风电功率预测的发展成就与展望

风电功率预测的发展成就与展望
风电功率预测的发展成就与展望

风电功率预测的发展现状与展望

范高锋,裴哲义,辛耀中

(国家电力调度通信中心,北京100031)

摘要:风电场输出功率预测对接入大量风电的电力系统运行有重要意义。本文从电力调度运行的角度,在风电功率预测技术的发展现状、系统建设情况、预测误差、预测评价指标和预测的主体等方面展开了论述,对目前存在的基础数据不完善、预测精度不高、预测的时间尺度较短和风电场普遍没有开展预测的问题进行了分析,提出了加强电网侧和风电场侧风电功率预测系统建设、加快超短期预测功能建设、继续深化预测技术研究、加强标准体系建设和开展跨行业合作等发展建议。

关键词:风电场;功率;预测;系统

中图分类号:TM614 文献标志码:A 文章编号:

Wind power prediction achievement and prospect

FAN Gao-feng , PEI Zhe-yi , XIN Yao-zhong

(National Power Dispatching& Communication Center,Beijing 100031)

Abstract: Wind power prediction is important to the operation of power system with comparatively large mount of wind power. This paper summarized the current situation of wind power prediction technology, wind power prediction system construction, prediction error, assessment index, and main market body of prediction from the power dispatch perspective. The main problems includes basic data incomplete, prediction precision relatively low, prediction time scale short and wind farm no wind power system are analyzed. Suggestions of enforcing grid side and wind farm side wind power prediction system construction, speeding up ultra-short term wind power prediction system construction, deepening wind power prediction technology study, strengthening prediction technical standard system and cooperation of different industry are proposed.

Keywords: wind farm; power; prediction; system

0引言

电力系统是一个复杂的动态系统。维持发电、输电、用电之间的功率平衡是电网的责任。在没有风电的电力系统,电网调度机构根据日负荷曲线可以制定发电计划,以满足次日的电力需求。风电场输出功率具有波动性和间歇性,风电的大规模接入导致发电计划制定难度大大增加,风电对电力系统的调度运行带来巨大挑战。

目前风电对全网的电力平衡已经带来很大的影响[1-3]。对风电场输出功率进行预测是缓解电力系统调峰、调频压力,提高风电接纳能力的有效手段之一。同时,风电功率预测还可以指导风电场的检修计划,提高风能利用率,提高风电场的经济效益。经过多年的科研攻关与技术创新,我国具有自主知识产权的风电功率预测系统已在电力调度机构获得了广泛应用,12个网省调建立了预测系统,覆盖容量超过12GW,在电网调度运行中发挥了一定作用。本文对近年来风电功率预测方面完成的工作进行了总结,对存在的问题进行了论述,并提出了下一步的发展建议。

1 风电功率预测发展现状

1.1 风电功率预测技术的发展情况

电网调度部门对风电功率预测的基本要求有2个:一是短期预测,即当天预测次日0时起72h的风电场输出功率,时间分辨率为15 min,用于系统发电计划安排;另一个是超短期预测,即实现提前量为0~4h的滚动预测,用于电力系统实时调度[4]。

风电功率预测方法主要分为统计方法、物理方法[5-6]。统计方法是指不考虑风速变化的物理过程,而根据历史统计数据找出天气状况与风电场出力的关系,然后根据实测数据和数值天气预报数据对风电场输出功率进行预测,常用的预测模型有时间序列、神经网络、支持向量机等。物理方法是指风电功率预测的物理方法根据数值天气预报模式的风速、风向、气压、气温等气象要素预报值以及风电场周围等高线、粗糙度、障碍物等信息,采用微观气象学理论或计算流体力学的方法,计算得到风电

机组轮毂高度的风速、风向、气温、气压等信息。然后根据风电机组的功率曲线计算得到每台风电机组的预测功率,再考虑风电机组间尾流影响,最后对所有风电机组的预测功率求和得到风电场的预测功率。

物理方法和统计方法各有优缺点。物理方法不需要大量的测量数据,但要求对大气的物理特性及风电场特性有准确的数学描述,这些方程求解困难,计算量大。统计方法不需要求解物理方程,计算速度快,但需要大量历史数据。混合方法有机结合了物理方法与统计方法的优点,可以有效提高预测精度和预测方法的适用性。

为提高预测精度,国内外研究机构都在尝试各种新的预测方法,主要包括多种方法同时预测、多数值天气预报、纳入实时功率和实时测风数据等。多数值天气预报、多种预测方法的集合预报逐渐成为发展趋势。

1.2 国内外预测系统的建设情况

国外风电功率预测技术起步较早,20世纪80年代就开始了风电功率预测相关技术研究,如丹麦在1990年就开发了一套预测系统[7-8]。后来,Ris?开发了Prediktor 系统,丹麦技术大学开发了WPPT (Wind Power Prediction Tool)系统,现在Prediktor 和WPPT已经整合为Zephry系统;德国奥尔登堡大学开发了Previento 系统;德国太阳能研究所开发了风电功率管理系统(WPMS);美国AWS Truewind 公司开发了eWind风功率预测系统;西班牙、爱尔兰、法国等国家都开发了风电功率预测系统[9]。

在国家电网公司国家电力调度通信中心的组织下,中国电科院和吉林省电力公司开展了风电功率预测系统的研究和开发,并于2008年投入运行。目前已经开发出了基于人工神经网络、支持向量机等统计方法的风电功率预测模型,以及基于线性化和计算流体力学的物理模型,同时正在开展多种统计方法联合应用研究机统计方法与物理方法混合预测模型的研究。目前,华北、东北、西北、上海、江苏、福建、辽宁、吉林、黑龙江、甘肃、宁夏、新疆等风电功率预测系统已经投入运行,取得了不错的运行效果。国内其他科研机构和高校也开展了深入研究,取得了大量成果[10-19]。

1.3 风电功率预测误差

目前,单个风电场日前预测均方根误差在10%~20%之间,区域短期预测均方根误差在10%~25%之间(见表1),这与德国6%左右的预测误差还有一定的差距,与电网负荷预测水平相比差距更大。超短期预测进行了一些试点研究,提前4h 的预测均方根误差在10%~18%之间。

