单调谐高频小信号放大器

单调谐高频小信号放大器
单调谐高频小信号放大器

沈阳航空航天大学北方科技学院

课程设计说明书

课设题目单调谐高频小信号放大器设计

专业通信工程

班级 B141211

学号 B14121137

学生姓名杨一凡

指导教师李秀人

日期 2013.12

沈航北方科技学院

课程设计任务书

教学系部信息工程系专业通信工程

课程设计题目单调谐高频小信号放大器设计

班级B141211学号姓名

课程设计时间: 2013 年12 月16 日至2013 年12 月29 日

课程设计的内容及要求:

(一)主要内容

本课题旨在根据已有的知识及搜集资料设计一个单调谐高频小信号放大器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容参照课设报告文档模版要求,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析。

技术指标:谐振频率6MHz,谐振增益≥20dB,通频带≥0.5MHz。输入高频小信号(峰-峰值)100mv。Vcc=12V,R L=1KΩ。

(二)基本要求

根据题目及基本要求(技术指标)查阅相关资料和书籍,设计(计算)电路,确定元器件参数(3天)。

待电路设计完成后,上机进行电路仿真(使用Multisim)。仿真过程中用到的仪器、调试方法、排故过程及电路技术指标的测量要做记录,最终写到报告中(4天)。报告正文按目录要求撰写,其他内容见格式说明(3天)。

(三)主要参考书

[1] 高如云等.通信电子线路(第三版). 西安电子科技大学出版社,2007,11

[2] 赵春华等. Multisim9电子技术基础仿真实验. 机械工业出版社,2007,05

[3] 华永平.电子线路课程设计—仿真、设计与制作.东南大学出版社,2002

(四)评语

(五)成绩

指导教师年月日

摘要

本文主要叙述的是单调谐高频小信号放大器的设计过程,高频小信号谐振放大电路是将高频小信号或接收机中经变频后的中频信号进行放大,已达到下级所需的激励电压幅度。过程中用到了multisim仿真软件进行仿真验证,并成功完成实验,撰写实验报告。

关键词:谐振频率、谐振增益、通频带、峰—峰值、示波器。

目录

1、绪论 (3)

2、方案的确定 (4)

3、工作原理、硬件电路的设计或参数的计算 (5)

4、总体电路设计和仿真分析 (7)

5、心得体会 (8)

参考文献 (9)

附录 (10)

附录Ⅰ电路总图 (10)

附录Ⅱ元器件清单 (10)

一绪论

20世纪末,电子通讯获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力的推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。在无线通信中,发射与接收的信号应当适合于空间传输。所以,被通信设备处理和传输的信号是经过调制处理过的高频信号,这种信号具有窄带特性。而且,通过长距离的通信传输,信号受到衰减和干扰,到达接收设备的信号是非常微弱的高频窄带信号,在做进一步处理之前,应当经过放大和限制干扰的处理。这就需要通过单调谐高频小信号放大器来完成。这种小信号放大器是一种谐振放大器。

高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

其中高频小信号单调谐放大器广泛应用于通信系统和其他无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另外其他电路,实现放大器与前后级的阻抗匹配。

本课题旨在根据已有的知识及搜集资料设计一个单调谐高频小信号放大器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模板要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。

主要技术指标:谐振频率6MHZ,谐振增益≧20dB,通频带≧0.5MHZ。输入高频小信号(峰-峰值)100mv。Vcc=12v,Rl=1KΩ

二方案的确定:

高频小信号调谐放大器是接收机和各种电子设备中广泛应用的一种电压放大器。它的中心频率在几百 kHz到几百 MHz,频谱宽度在几kHz 到MHz 的范围,它的主要特点是晶体管的集电极(共发射极电路)负载不是纯电阻,而是由L、C组成的并联谐振回路。调谐放大器具有较高的电压增益,良好的选择性,当元件器件性能合适和结构布局合理时,其工作频段可以做得很高。

