上,|PF1|=|2PF2|,则 cos ∠F1PF2= 1 3 3 4 (A) 4 (B ) 5 (C) 4 (D) 5 1 (9)已知 x=ln π ,y=log52, ,则 (A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x (10) 已知函数 y =x 2-3x+c 的图像与 x 恰有两个公共点,则 c = (A )-2 或 2 (B )-9 或 3 (C )-1 或 1 (D )-3 或 1 (11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同, 则不同的排列方法共有 (A )12 种(B )18 种(C )24 种(D )36 种 7 (12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上,AE =BF = 。动点 P 从 E 出发沿直线喜爱那个 F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入 射角,当点 P 第一次碰到 E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10 二。填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中横线上。 (注意:在试题卷上作答无效) (13)若 x ,y 满足约束条件 (14)当函数 则 z=3x-y 的最小值为_________。 取得最大值时,x=___________。 (15)若 的展开式中第 3 项与第 7 项的二项式系数相等,则该展开式中 的系数为 _________。 (16)三菱柱 ABC-A1B1C1 中,底面边长和侧棱长都相等, BAA1=CAA1=50° 则异面直线 AB1 与 BC1 所成角的余弦值为____________。 三.解答题: (17)(本小题满分 10 分)(注意:在试卷上作答无效) △ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,已知 cos (A-C )+cosB=1,a=2c ,求 c 。 3 (C) (D) z=e 2 3

历年高考试题分类汇编之《曲线运动》,推荐文档

历年高考试题分类汇编之《曲线运动》 (全国卷1)14.如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角φ满 足 A.tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D. tan φ=2tan θ 答案:D 解析:竖直速度与水平速度之比为:tanφ = ,竖直位移与水平位移之比为:tanθ = gt v 0 ,故tanφ =2 tanθ ,D 正确。 0.5gt 2 v 0t (江苏卷)5.如图所示,粗糙的斜面与光滑的水平面相连接,滑块沿水平面以速度 运动.设滑块运动到A 点的时刻为t =0,距A 点的水平距离为x ,水平 0v 速度为.由于不同,从A 点到B 点的几种可能的运动图象如下列选 x v 0v 项所示,其中表示摩擦力做功最大的是 答案:D 解析:考查平抛运动的分解与牛顿运动定律。从A 选项的水平位移与时间的正比关系可知,滑块做平抛运动,摩擦力必定为零;B 选项先平抛后在水平地面运动,水平速度突然增大,摩擦力依然为零;对C 选项,水平速度不变,为平抛运动,摩擦力为零;对D 选项水平速度与时间成正比,说明滑块在斜面上做匀加速直线运动,有摩擦力,故摩擦力做功最大的是D 图像所显示的情景,D 对。本题考查非常灵活,但考查内容非常基础,抓住水平位移与水平速度与时间的关系,然后与平抛运动的思想结合起来,是为破解点。 (江苏卷)13.(15分)抛体运动在各类体育运动项目中很常见,如乒乓球运动.现讨论乒乓球发球问题,设球台长2L 、网高h ,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力.(设重力加速度为g ) (1)若球在球台边缘O 点正上方高度为h 1处以速度,水平发出,落在球台的P 1点(如 1v

历年全国卷高考数学真题大全解析版

全国卷历年高考真题汇编 三角 1(2017全国I 卷9题)已知曲线1:cos C y x =,22π:sin 23C y x ? ? =+ ?? ? ,则下面结论正确的是() A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6 个单位长度,得到曲线2C B .把1 C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π 12 个单位长度,得到曲线2C C .把1C 上各点的横坐标缩短到原来的12 倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π 12 个单位长度,得到曲线2C 【答案】D 【解析】1:cos C y x =,22π:sin 23? ?=+ ?? ?C y x 【解析】首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理. 【解析】πππcos cos sin 222??? ?==+-=+ ? ???? ?y x x x .横坐标变换需将1=ω变成2=ω, 【解析】即112 πππsin sin 2sin 2224??????=+???????? ?→=+=+ ? ? ?????? ?C 上各坐短它原y x y x x 点横标缩来 【解析】2ππsin 2sin 233??? ??? →=+=+ ? ???? ?y x x . 【解析】注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+ x 平移至π 3 +x , 【解析】根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π 12 2 (2017全国I 卷17题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的 面积为2 3sin a A . (1)求sin sin B C ; (2)若6cos cos 1B C =,3a =,求ABC △的周长. 【解析】本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应用. 【解析】(1)∵ABC △面积2 3sin a S A =.且1sin 2S bc A = 【解析】∴ 21 sin 3sin 2 a bc A A = 【解析】∴22 3sin 2 a bc A =

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

历年高考地理真题分类汇编

历年高考地理真题分类汇编 专题城乡规划 (?天津卷)图4、图5表示城市人口密度和城区在15年间的变化。读图回答6-7题。 6.结合图4中的信息推断,该市人口状况发生的变化是() A.其北部人口增加的数量最多 B.全市人口密度增加 C.市中心的人口密度有所降低 D.东部人口增长较慢 7.结合图5中信息推断,该城市空间结构发生的变化是() A.商业区的分布更加集中 B.新工业区向老工业区集聚 C.住宅区向滨湖地区聚集 D.中部、南部路网密度增大 【答案】6. B 7. D 【解析】 试题分析: 6.从图示中人口密度的图例分析,该市东部人口密度增加较大,人口增加较快;增加数量的多少还取决于面积的大小,所以不能判断各方向人口增加数量的多少;而全市的人口密度都增加。故选B。