表1 风电功率预测误差

Table 1 the error of wind power prediction

单位

均方根误差

RMSE/%

平均绝对误差

MAE/%京津唐12.43 10.49

上海20.26 17.68

江苏11.86 9.76

福建24.38 21.82

蒙东13.9 12.32

辽宁11.73 9.99

吉林12.2 10.3

黑龙江10.79 9.2

甘肃16.23 14.15

宁夏20.21 17.7

新疆15.93 13.45

1.4 风电功率预测的评价指标

风电功率预测受到预测算法、天气、风电场运行状态等多种因素影响,不可避免存在预测误差。目前国内外风电功率预测结果评价主要采用误差指标,包括均方根误差、平均绝对误差、最大误差、相关性系数等[4],均方根误差和平均绝对误差适用于预测系统的整体性能评价,可用于评价预测系统或预测模型的优劣,但不适用于发电计划安排和实时调度。另外,由于风电功率固有特性与负荷不同,风电功率预测评价指标与负荷预测相关指标有不同的含义,有关预测误差的评价需要进一步深化研究。

1.5 风电功率预测的主体

在国外,电网运营商和风电场都是风电功率预测的主体。风电场开展风电功率预测的目的主要是进行电力市场竞价和风电场运行维护。如丹麦、德国、西班牙、英国、爱尔兰等国有完善的电力市场体系。风电场作为并网电源,需要参与日前市场竞价,因此对风电功率预测的依赖性和需求度越来越大。电网运营商开展风电功率预测的目的主要是进行全网电力平衡,保障系统安全稳定运行。如丹麦和德国,大量小型风电场通过配电网分散接入电网,其功率预测主要由电网运营商负责。而后期大型海上风电场集中接入输电网,风电功率预测由风电场负责。风电场和电网运营商都开展预测逐渐成为发

展趋势。比如在与我国较为相似的美国,风电场和电网运营商都开展了预测工作,并且风电场有义务向电网申报发电计划,如果预测误差超出一定范围,风电场要向电网运营商缴纳罚款。

2 风电功率预测存在的问题

2.1 风电功率预测基础数据不完善

数值天气预报是风电功率预测的基础,针对我国风电功率预测的数值天气预报模式尚未建立,目前吉林等风电功率预测系统还需依赖国外的数值天气预报数据。另外,风电场基础资料不健全,历史数据不完备,风电场没有建立实时测风系统,风资源情况尚没有纳入调度监测。

2.2 预测精度不满足电网调度运行的需要

目前风电功率预测的误差较大,特别是负荷低估时段和负荷高峰时段经常出现超大偏差,如果按风电预测曲线安排发电计划将面临较大的风险。

2.3 预测的时间尺度不满足要求

目前,电网发电计划安排还需要72h及以上的预测,这就需要更长时间尺度的数值天气预报服务,并具有较高的预测精度。随着我国电力工业的快速发展,电力系统步入了大电网、大机组时代,而大机组起停费用较高,短周期的频繁起停将带来巨大的社会代价,因此风电并网容量的进一步增加客观上要求系统运行方式和发电计划安排必须向更长时间尺度延伸,这也对风电年度、月度等较长时间尺度的预测提出了更高的要求。

2.4 风电场还没有建立风电功率预测系统

从国外的经验来看,风电场要参与预测并按时向调度中心上报预测曲线。但目前我国风电场基本没有建立风电功率预测系统,没有开展有效的发电出力预测工作。

3 风电功率预测的发展建议

3.1 加快风电场侧风电功率预测系统建设

风电场开展精细化预测并上报发电计划是其履行本身义务的具体体现。虽然我国没有电力市场,但风电场作为主力电源之一,必须按照国家相关法规和技术标准的有关要求,与火电、水电等电源一样上报发电计划并接受考核。风电场应尽快建立预测系统,不断完善更新基础资料,建立精细化风电功率预测,同时风电场将预测结果上报给电网调度机构。并且,风电场预测系统的建设应与风电场建设同步进行,从而保证所有的风电都在预测系统之内。风电场开展预测工作,一方面可以提高预测精度,另一方面有助于风电场合理安排运行计划,提高风能利用率。

3.2 尽快完善电网侧风电功率预测及考核系统的建设

我国“建设大基地、融入大电网”的风电发展模式与国外有较大的区别,风电对整个电力系统安全稳定运行影响日益加深。加快电网侧风电功率预测及考核系统的建设是电网履行支持新能源发展责任的重要体现。电网侧风电功率预测及考核系统既要实现预测区域的全覆盖,又要实现对风电场上报结果的统计分析和考核,促进预测水平的不断提升。

3.3 加快超短期风电功率预测功能建设

因为日前风电功率预测误差较大,所以必须开展0~4h的超短期预测,对电网运行情况进行滚动调整。风电场和电网都应尽快实现超短期风电功率预测。

3.4 深化风电功率预测相关技术研究

数值天气预报是进行风电功率预测的基础数据。风电功率预测用数值天气预报有别于提供公众服务的常规数值天气预报,需要对0m~100m边界层风速进行优化,并开发出专门用于风电功率预测的数值天气预报应用系统。另外,应进一步深化风电功率预测统计方法、物理方法的研究和应用,开展集合预报方法的研究,加快超短期预测方法的研究和应用。

3.5 加强标准体系建设

为了保证风电功率预测系统建设工作的有序的进展,国家相关部门应尽快制定风电功率预测系统建设及运行相关管理办法,制定相关国家标准和行业标准,对实时测风塔建设、预测系统功能、运行管理等方面进行规范。

3.6 开展跨行业合作

风电功率预测是我国风电发展中出现的一个新课题,需要气象行业和电力行业需要开展深度合作,发挥各自优势,共同推动预测技术水平的提高。相关部门应加强近地边界层的基础理论研究,开发适合风电功率预测用的数值天气预报模式,电力行业

应加强风电功率预测系统的开发及应用研究。各方既有分工,又有合作,共同推动风电功率预测技术的持续进步。各单位、各部门应加强技术交流和培训,增进专业融合,不断提高专业技术水平。

4 结语

不断加强风电功率预测系统建设,提高预测精度是保障风电进一步快速发展的客观要求。今后应尽快建立电网侧和风电场侧预测系统,实现超短期预测功能,不断深化预测技术研究,提高预测精度,促进风电与电网的和谐发展。

参考文献:

[1] 张丽英, 叶廷路, 辛耀中, 范高锋. 大规模风

电接入电网的相关问题及措施[J]. 中国电机工程学

报, 2010, 30(25): 1-9.

ZHANG Li-ying, YE Tingl-u, XIN Yao-zhong, FAN

Gao-feng. Problems and measures of power grid

accommodating large scale wind power[J].

Proceedings of the CSEE, 2010, 30(25): 1-9.

[2]风电并网运行报告[R]. 北京: 国家电网公司,

2009.

[3] 迟永宁, 刘燕华, 王伟胜, 等. 风电接入对电力

系统的影响[J]. 电网技术, 2007, 31(3): 77-81.