小信号调谐放大器的类型很多,按调谐回路区分。由单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分,有共基极、共发射极和共集电极放大器。实用上,构成形式根据设计要求而不同。以电容器和电感器组成的回路为负载,增益和负载阻抗随频率而变的放大电路。这种回路通常被调谐到待放大信号的中心频率上。由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大,所以放大器可得到很大的电压增益;而在偏离谐振点较远的频率上,回路阻抗下降很快,使放大器增益迅速减小。因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。调谐放大器广泛应用于各类无线电发射机的高频放大级和接收机的高频与中频放大级。在接收机中,主要用来对小信号进行电压放大;在发射机中主要用来放大射频功率。调谐放大器的调谐回路可以是单调谐回路,也可以是由两个回路相耦合的双调谐回路。可以通过互感与下一级耦合,也可以通过电容与下一级耦合。一般说,采用双调谐回路的放大器,其频率响应在通频带内可以做得较为平坦,在频带边缘上有更陡峭的截止。典型的单调谐放大器电路如图所示。图中LC并联谐振回路为晶体管的集电极负载,由于LC回路有带阻作用,即对带内信号阻抗较大,输入信号Us经电容器C1耦合到be“基射”之间。放大后再耦合到外接负载导纳YL上。

三 工作原理,硬件电路的设计或参数的计算: 工作原理:

电路原理图

图1 电路原理图

参数的计算:

在初级设计时,大致以此特性作考虑即可. 基本步骤是: 1)选定电路形式

依设计技术指标要求,考虑高频放大器应具有的基本特性,可采用共射晶体管单调谐回路谐振放大器,设计参考电路见图1所示。

图中放大管选用9018,该电路静态工作点Q 主要由R b1和Rw1、R b2、Re 与Vcc 确定。利用1b R 和1w R 、2b R 的分压固定基极偏置电位BQ V ,如满足条件BQ I I >>1:当温度变化CQ I ↑→BQ V ↑→BE V ↓→BQ I ↓→CQ I ↓,抑制了CQ I 变化,从而获得稳定的工作点。

由此可知,只有当BQ I I >>1时,才能获得BQ V 恒定,故硅管应用时, BQ I I )105(1-=。只有当负反馈越强时,电路稳定性越好,故要求BE BQ V V >,一般硅管取:BE BQ V V )53(-=

2)设置静态工作点

由于放大器是工作在小信号放大状态,放大器工作电流CQ I 一般在0.8-2mA 之间选取为宜,设计电路中取 mA I c 5.1=,设Ω=K R e 1

因为:EQ EQ e V I R = 而EQ CQ I I ≈ 所以: 1.51 1.5EQ V mA K V =?Ω= 因为:BQ EQ BEQ V V V =+(硅管的发射结电压BEQ V 为0.7V) 所以: 1.50.7 2.2BQ V V V V =+=

因为:EQ CC CEQ V V V -= 所以:V V V V CEQ 8.92.212=-=

因为:BQ BQ b I V R )105/(2-= 而mA mA I I CQ BQ 03.050/5.1/===β 取BQ 12I 则:

2/102.2

/0.366.1b B Q B Q R V I V K ===Ω 取标称电阻6.2K ?

因为:21]/)[(b BQ BQ CC b R V V V R -=

则:1[(12 2.2)/2.2] 6.227.6b R V V V K K =-*Ω=Ω,考虑调整静态电流CQ I 的方便,1b R 用22K ?电位器与15K ?电阻串联。

3)谐振回路参数计算 ① 回路中的总电容C ∑ 因为:1

2o f LC π∑

=

则:

pf L

f C o 3.55)2(1

2

==

∑π ②回路电容C

因有 21()oe C C p C ∑=-*

所以255.3(17)48.3C pF pF pF =-*= 取C 为标称值30pf,与5-20Pf 微调电容并联。

四总体电路设计和仿真分析

电路设计仿真图如图所示

接入信号发生器,观察示波器输入输出波形,通过调节C4大小来使谐振频率在6MHz左右,C4=20pF。利用仪器测得各指标如下:

V o=13.96v;Vi=5.485mv。

Avo=68dB。

示波器波形如下:

谐振频率6MHZ, 输入高频小信号(峰—峰值)100mv

五 心得体会:

(1)实物的实际值与理论值有一定的差距。如电阻电容的理论值与标称值存在一些差异,并且电阻电容的标称值也有一定的误差。如:通过计算RB2要买18k 的电阻,市场里没有就只好算个范围买个20k 的,而买回来测只有19k 多点。