(?四川卷)图3反映我国某城市某工作日0:00时和10:00时的人口集聚状况,该图由手机定位功能获取的人口移动数据制作而成,读图回答下列各题。 5、按城市功能分区,甲地带应为() A、行政区 B、商务区 C、住宅区 D、工业区 6、根据城市地域结构推断,该城市位于() A、丘陵地区 B、平原地区 C、山地地区 D、沟谷地区 【答案】5、C 6、B

(?江苏卷)“国际慢城”是一种具有独特地方感的宜居城镇模式,要求人口在5万人以下、环境质量好、提倡传统手工业、无快餐区和大型超市等。下图为“国际慢城”桠溪镇的大山村土地利用今昔对比图。读图回答下列问题。 21.与“国际慢城“要求相符合的生产、生活方式是() A.骑单车出行 B.经营手工业作坊 C.去速食店就餐 D.建大型游乐场 22.大山村在成为“国际慢城”前后,产业结构的变化是() A.从传统农业到现代农业 B.从种植业到种植业与服务业相结合 C.从水稻种植业到商品谷物农业 D.从较单一的农作物到多种经济作物

历年高考数学真题(全国卷整理版)

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 2 4S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 3 34 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1) (0,1,2,)k k n k n n P k C p p k n -=-=… 2012年普通高等学校招生全国统一考试 一、选择题 1、 复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A ={1.3. },B ={1,m} ,A B =A, 则m= A 0 B 0或3 C 1 D 1或3 3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 2 16x + 2 12y =1 B 2 12x + 2 8y =1 C 2 8 x + 2 4 y =1 D 212 x + 2 4 y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1= E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B C D 1 (5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为 (A) 100101 (B) 99101 (C) 99100 (D) 101100 (6)△ABC 中,AB 边的高为CD ,若 a ·b=0,|a|=1,|b|=2,则 (A) (B ) (C) (D)

全国高考理科数学历年精彩试题分类总汇编

实用文档 文案大全全国高考理科数学历年试题分类汇编 (一)小题分类 集合(2015卷1)已知集合A={xx=3n+2,n?N},B={6,8,10,12,14},则集 合A?B中的元素个()(A) 5 (B)4 (C)3 (D)2 1.(2013卷2)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1}, 则M∩N=( ). A.{-2,-1,0,1} B.{-3,-2,-1,0} C.{-2, -1,0} D.{-3,-2,-1} 2.(2009卷1)已知集合A=1,3,5,7,9},B={0,3,6,9,12},则A?B= A.{3,5} B.{3,6} C.{3,7} D.{3,9} 3.(2008卷1)已知集合M ={ x|(x + 2)(x-1) < 0 },N ={ x| x + 1 < 0 },则M∩N =() {A. (-1,1) B. (-2,1) C. (-2,-1) D. (1,2) 复数 1.(2015卷1)已知复数z满足(z-1)i=1+i,则z=() (A) -2-i (B)-2+i (C)2-i (D)2+i 2.(2015卷2)若a实数,且iai??12=3+i,则a=() A.-4 B. -3 C. 3 D. 4 3.(2010卷1)已知复数??2313iiz???,其中??z zzz的共轭复数, 则是() A=41B=21C=1 D=2 向量 1.(2015卷1)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC= ( ) (A)(-7,-4) (B)(7,4) (C)(-1,4) (D)(1,4) 2.(2015卷2)已知向量a=(0,-1),bb=(-1,2),则??aba??2=( ) A.-1 B. 0 C.

全国高考理科数学历年试题分类汇编

全国高考理科数学历年试题分类汇编 (一)小题分类 集合 (2015卷1)已知集合A={x x=3n+2,n ∈N},B={6,8,10,12,14},则集合A ?B 中的元素个( )(A ) 5 (B )4 (C )3 (D )2 1. (2013卷2)已知集合M ={x|-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1} 2. (2009卷1)已知集合A=1,3,5,7,9},B={0,3,6,9,12},则A ?B= A .{3,5} B .{3,6} C .{3,7} D .{3,9} 3. (2008卷1)已知集合M ={ x|(x + 2)(x -1) < 0 }, N ={ x| x + 1 < 0 },则M∩N =( ) {A. (-1,1) B. (-2,1) C. (-2,-1) D. (1,2) 复数 1. (2015卷1)已知复数z 满足(z-1)i=1+i ,则z=( ) (A ) -2-i (B )-2+i (C )2-i (D )2+i 2. (2015卷2)若a 实数,且 i ai ++12=3+i,则a=( ) B. -3 C. 3 D. 4 3. (2010卷1)已知复数() 2 313i i z -+= ,其中=?z z z z 的共轭复数,则是( ) A= 4 1 B= 2 1 C=1 D=2 向量

1. (2015卷1)已知点A(0,1),B(3,2),向量=(-4,-3),则向量= ( ) (A ) (-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 2. (2015卷2)已知向量a =(0,-1),b b =(-1,2),则() ?+2=( ) A. -1 B. 0 C. 1 D. 2 3. (2013卷3)已知两个单位向量a ,b 的夹角为60度,()0,1=?-+=t t 且,那么t= 程序框图 (2015卷2)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入的a,b 分别为14,18,则输出的a 为 A . 0 B. 2 C. 4 函数 (2011卷1)在下列区间中,函数()34-+=x e x f x 的零点所在区间为 A. ??? ??- 0,41 B .??? ??41,0 C. ??? ??21,41 D.?? ? ??43,21 (2010卷1)已知函数()? ? ?=≤<>+-100,lg 10,62 1 x x x x x f ,若啊a,b,c,互不相等,且()()()c f b f a f ==, 则abc 的取值范围是( )

相关文档
最新文档