CHI Yong-ning, LIU Yan-hua, WANG Wei-sheng, et

al. Study on impact of wind power integration on

power system[J]. Power System Technology, 2007,

31(3): 77-81.

[4]风电功率预测系统功能规范[S]. 北京:国家电

网公司,2009.

[5] 范高锋, 王伟胜, 刘纯, 等. 基于人工神经网络

的风电功率预测[J]. 中国电机工程学报, 2008,

28(34): 118-123.

FAN Gao-feng, WANG Wei-sheng, LIU Chun, et al.

Wind power prediction based on artificial neurual network[J]. Proceedings of CSEE, 2008, 28(34):

118-123.

[6] 冯双磊, 王伟胜, 刘纯. 风电场功率预测物理

方法研究[J]. 中国电机工程学报, 2010, 30(2): 1-6. FENG Shuang-lei, WANG Wei-sheng, LIU Chun, et al. Study on the physical approach to wind power prediction[J]. Proceedings of the CSEE, 2010, 30(2):

1-6.

[7] TANTAREANU C. Wind prediction in short term:

a first step for a better wind turbine control[M]. Germany: Nordvestjysk Folkecenter for Vedvarende Energi, 1992.

[8] BOSSANYI E A. Short-term wind prediction using Kalman filters[J]. Wind Engineering, 1985, 9(1): 1-8.

[9]Thomas Ackermann. Wind power in power system. Chichester, England, John Wiley & Sons, Ltd, 2005, 365-381.

[10] 王晓兰, 王明伟. 基于小波分解和最小二乘

支持向量机的短期风速预测[J]. 电网技术, 2010,

34(1): 179-184.

WANG Xiao-lan, WANG Ming-wei. Short-term wind speed forecasting based on wavelet decomposition and least square support vector machine[J]. Power System Technology, 2010, 34(1): 179-184.

[11] 王彩霞, 鲁宗相, 乔颖, 等. 基于非参数回归

模型的短期风电功率预测[J]. 电力系统自动化, 2010, 2010(16): 78-82.

WANG Cai-xia, LU Zong-xiang, QIAO Ying, et al. Short-term wind power forecast based on

non-parametric regression model[J]. Automation of Electric Power Systems, 2010, 2010(16): 78-82. [12] 杨琦, 张建华, 王向峰, 等. 基于小波—神经网络的风速及风力发电量预测[J]. 电网技术, 2009, 33(17): 44-48.

YANG Qi, ZHANG Jian-hua, WANG Xiang-feng, et al. Wind speed and generated wind power forecast based on wavelet-neural network[J]. Power System Technology, 2009, 33(17): 44-48.

[13] 井天军, 阮睿, 杨明皓. 基于等效平均风速的风力发电功率预测[J]. 电力系统自动化, 2009,

33(24): 83-87.

JING Tian-jun, RUAN Rui, HAO Yang-ming. Wind power forecast based on equivalent average wind speed [J]. Automation of Electric Power Systems, 2009, 33(24): 83-87.

[14] 潘迪夫, 刘辉, 李燕飞. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J]. 电网技术, 2008, 32(7): 82-86.

PAN Di-fu, LIU Hui, LI Yan-fei. A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J]. Power System Technology, 2008, 32(7): 82-86. [15] 王耀南, 孙春顺, 李欣然. 用实测风速校正的短期风速仿真研究[J]. 中国电机工程学报, 2008, 28(11): 94-100.

WANG Yao-nan, SUN Chun-shun, LI Xin-ran. Short-term wind speed simulation corrected with field measured wind speed[J]. Proceedings of the CSEE, 2008, 28(11): 94-100.

[16] 孙春顺, 王耀南, 李欣然. 小时风速的向量自回归模型及应用[J]. 中国电机工程学报, 2008,

28(14): 112-117.

SUN Chun-shun, WANG Yao-nan, LI Xin-ran. A vector Autoregression model of hourly wind speed and its application in hourly wind speed forecasting[J]. Proceedings of the CSEE, 2008, 28(14): 112-117. [17] 蔡凯, 谭伦农, 李春林, 等. 时间序列与神经

网络法相结合的短期风速预测[J]. 电网技术, 2008, 32(8): 82-85.

CAI Kai, TAN Lun-nong, LI Chun-lin, et al.

Short-term wind speed forecasting combing time series and neural network method[J]. Power System Technology, 2008, 32(8): 82-85.

[18] 吴兴华, 周晖, 黄梅. 基于模式识别的风电场风速和发电功率预测[J]. 继电器, 2008, 36(1): 27-32. WU Xing-hua, ZHOU Hui, HUANG Mei. Wind speed and generated power forecasting based on pattern recognition in wind farm[J]. Relay, 2008, 36(1): 27-32.

[19] 韩爽. 风电场功率短期预测方法研究[D]. 保定:华北电力大学, 2008.

HAN Shuang. The research methods of wind power short-term prediction[D]. Baoding: North China Electric Power University, 2008.

________________________

范高锋(1977—),男,河北省栾城县人,博士,从事电力系统分析和风电调度运行研究。Fan-gaofeng@https://www.360docs.net/doc/2f13816558.html,

风电功率预测系统功能要求规范

风电功率预测系统功能规范 (试行) 国家电网公司调度通信中心

目次 前言...................................................................... III 1范围. (1) 2术语和定义 (1) 3数据准备 (2) 4数据采集与处理 (3) 5风电功率预测 (5) 6统计分析 (6) 7界面要求 (7) 8安全防护要求 (8) 9系统输出接口 (8) 10性能要求 (9) 附录A 误差计算方法 (10)

前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。 本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。 本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 本规范由国家电网公司国家电力调度通信中心提出并负责解释; 本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。 本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。

风电功率预测系统功能规范 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。 本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1 风电场 Wind Farm 由一批风电机组或风电机组群组成的发电站。 2.2 数值天气预报 Numerical Weather Prediction 根据大气实际情况,在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3 风电功率预测 Wind Power Forecasting 以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4 短期风电功率预测 Short term Wind Power Forecasting 未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5 超短期风电功率预测 ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。