(2)晶体管数据为查表所得,而由于分布参数的影响,晶体管手册中给出的分布参数一般都是在测试条件一定的情况下测得的。且分布参数还与静态工作电流及电流放大系数有关。放大器的各项技术指标满足设计要求后的元器件参数值与设计计算值有一定的偏离。

(3)性能指标参数的测量方法存在一定的误差。如在调谐过程中,我们通过直接观察波形的输出值的大小来确定电路是否调谐。这样调谐频率的测量值存在误差的同时,放大倍数的测量值也会产生误差。这属于系统误差,也许可以通过使用别的电路可以减小误差。

这次高频电子线路课程设计时间虽然很短暂,但是让我又一次重新温习了大三所学过的高频课程的主要内容,整个的知识体系。在课程设计过程中,我特别的学习和研究了高频小信号调谐放大器的设计方法,掌握高频单调谐放大器的等效电路、性能指标要求及分析设计,掌握中心频率0f 和电压增益 u A 的测试方法。在实施课程设计的过程中我加深了对Multisim 软件的使用,电路图的绘制以及仿真测试。在设计过程中也会遇到很多问题,通过自己查阅资料和同组同学相互探讨,克服困难。最终,顺利的完成了课程设计。

参考文献

[1] 高如云等.通信电子线路(第三版). 西安电子科技大学出版社,2007,11

[2] 赵春华等. Multisim9电子技术基础仿真实验. 机械工业出版社,2007,05

[3] 华永平.电子线路课程设计—仿真、设计与制作.东南大学出版社,2002

附录

附录Ⅰ电路总图

附录Ⅱ元器件清单

第三章《单级低频小信号放大器》单元测试题

第三章单元测试题 班级________________学号____________姓名__________________成绩______________ 一.填空题:(每小格1分,共35分) 1.放大器必须对电信号的________________________有放大作用,否则,就不能称为放大器。 2.写出电压放大倍数A V与电压增益G V之间的关系式:_______________________________写出功率放大倍数G P与功率增益G P之间的关系式:________________________________ 3.电压放大倍数出现正负号表示___________________关系,其中“+”号表示____________关系,而“—”号表示_____________________关系;但电压增益出现“—”号则表示该电路不是_________________________而是_____________________。 4.放大器由于_______________________________________________________所造成的失真,称为非线性失真;而非线性失真又分为_________________失真和______________失真两种。 5.在共射放大电路中,输入电压和输出电压,频率__________________,波形_______________,而幅度得到了________________________,但它们的相位___________________________。 6.画直流通路时,把__________________________视为开路,而其他不变;画交流通路时,把________________________和______________________________视为短路。 7.所谓的建立合适的静态工作点,就是要求将静态工作点设置在_______________的中点位置。 8.放大器的输入电阻越_______________越好,这样有利于减轻____________________的负担; 而输出电阻越__________________越好,这样可以提高_________________________的能力。 9.放大电路的基本分析方法有____________________________、_______________________和_____________________________三种。 10.射极输出器电路属于____________________电路,其对__________________没有放大能力,但对_________________和___________________却有放大能力,它的输入电阻很__________,而输出电阻很___________________。 11.常见的放大电路有______________________________、____________________________和 __________________________________三种类型。 二、选择题 1、分压式共射放大电路中。若更换晶体三极管使β由50变为100,则电路的电压放大倍数将 () A、约为原来的50% B、基本不变 C、约为原来的2倍 D、约为原来的4倍 2、某放大电路如图所示,设VCC>>VBE,ICEO=0,则在静态时三极管处于() A、放大区CC B、饱和区 C、截止区 D、区域不定L 3、放大电路如图所示,若增大Re,则下列说法正确的是()

高频单级、两级小信号单、双调谐放大器通信电子电路硬件实验报告

实验一高频(单级、两级)小信号(单、双)调谐放大器 一、实验目的 1、掌握高频小信号调谐放大器的工作原理; 2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。 二、实验内容 1、测量各放大器的电压增益; 三、实验仪器 BT-3扫频仪(选做)一台、20MHz示波器一台、数字式万用表一块、调试工具一套 四、实验基本原理 1、单级单调谐放大器 图1-1 单级单调谐放大器实验原理图 实验原理图如图1-1所示,本实验的输入信号(10.7MHz)由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。信号从TP5处输入,从TP10处输出。调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。 2、单级双调谐放大器 图1-2 单级双调谐放大器实验原理图 实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。两个谐振回路通过电容C20(1nF)或C21(10 nF)耦合,若选择C20为耦合电容,则TP7接TP11;若选择C21为耦合电容,则TP7接TP12。 3、双级单调谐放大器 图1-3 双级单调谐放大器实验原理图 实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围,从而使第二级放大器无法发挥放大的作用。同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后,由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。所以在第一级与第二级放大器之间又加了一个陶瓷滤波器(FL3),一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。 实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级放大器输出信号的幅度满足第二级放大器的输入要求,则第一级与第二级放大器之间可不用再经过FL3。 4、双级双调谐放大器 图1-4 双级双调谐放大器实验原理图 实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容(C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为C26,1nF),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。

实验一小信号调谐(单调谐)放大器实验指导

实验一高频小信号单调谐放大器实验 一、实验目的 1.掌握小信号单调谐放大器的基本工作原理; 2.熟悉放大器静态工作点的测量方法; 3.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 4.了解高频单调谐小信号放大器幅频特性曲线的测试方法。 二、实验原理 小信号单谐振放大器是通信接收机的前端电路,主要用于高频小信号的线性放大。其实验原理电路如图1-1所示。该电路由晶体管BG、选频回路(LC并联谐振回路)二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。 1.单调谐回路谐振放大器原理 单调谐回路谐振放大器原理电路如图1-1所示。图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。C E是R E的旁路电容,C B、C C 是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。为了减轻负载对回路Q值的影响,输出端采用了部分接入方式。 2.单调谐回路谐振放大器实验电路 单调谐回路谐振放大器实验电路如图1-2所示。其基本部分与图1-1相同。图中,C3用来调谐,K1、K2、K3用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。K4、K5、K6用以改变射极偏置电阻,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

图1-2 单调谐回路谐振放大器实验电路 高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A u0,放大器的通频带BW 0.7及选择性(通常用矩形系数K 0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑=LC f π21 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 21oe C C n C ∑=+ 式中, C oe 为晶体管的输出电容; n 1(注:此图中n 1=1)为初级线圈抽头系数;n 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,微调C3,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A u0称为调谐放大器的电压放大倍数。A u0的表达式为

单调谐高频小信号放大器

实验一单调谐高频小信号放大器 一、实验目的 1.熟悉电子元器件和高频电路实验箱。 2.熟悉谐振回路的幅频特性分析--通频带与选择性。 3.熟悉和了解放大器的动态范围及测试方法。 4.熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 二、实验仪器 1.双踪示波器SS-7804 2.扫频仪PD1250 3.高频信号发生器WY1052 4.万用表 5.实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍 数、动态范围、通频带及选择性相互 之间的关系。 3、实验电路中,若电感量L=1uh, 回 路总电容C=220pf (分布电容包括在 内),计算回路中心频率f。 四、实验内容及步骤 图1-1 单调谐回路谐振放大器原理图(一)单调谐回路谐振放大器。 1.实验电路见图1-1 (1)按图1-1所示连接电路(注意接线前先测量+12 V电源电压,无误后,关断电源再接线) (2)接线后仔细检查,确认无误后接通电源。 2.静态测量 实验电路中选Re=1K 测量各静态工作点,计算并填表1.1

表 1.1 实测实测计算根据V CE判断V是否工作 在放大区 原因 V B V E I C V CE 是否 * V B , V E是三极管的基极和发射极对地电压。 3. 动态研究 (1)测放大器的动态范围V i~V O(在谐振点) 选R=10K , Re=1k 。把高频信号发生器接到电路输入端,电路输出端接示波器,选择正常放大区的输入电压V i, 调节频率f 使其为10.7MH Z, 调节C T使回路谐振,使输出电压幅度为最大。此时调节V i由0.02伏变到0.8伏,逐点记录Vo电压,并填入表1.2 。Vi的各点测量值可根据(各自)实测情况来确定。 表 1.2 V i(v) (峰值)0.02 0.8 V0(v) Re =1KΩRe =500ΩRe =2KΩ (2)用扫频仪调回路谐振曲线。 仍选R=10K, Re=1K。将扫频仪射频输出送入电路输入端,电路输出接至扫频仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来选择适当的位置,如30dB),调回路电容C T, 使f 0 = 10 .7 MHz 。 (3)测量放大器的频率特性 当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输出端接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大,此时的回路谐振频率为f0=10.7MHZ 为中心频率,然后保持输入电压Vi 不变,改变频率f由中心频率向两边逐点偏离,测得在不同频率f时对应的输出电压V0,将测得的数据填入表1-3。频率偏离范围可根据(各自)实测情况来确定。 f(MHz) 10.7 V0 R=10KΩR=2KΩR=470Ω