风力发电机文献综述

毕业设计文献综述 题目:立轴风力发电机 学生姓名:李春鹏学号:090501224 专业:机械设计制造及其自动化 指导教师:刘恩福 2013年2月27日

一、摘要 风能利用技术的快速发展已使风能成为目前最重要的一种可再生资源。现有的风能转化系统大部分将风能通过风力机装置转化为机械能,然后通过电机转化为电能,通常风力机按风轮旋转轴在空间的方向,分为水平轴风力机(HorizontalAxis Wind Turbine简称为HAWT)和立轴风力机(Vertical Axis Wind Turbine简称为VAWT)两大类,达里厄型(Darrieus)风力机为立轴风力机的典型机型。立轴风力机由于其结构和气动性能的独特优势,越来越被人们重视。变速风力机可以在很大的风速范围内工作,而且能最大限度的捕获风能,提高风力发电机的效率,而成为当前该领域的研究热点。本文以大型变速立轴风力机为研究对象,风力机为典型的达里厄型风力机,直接驱动永磁同步电机发电。通过建立风力机气动性能评估模型、传动系统模型、电机以及控制系统的模型,并在MATLAB/SIMULINK进行仿真模拟,得到风力机在各种工况下的运行情况,并实现了最大风能追踪的算法。 变速风力发电机提高了风能利用率,但增加了控制系统的难度,本文对最大风能追踪策略的理论进行分析研究。分析了达里厄型风力机的气动性能评估模型,该模型是基于叶素动量理论的双多流管模型,考虑了达里厄型风力机旋转时叶片对风轮下盘面流动干涉的特性,以及翼型动态失速、气动阻力的影响,对1MW达里厄型风力机进行计算分析,得到了该风力机的气动性能,如风力机在各风速下的气动转矩与转速的关系,以及在各风速下的气动功率与转速的关系,为仿真模拟提供基础。根据仿真的需要分别建立了风力机传动系统模型、永磁同步电机模型、最大功率跟踪算法等模型。永磁同步发电机在同步旋转轴下建立,并对同步电机的解耦控制做了分析,最大功率跟踪算法采用尖速比控制方法。最后在MATLAB/SIMULINK中且搭建了整个系统的仿真模型,对1MW 达里厄型风力机低风速气动、高风速刹车、额定风速下变风速运行等工况进行了仿真模拟。通过模拟得到风力机在各种工况下的运行情况,实现了最大风能追踪的算法,采用尖速比的控制方法追踪最大风能的效果显著,为进一步立轴风力发电机控制系统的设计提供依据。 ABSTRACT The rapid progress on wind energy conversion technology has made wind energy tobe one of the most important renewable and sustainable energy.Current wind energy conversion system translates the wind energy to mechanical energy by wind turbine,and then converts it to electricity by generator.According to the direction of the revolving shaft in space,wind turbine includes two types,one is horizontal axis wind turbine(HAWT for short),and the other is vertical axis wind turbine(VAWT for short),thevertical axis wind turbine is famous for Darrieus type.There has been growing attention to vertical axis wind turbine for its unique structural and aerodynamic advantages.As variable speed wind turbine works at larger ranger of wind speed,utilizes much more wind energy,Improve the efficiency of wind turbines.So it has become the hot topic in the field.This paper is basic on large variable speed vertical axis wind turbine.The wind turbine is Darrieus type,and it dives permanent magnet synchronous generator directly.Through establishment of aerodynamic performance evaluation model,dive-train model,generator and control system model,and simulating of the wind turbine system model in MATLAB/SIMULINK,we can obtain the performance of wind turbine in a variety of conditions,and achieve the algorithm of Maximum Power Point Tracking. Although variable speed wind turbine Improve the efficiency it Increase the difficulty of the control system.The Maximum Power Point Tracking control Strategy theory is analyzed in this paper.The aerodynamic performance evaluation model is established,it's the double-disk multiple stream-tube model in the framework of blade element momentum theory,the airfoil dynamic stall effect and aerodynamic losses were included.we obtained the aerodynamic performance by calculating for the1MW Darrieus vertical axis wind turbine,such as the relationship between aerodynamic torque and rotating speed at different wind speed,the relationship between aerodynamic power and rotating speed at different wind

浅谈风电功率预测系统的必要性

浅谈风电功率预测系统的必要性 随着我国风电、光伏发电等新能源的发展,并网难的问题也逐渐显现。但由于电能的储存难题一直没能有效解决,新能源并网问题仍处于探索状态。由于新能源发电的间歇性、不稳定性,并网后对电网冲击巨大,因此,做好新能源发电的预测和调控是风电并网稳定运行和有效消纳的重要条件。 应对以上问题,国能日新研发了SPWF-3000风电功率预测系统。该系统具有高精度数值天气预报功能、风电信号数值净化、高性能物理模型、网络化实时通信、通用风电信息数据接口等高科技模块;可以准确预报风电场未来168小时功率变化曲线。风电功率预测系统短期预测精度超过80%,超短期预测精度超过90%。使风电场可以向电网公司提供准确的天发电功率,电网调度可以有效利用风电资源,提高风电发电上网小时数。并且由于对未来一段时间的发电功率有所了解,电网调度也可以合理的安排个风电场的发电情况,防止由于天气变化引起电场出力的突然增大或减小对电网造成的损失。 在欧洲发达国家,电网公司会优先购买预测准确的风电场电力,限制预测不准的风电场电量或采取处罚措施。而在我国,由于风电发展迅速,历史数据少,风电场地形复杂,气候类型多样。国外已有统计预测方法无法全面满足国内风电预测的要求。而国能日新风功率预测产品采用多元化智能自适应数据建模。建立优化的物理模型与人工智能模型相结合的功率预测双模型。短期预测精度超过80%,超短期预测精度超过90%。风电场可以根据预测结果以及调度的指令,合理的安排风电场运行,增加发电量。 因此,风电功率预测无论对风电场还是电网来说都是很有必要的。在为风电场增加发电量的同时,还减小了对电网的冲击。而功率预测最重要的就是精确度,高精度的功率预测可以起到很大的正面作用,而如果预测精度不够也会造成很多不必要的损失。国能日新风电功率预测系统以高精度的测量目标要求自己,为用户提供高精确度的预测结果。

风力发电并网稳定性研究开题报告

Xx大学 毕业设计(论文)开题报告题目风力发电并网稳定性研究 系(院)自动化系年级 专业电气工程与自动化班级 学生姓名学号 指导教师职称 xxx教务处 二〇一一年三月 开题报告填表说明

1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下一步的研究(或设计)工作。 一、课题的目的意义:

风电功率预测问题3

关于实时预测风电机组功率的研究 摘要 能源、环境是当今人类生存和发展所要解决的紧迫问题。风力发电由于清洁无污染,施工周期短,投资灵活,占地少,具有较好的经济效益和社会效益, 己受到世界各国政府的高度重视,成为当今世界增长最快的可再生能源,许多国家已把发展风力发电作为改善能源结构、减少环境污染和保护生态环境的一种措施。 电力系统调度部门必要时及时调整调度计划,这样便可有效的减轻风电对整个电网的影响。所以,风速和风力发电功率的准确预测对于负荷管理和系统运行便显得十分重要,而且还可以减少电力系统运行成本和旋转备用,提高风电穿透功率极限,并且有利于在电力市场环境下正确制定电能交换计划,以充分利用风力资源,获得更多的经济效益和社会效益。 本文针对风电功率的预测问题进行了一系列的研究建模。对于风电功率的预测建立了三种不同的模型,然后将其进行误差分析,得出误差最小的人工神经网络模型,并对模型进行进一步的探讨,得出更高精度的模型。同时,也将单台风电机的输出功率的预测数据与多台风电机的输出功率预测数据进行比较。得出了相关规律。 对于问题一,我们利用ARIMA模型、灰色模型和人工神经网络模型对风电功率进行了实时预测,并将预测数据与事先准备好的实际数据进行比较,然后分析误差,得出了人工神经网络模型为最优模型的结论。对于ARIMA模型我们主要采用SPSS软件对数据进行预处理,然后建立。而灰色模型主要利用EXCEL软件。至于人工神经网络模型主要利用的MATLAB软件进行模型的建立。最后利用最小二乘法原理,预测数据并将数据进行拟合修正。分析误差,得出结论及相应的预测数据。 对于问题二,我们将但台风电机的预测数据与多台风电机的预测数据进行比较,得出多台风电机输出功率并不是单台风电机的输出功率单纯的叠加,而需要利用加权算法进行运算得出总功率,并进行修正,才能得出精度较高的结果。 对于问题三,我们在问题一的得出人工神经网络模型的精度最高,根据此启示,我们再次利用MATLAB建立了小波神经网络模型,然后对数据进行预测,拟合修正,得出最优解。 关键词:风电功率最小二乘法数据拟合 Matlab 人工神经网络模型 §1 问题的重述

风电功率预测的发展成就与展望

风电功率预测的发展现状与展望 范高锋,裴哲义,辛耀中 (国家电力调度通信中心,北京100031) 摘要:风电场输出功率预测对接入大量风电的电力系统运行有重要意义。本文从电力调度运行的角度,在风电功率预测技术的发展现状、系统建设情况、预测误差、预测评价指标和预测的主体等方面展开了论述,对目前存在的基础数据不完善、预测精度不高、预测的时间尺度较短和风电场普遍没有开展预测的问题进行了分析,提出了加强电网侧和风电场侧风电功率预测系统建设、加快超短期预测功能建设、继续深化预测技术研究、加强标准体系建设和开展跨行业合作等发展建议。 关键词:风电场;功率;预测;系统 中图分类号:TM614 文献标志码:A 文章编号: Wind power prediction achievement and prospect FAN Gao-feng , PEI Zhe-yi , XIN Yao-zhong (National Power Dispatching& Communication Center,Beijing 100031) Abstract: Wind power prediction is important to the operation of power system with comparatively large mount of wind power. This paper summarized the current situation of wind power prediction technology, wind power prediction system construction, prediction error, assessment index, and main market body of prediction from the power dispatch perspective. The main problems includes basic data incomplete, prediction precision relatively low, prediction time scale short and wind farm no wind power system are analyzed. Suggestions of enforcing grid side and wind farm side wind power prediction system construction, speeding up ultra-short term wind power prediction system construction, deepening wind power prediction technology study, strengthening prediction technical standard system and cooperation of different industry are proposed. Keywords: wind farm; power; prediction; system 0引言 电力系统是一个复杂的动态系统。维持发电、输电、用电之间的功率平衡是电网的责任。在没有风电的电力系统,电网调度机构根据日负荷曲线可以制定发电计划,以满足次日的电力需求。风电场输出功率具有波动性和间歇性,风电的大规模接入导致发电计划制定难度大大增加,风电对电力系统的调度运行带来巨大挑战。 目前风电对全网的电力平衡已经带来很大的影响[1-3]。对风电场输出功率进行预测是缓解电力系统调峰、调频压力,提高风电接纳能力的有效手段之一。同时,风电功率预测还可以指导风电场的检修计划,提高风能利用率,提高风电场的经济效益。经过多年的科研攻关与技术创新,我国具有自主知识产权的风电功率预测系统已在电力调度机构获得了广泛应用,12个网省调建立了预测系统,覆盖容量超过12GW,在电网调度运行中发挥了一定作用。本文对近年来风电功率预测方面完成的工作进行了总结,对存在的问题进行了论述,并提出了下一步的发展建议。 1 风电功率预测发展现状 1.1 风电功率预测技术的发展情况 电网调度部门对风电功率预测的基本要求有2个:一是短期预测,即当天预测次日0时起72h的风电场输出功率,时间分辨率为15 min,用于系统发电计划安排;另一个是超短期预测,即实现提前量为0~4h的滚动预测,用于电力系统实时调度[4]。 风电功率预测方法主要分为统计方法、物理方法[5-6]。统计方法是指不考虑风速变化的物理过程,而根据历史统计数据找出天气状况与风电场出力的关系,然后根据实测数据和数值天气预报数据对风电场输出功率进行预测,常用的预测模型有时间序列、神经网络、支持向量机等。物理方法是指风电功率预测的物理方法根据数值天气预报模式的风速、风向、气压、气温等气象要素预报值以及风电场周围等高线、粗糙度、障碍物等信息,采用微观气象学理论或计算流体力学的方法,计算得到风电

风电功率预测系统简介

风电功率预测系统简介

目录 1目的和意义 (3) 2国内外技术现状 (3) 2.1国外现状 (3) 2.2国内现状 (4) 3风电功率预测系统技术特点 (5) 3.1 气象信息实时监测系统 (5) 3.2超短期风电功率预测 (5) 3.3短期风电功率预测 (6)

3.4风电功率预测系统软件平台 (8)