低频小信号放大器电路实验

低频小信号放大器电路实验 〈1〉实验目的 1、加深对共射极单级小信号放大器特性的理解。 2、掌握单级小信号放大器的调试方法和特性测量。 3、熟悉示波器等常用电子仪器的使用方法。 〈2〉实验前准备 复习晶体管放大器工作原理,掌握单级放大器基本线路和放大倍数的计算方法。熟悉基本偏置电流大小与晶体管工作状态关系,以及对输出波形的影响。 〈3〉实验原理 1、晶体管单级放大器是组成各放大电路的基本单元,原理图见图1。 2、放大器静态工作点和负载电阻是否恰当将影响放大器的增益和输出波形。所 以当放大器的Vcc及Rc确定后,正确调整静态工作点是很重要的。 3、调节图中的R1可改变放大器的工作点。 4、静态工作点一般测量Ie、Vce和Vbe. 〈4〉实验器材 1、XST电学实验台。 2、示波器、万用表各一只。 3、其他按图选用元器件模块及导线。 〈5〉实验步骤 1、在通用电路板上按图1所示联接电路。 2、检查电路联接无误后,将实验台的Ⅰ组支稳压直流电源电压调至与电路需求 电压相同并接入电路中。 3、调节R1使集电极电流为1.5mA左右。 4、在输入端加入f=1KHz,Vi=10mV的正玄信号。用示波器观察输入与输出波 形。 5、调节R1,当输出波形的正峰或负峰刚要出现削波失真时,切断输入信号,分 别记下Ib和Vce的值。 6、接上信号源,保持输入信号f=1KHz,逐渐增大低频信号发生器输出信号幅度, 调节R1,使放大器输出波形正峰与负峰恰好出现削波失真为止,此时工作点已经调正确。 7、放大倍数测试:当R4=1K时,给f =1KHz,10mV信号电压,用示波器观察V o 的波形。在不失真的条件下,测定R L=∞及R L=5.1K时,电压放大倍数,并记录在表2中。 8、观察集电极负载电阻的改变,对放大器的输出波形的影响: 不接R L逐渐增大输入信号,使输出波形恰好不失真。改变Rc阻值为510Ω和10KΩ观察,对输出波形的影响,并记录在表4中。 〈6〉实验报告

高频小信号单调谐与双调谐放大器实验报告

高频小信号单调谐与双调谐放大器 实验报告 14044012 孙胤邦 14 级电子一班

?输出电压幅值U/mV 1 \ j \ J____ ■ 实验表格及图像 单调谐放大器的电压幅值 输入信号频率f/fHz 5. 4 5. 5 5. 6 5. 7 5. 8 5. 9 6 6. 1 6. 2 6. 3 6. 4 6. 5 6. 6 6. 7 6. 8 6. 9 输出电压幅值 U/m V 1. 6 1. 76 2 2. 16 2. 4 2. 7 3. 12 3. 84 4. 8 6. 32 7. 92 8. 08 7. 52 6. 08 4. 8 3. 84 单调谐放大器幅频特性 输入信号频率 9 8 7 2 1

如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )单调谐的峰值为8.08mV , 下降到0.707倍时的值为5.71mv 。 输入 信号 频率 f/MHz 4 8 5 5 2 5 4 5 6 5 7 5 8 5 9 6 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 7 1 输出 电压 幅值 U/mV 0 6 1 1 4 2 5 7 4 6 8 5 8 5 4 5 6 6 4 7 2 7 4 6 2 4 4 3 6 2 2 8 1 6 8 1 4 1 1 2 双调谐回路幅频特性 如图所示(纵坐标为幅值mV ,横坐标为频率MHZ )双调谐的峰值为7.40mV 和7.40mv 下降到0.707倍时的值为5.23mV 和5.23mV 。 这样看来,单调谐放大器优点是电路简单,缺点是通频带窄、选择性差、增益低。 双调谐放大器具有良好的选择性、 较宽的通频带。而且由图可以看出双调谐的选 择性明显优于单调谐放大器。 值幅压电岀输 2 3 4 5 输入信号频率 6 7 8 8 7 6 5 4 3 2 1 0