1目的和意义 风能是一种清洁的可再生能源,由于其资源丰富、转化效率高、产业化基础好、经济优势明显、环境影响小等优点,具备大规模开发的条件,在可以预见的将来,风能的开发利用将成为最重要的可再生能源发展方向。但由于风电等可再生能源发电具有间歇性、随机性、可调度性低的特点,大规模接入后对电网运行会产生较大的影响, 以至于有些地方不得不采取限制风电场发电功率的措施来保证电网的安全稳定运行。 对风电输出功率进行预测被认为是提高电网调峰能力、增强电网接纳风电的能力、改善电力系统运行安全性与经济性的最有效、经济的手段之一。首先,对风电场出力进行短期预报, 将使电力调度部门能够提前为风电出力变化及时调整调度计划,从而减少系统的备用容量、降低电力系统运行成本。这是减轻风电对电网造成不利影响、提高系统中风电装机比例的一种有效途径。其次,从发电企业(风电场)的角度来考虑,将来风电一旦参与市场竞争, 与其他可控的发电方式相比, 风电的间歇性将大大削弱风电的竞争力,而且还会由于供电的不可靠性受到经济惩罚。提前对风电场出力进行预报, 将在很大程度上提高风力发电的市场竞争力。 2国内外技术现状 2.1国外现状 在风电功率预测技术研究方面,经过近20 年的发展,风电功率预测已获得了广泛的应用,风电发达国家,如丹麦、德国、西班牙等均有运行中的风电功率预测系统。 德国太阳能技术研究所开发的风电管理系统(WPM)S是目前商业化运行最为成熟的系统。德国、意大利、奥地利以及埃及等多个国家的电网调度中心均安装了该系统,目前该系统对于单个风电场的日前预报精度约为85%左右。丹麦Ris? 国家可再生能源实验室与丹麦技术大学联合开发了风电功率

文献综述:风电并网存在问题分析

风电并网的不利影响及分析 一、风电并网的不利影响案例分析 1、加拿大阿尔塔特电力系统 截至2008 年,加拿大的阿尔伯塔电力系统(AIES)共有装机约280 台,总容量12 368 MW。其中,煤电5 893 MW,燃气发电4 895 MW(热电联产约3 000MW),水电869 MW,风电523 MW,生物质等其他可再生能源214 MW。阿尔伯塔的风电开发意向已达到11 000 MW,几乎与目前系统的装机容量相当,这在给AIES 带来巨大机遇的同时也带来了挑战。因为,大规模的风电接入会增加系统发电出力的不稳定性,降低系统维持供需平衡的能力。AIES 的装机以火电为主,且调节能力有限,系统备用容量也有限,电力市场的可调发电出力的灵活性不高,对外联络线的潮流交换能力相对有限。因此,系统需要增强调节及平衡能力和事故响应能力,否则难以应对风电出力变化给系统带来的巨大压力。 电力生产和使用必须同时完成的特点决定了系统运行必须维持每时每刻的供需平衡。供需失衡会引起发输电设备跳闸、负荷跳闸甚至系统崩溃等事故。因此,维持系统的实时平衡是一个非常艰巨的任务,而大规模的风电并网,会从以下4 个方面影响系统供需平衡:(1)能否准确预测供需走势。预测是实施供需平衡调节的基础。供需差可能来源于负荷、潮流交换、间歇性电源等的变化。供需走势的预测对于系统运行至关重要。预测越准确,相关的运行决策越准确,运行人员越容易维持系统稳定。而目前的风电预测,远不能达到系统运行对预测精度的要求,给大规模风电并网的系统运行带来很大隐患。 (2)需要足够的系统调节平衡资源来提升系统应对风电出力变化和不确定的能力。系统调节平衡资源是指能被随时调度的、能维持系统平衡的调节备用容量、负荷跟踪服务等运行备用。由于风电出力变化和不确定,导致系统必须维持很高的系统调节资源以作备用,降低了系统资源的利用率。否则,系统将无法应对风电出力变化和不确定性,影响系统的安全可靠运行。 (3)亟须建立相关的系统运行操作规程。为了保持系统的有效运行,必须提前研究并制定相关的系统运行操作规程,并纳入已有的运行规程以指导调度人员。由于人们对风电出力变化和不确定的了解还处于起步阶段,所以相关的运行规程还属空白。 (4)调度人员要学习并掌握应对风电出力变化和不确定影响的能力。拥有充足的系统调节平衡资源、建立相关的规程、具有可操作性的预测结果,加上操作人员多年的经验积累,在对系统特性有足够了解的基础上,才能准确地判断并作出正确决策,实现系统操作安全、可靠、及时。面对大规模的风电并网给系统运行带来的巨大挑战,调度人员需要学习如何应对风电出力变化和不确定给系统运行带来的复杂局势。 对于一个独立系统,供需不平衡可能导致系统出现频率偏差的情况,对于一个互联系统,供需不平衡可能导致系统从主网解列。特别是,阿尔伯塔系统的风电开发意向已远远大于其承受范围,所以面临的问题更加严峻。 胡明:阿尔伯塔风电并网对系统运行的影响和对策;电力技术经济;2009[4] 2、辽宁电网 预计在2010年底,辽宁电网的风电装机容量达到340万kW, 2015年风电装机容量达到787万kW。风电的大规模集中并网将给辽宁电网的调峰调频、联络线控制、系统暂态稳定、无功调压及电能质量等诸多方面带来直接影响,给电力系统的安全稳定运行带来新的挑战。 (1)导致系统调峰难度增加

风电功率预测问题

第一页 答卷编号:论文题目: 指导教师: 参赛学校: 报名序号: 证书邮寄地址: (学校统一组织的请填写负责人) 第二页 答卷编号:

风功率预测问题设计 摘要 未来风力发电可能成为和太阳能比肩的新能源行业。随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力。一方面煤炭、石油和天然气等化石燃料的储量由于大量开采而日益减少:另一方面是大量使用化石燃料对自然环境产生了严重的污染和破坏。这两方面的问题已经引起世界各国政府和人民的高度重视,并在积极寻求一条可持续发展的能源道路,以风能首当其冲。风速的随机性,给,和风电场的功率输Hj带来很大的困难。本文旨在研究分电功率在一段时间的变化规律,本文组建三个模型来解决风电功率的预测问题通过对历史数据的分析,挖掘5月31号到6月6日风电功率的变化趋势,以便直观的检验模型与实际数据是否相吻合。 在问题一中考虑天气变化的随机性,分析不同时间点的数据,将Pa,Pb,Pc,Pd,P58表中5月30日第81时间点到96时间点的数据提取出来运用灰色理论作为预测2006年5月31日开始前四个小时内的16个时间点的数据预。同理以表中已给出的5月31日1-16时间点的数据预测出17-32时间的数据,然后运用此模型得出时间范围a,b内各时间点的风电功率。然后可与题目中以给的数据相比较得出误差。第二种预测方法运用指数平滑模型得出时间范围a,b内各时间点的风电功率。第三种预测方法运用移动平均模型,预测出时间范围a,b内各时间点的风电功率。通过三种预测方法的误差分析我们推荐指数平滑预测法。 在问题二中,通过比较分析问题一的预测结果,比较单台风电机组功率(P A ,P B ,P C , P D )的相对预测误差与多机总功率(P 4 ,P 58 )预测的相对误差,得出风电机组的汇聚程 度越高,对于预测风电功率结果误差影响越小。 在问题三中,选用了BP神经网络的预测方法,加入了更多的自变量,使得预测结果更精确。 (关键词:风速的随机性,风速的预测,风电功率数值,灰色理论,指数平滑模型,移动平均模)

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

国家能源局关于印发风电功率预报与电网协调运行实施细则

国家能源局关于印发风电功率预报与电网协调运行实施细则(试行)的 通知 国能新能[2012]-12文件 各省(区、市)发展改革委、能源局、中国气象局,国家电网公司、南方电网公司、华能集团公司、大唐集团公司、华电集团公司、国电集团公司、中电投集团公司、神华集团公司、中广核集团公司、三峡集团公司、中国节能环保集团公司、水电水利规划设计总院、各相关协会: 为促进风电功率预测预报与电网调度运行的协调,根据《风电场功率预测预报管理暂行办法》的有关要求,现将〈风电功率预报与电网协调运行实施细则~(试行)印发你们,请参照执行。 附:风电功率预报与电网协调运行实施细则(试行) 风电功率预报与电网协调运行实施细则(试行) 第-章总则 第一条根据《中华人民共和国可再生能源法》和《节能调度管理办法},为贯彻落实国家能源局《风电场功率预测预报管理暂行办法}C国能新能(2011 ) 177号),制定本实施细则。 第二条中国气象局负责建立风能数值天气预报服务平台和业务运行保障体系,为风电功率预测提供数值天气预报公共服务产品和相关技术支持系统。 第三条风电开发企业负责风电场发电功率预报工作,按照要求上报风电场发电功率预报曲线,并执行电网调度机构下发的发电功率计划曲线。 第四条电网调度机构负责电力系统风电发电功率预测工作,建立以风电功率预测预报为辅助手段的电力调度运行机制,保障风电优先调度,落实风电全额保障性收购措施。 风电功率预测预报和并网运行的有关考核办法另行制定。 第五条各有关单位应保证安全接收、传送、应用气象和电力运行等信息,确保涉密信息的获取和使用符合国家相关保密规定。 第二章气象数据服务及功率预测

风电功率预测开题报告

福州大学本科生毕业设计(论文)开题报告 姓名黄生树学号011000511专业电气工程与自动化(建筑电气方向) 毕业设计(论文)题目风电功率预测方法的研究 一、论文选题依据(包括本课题国内外研究现状述评,研究的理论与实际意义,对科技、经济和社会发展的作用等) 由于人们对能源需求的不断增展然而传统的化石能源作为不可再生资源而日益枯竭,以及使用化石能源对生态环境带来的的破坏越来越引起人们的重视,因此找到新的清洁能源代替化石能源是人们迫切的需求。风电作为可再生的清洁能源,大力发展风电是解决能源的可持续发展的重要举措之一。据统计,截止至2014年末,中国新增装机容量和累计装机容量均占据世界第一。根据相关调查报告显示,中国风电行业具有良好的发展前景和广阔的市场空间。 从各国风电总的发展情况上看,风电发电占比持续上升,化石能源发电占比持续下降。但是由于风能具有高度的波动性、间歇性、不稳定性等特点,使得当大容量风电并网运行时,会破坏电力系统的平衡,带来电网电能质量下降危害电力系统安全等严重后果。这也进一步限制了风电的进一步发展。为了风电的进一步发展,保障电网系统安全,降低风电并网时电网备用容量及风电发电成本,需要对风电场风电功率进行预测。 风电功率预测根据不同的分类依据具有不同的分类方法。根据预测的物理量可分为物理法和统计法。物理法是先预测出风速,再根据风速与风机的功率曲线预测出输出功率;统计法是通过建立输入与风电输出功率的映射关系直接预测出输出功率;根据预测数学模型分类可以分为持续预测法、时间序列法、卡尔曼滤波法、支持向量机法、人工神经网络法等。按照预测的时间分类可分为超短期功率预测、短期功率预测、中期功率预测、长期功率预测。 在风电功率预测方面国外起步早,其预测方法和手段趋于成熟,其预测系统在发达国家获得了广泛的应用为风电的优化调度提供了重要的支持。在丹麦,其国家就研究出了Prediktor、WPPT、Zephyr等著名的风电功率预测预报系统。相对于国外,虽然我国风电功率预测起步较晚,很多预测的方法和手段都在研究和探索阶段,但已经有不少预测系统投入到实际使用当中,如中国电力科学研究院开发的WPFS、湖北气象服务中心研发的WPPS、中国气象局公共服务中心开发的WINPOP系统等。本论文主要对现有的预测方法进行学习研究,然后选择出最适合自己研习的预测方法进行进一步的实践学习。 二、研究内容、研究方案及进度安排,预期达到的目标 1.研究内容 1)对风电的特性与影响风力发电的因素进行研究分析,找出主要影响风力发电功率的因素。 2)风电功率预测主要的预测方法以及这些预测方法的优点与不足。 3)根据实际运行的风电场的历史数据,选择风电功率预测的方法。 4)结合历史数据和选择的风电功率预测方法,建立风电功率预测的数学模型。 5)根据建立的数学模型,选取合适的软件编程,进行风电功率预测,并对预测结果进行简单的分析。 2.研究目标 通过对风电基础知识与风电功率预测方法的学习与研究,结合实际风电场运行情况,选出合适的预测方法进行数学建模,从而建立合适的风电功率预测系统。

风电功率预测文献综述

风电功率预测方法的研究 摘要 由于风能具有间歇性和波动性性等特点,随着风力发电的不断发展风电并网对电力系统的调度和安全稳定运行带来了巨大的挑战。进行风电功率预测并且不断提高预测精确度变得越来越重要。通过对国内外研究现状的了解,根据已有的风电功率预测方法,按照预测时间、预测模型、预测方法等对现有的风电功率预测技术进行分类,着重分析几种短期风电功率预测方法的优缺点及其使用场合。根据实际某一风电场的数据,选取合适的风电预测模型进行预测,对结果予以分析和总结。 关键词:风电功率预测;电力系统;风力发电;预测方法; 引言 随着社会不断发展人们对能源需求越来越大而传统化石能源日益枯竭不可再生,以及化石能源带来了环境污染等问题影响人类生活,人们迫切需要新的清洁能源代替传统化石能源。风能是清洁的可再生能源之一,大力发展风力发电成为各国的选择。根据相关统计,截止至2015年,全球风电产业新增装机63013MW,,同比增长22%[1]。其中,中国风电新增装机容量达30500MW,占市场份额48.4%。全球累计装机容量为432419MW,其中中国累计装机容量为145104,占全球市场份额的33.6%。 目前风力发电主要利用的是近地风能,近地风能具有波动性、间歇性、低能量密度等特点,因而风电功率也是波动的。当接入到电网的风电功率达到一定占比时,风电功率的大幅度波动将破坏电力系统平衡和影响电能质量,给电力系统的调度和安全平稳运行带来严峻挑战。根据风速波动对风力发电的影响按照时间长度可分为三类:一种是在几分钟之内的超短时波动,该时段内的波动影响风电机组的控制;另一种是几小时到几天内的短时波动,该时段内的波动影响风电并网和电网调度;最后一种是数周至数月的中长期波动,该时段内的波动影响风电场与电网的检修和维护计划。本文主要研究不同的风电功率短期预测方法的优缺点。 通过对短期风电功率预测,能够根据风电场预测的出力曲线优化常规机组出力,降低运行成本;增强电力系统的可靠性、稳定性;提升风电电力参与电力市场竞价能力。

近海风电场项目风功率预测系统技术协议

江苏响水近海风电场项目风功率预测系统技术协议 二○一五年五月响水

目录 第一章总则 (2) 第二章技术规范 (3) 2.1 标准和规范 (3) 2.2 工程概况 (4) 第三章技术参数和性能要求 (6) 3.1 海上测风塔数据传输技术要求 (6) 3.2 设备要求概述 (6) 3.3 功率预测技术要求 (6) 3.4预测功能要求 (8) 3.5 统计分析 (10) 3.6 界面要求 (10) 3.7 至调度主站要求 (12) 3.8 联网方式及数据上传方式 (12) 3.9 GPS 对时方式 (12) 3.10 电磁兼容性要求 (13) 第四章屏柜结构及布线要求 (13) 4.1 屏体要求 (13) 4.2 屏内布线 (14) 第五章图纸和资料 (14) 第六章现场验收及服务 (15) 第七章交货要求 (15) 附件1 供货范围、备品备件及技术参数表 (16) 附件2 风电场风电功率预测系统结构图 (18) 附件3 信息传送网络拓扑图 (19)

第一章总则 1.1 本技术协议适用于江苏响水近海风电场工程风电功率预测系统。 1.2 本技术协议提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,卖方应提供符合本规范书和工业标准的优质产品。卖方应具备风功率预测系统的制造资质和经验,可根据需要提供预测系统建设的解决方案。1.3 如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备完全符合本技术协议的要求。如有异议,不管是多么微小,都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。风功率预测系统是预测风电场未来发电能力的重要手段,是推动风电行业持续健康发展的必要条件之一。根据国家电网公司的要求,风电场需要上报测风塔自动气象站实时采集的数据、风功率预测结果等内容。为此,卖方承担的工作内容包括(但不限于): (1)提供测风塔侧无线发射设备和风机侧的无线接收设备各1套,将测风塔自动气象站所采集的数据接入到无线发射设备,通过无线传输到风机侧,再借用风机35kV光电复合缆中光纤的备用芯将数据传输到陆上集控中心中控室。卖方需负责完成整个传输通道的各项接口配合工作,向调度中心传送实时测风数据。 (2)风功率预测系统的建设:包括中心站的硬件、平台软件、短期风功率预测软件、超短期风功率预测软件等,并向调度中心报送预测功率数据。 (3)提供系统预验收后第一年的气象预报数据服务。 (4)系统框架具体内容,参见技术文件提供的附件1《供货范围、备品备件及技术参数表》、附件2《风电场风电功率预测系统结构图》和附件3《信息传送网络拓扑图》。 1.4 测风塔和自动气象站由买房负责建设。 1.5 本技术协议所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。1.6 本技术协议经买卖双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.7 本技术协议未尽事宜,由买卖双方协商确定。

风力发电机文献综述

林内小型风力发电机风叶的设计 摘要:随着国民经济的持续发展,能源危机的阴影正日益困扰着人类的生产和生活,因此人们开始把目光风能这个取之不尽、用之不竭的清洁能源,若风力发电机跟森林中的监测传感器配合,则能有效利用自然资源,实现可持续发展。本文就林内小型风力发电机叶片原有的基础上进行优缺点分析,总结国内外风力发电机的发展和现状。 前言 本人毕业设计题目为《林内小型风力发电机叶片部件的设计》,主要针对垂直轴风力发电机叶片部件的设计进行研究,对现有风力发电机的叶片发展历史进行总结分析,探索其优越性和可行性。本文主要查询了2000年以来的有关小型风力发电文献期刊。 主体 风力发电机分为水平轴风机和垂直轴风机。 水平轴风机最为典型的代表是3个叶片的荷兰风车,也是目前阶段技术最成熟,应用最广泛,占据主流市场的产品。水平轴风机主要包括叶片技术、发电机和传动技术、并网技术三大部分。其中叶片技术是其核心部分,叶片除了靠叶素理论计算和设计外,还要靠经验对计算值进行修正,对操作人员的技术要求十分高。而我国是从20世纪80年代后期才涉足风力发电这一新兴行业,技术远远落后与世界发展水平,其研究主要是引进、吸收、消化叶片设计技术,没有自己的独立成果。到2006年底,中国进入或正在进入大型风机市场的厂商已超过20家1 ,从企业数量上看,中国的企业数量超过了全世界风机厂商数量的一倍以上,但均缺乏叶片这一核心技术的独创性。 垂直轴风机,即转轴垂直于地面的风机,其历史可以追溯到几千年前,人们利用垂直轴风车进行提水。而垂直轴风力发电机的发明则要比水平轴的晚很多,知道20世纪20年代才开始出现。由于人们普遍认为垂直轴风轮的尖速比不可能大于1,风能利用率低于水平轴风力发电机,因而导致垂直轴风机长期得不到重视。然而,随着科技日新月异和人类认识水平的不断提高,人们逐渐意识到垂直轴风机的尖速比不能大于1只适用于阻力型风机,而升力型风机的尖速比甚至可以达到6,并且其风能利用率也不低于水平轴,于是越来越多的人认识到垂直轴风机的发展前景,并大大提高了其研发技术,取得了突破性进展。 垂直轴风力发电机呈H型,与水平轴风力发电机相比较,其优越性体现在:设计方法先进,风能利用率高,启动风速低,无噪音;除了在风电场应用以外,还可以充分利用大型建筑物的集风作用和大型建筑物顶层的空间、高度,建造风电大楼和零能耗大楼;城市公共照明和高速公路亦可以通过风、光互补方式大量应用风力发电机;具有风资源条件的企事业单

相关文档
最新文档