低频小信号放大器电路设计毕业论文

摘要 低频小信号放大器电路设计 摘要 实用性低频小信号放大器电路设计,它主要用于使用前置放大器的低频小信号的电压经过集成块LM358的放大使其增益二十几倍,达到信号放大的作用,本文介绍了其基本原理,内容,与低频放大微弱信号放大能力的技术路线,设计电路图方案等。 本系统是基于(IC)LM358设计而成的一种低频小信号放大器,整个电路主要由稳压电源,前置放大电路,波形变换电路3部分。电源主要是为前置放大器提供稳定的直流电源。前置放大器主要是由ML358一级放大电路和ML358二级放大电路组成,第一级可以将电压放大5倍,第二级可以放大1-5倍,总增益20-25倍,接通电源后,信号发生器产生信号,示波器用于变换的波形显示。通过波形的数据变化,计算出增益效果,是否满足设计需求。 该设计的电路结构简单,实用,充分利用了集成功放的优良性能。实验结果表明,前置放大器的带宽,失真,效率等方面具有较好的指标,具有较高的实用性,为小信号放大器的设计是一个广泛的思考。 关键词:低频小信号,电压放大,前置放大级电路,集成块LM358

Abstract Design of low frequencysmall signal amplifier Abstract: The utility of low frequency small signal amplifier circuit design, it is mainly used for voltage low frequency small signal using a pre amplifier after amplification integrated block LM358 has gain 20 times, achieve signal amplification effect, this paper introduces the basic principle, content, and low frequency amplification technology route of weak signal amplification ability, circuit design scheme. The system is based on (IC) a low frequency small signal amplifier LM358 designed, the whole circuit is mainly composed of a regulated power supply, preamplifier circuit, a waveform transform circuit 3 parts. The power supply is mainly to provide a stable DC power for the preamplifier. The preamplifier is mainly composed of ML358 amplifier and ML358 two stage amplifier circuit, the first stage of the voltage can be magnified 5 times, second can be magnified 1-5 times, 20-25 times of the total gain, power, signal generator generates a signal, oscilloscope is used to transform the waveform display. By the waveform data changes, calculated the gain effect, whether meet the design requirements. The design of the circuit structure is simple, practical, make full use of the excellent performance of the integrated amplifier. The experimental results show that, the pre amplifier bandwidth, distortion, has better efficiency indicators, and has higher practicability, designed for small signal amplifier is a broad thinking. Keywords:Lowfrequency smalsignal,voltage amplification,preamplifiercircuit,Integrated block LM358

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。 下图中绿色为输入波形,蓝色为输出波形

Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形, 体会该电路的选频作用。 2次谐波 4次谐波 6次谐波

高频小信号调谐放大器

高频电子线路课程设计报告 题目: __ 高频小信号谐振放大器 __ 院系:_xxxxxxxxxxxxxxxxxxxxxxxx_ 专业:____电子信息科学与技术 班级: xxxxxxxxxxx 姓名: xxxxxx 学号: _ xxxxxxxxxxxxxxx __ 指导教师: xxxxxxxx 报告成绩: 2016年12月16日

目录 一设计目的 (1) 二设计思路 (1) 2.1 电路的功能 (1) 2.2 设计的基本要求 (1) 三设计过程 (1) 3.1 设计电路 (1) 3.2 测量方法 (4) 3.2.1谐振频率 (4) 3.2.2电压增益 (4) 3.2.3通频带 (5) 3.2.4矩形系数 (5) 四系统调试与结果 (6) 4.1 设置静态工作点 (6) 4.2 计算谐振回路参数 (6) 4.3 利用Multisim 对电路的仿真图 (7) 4.4 设计结果与分析 (8) 五主要元器件与设备 (10) 5.1 元器件与设备 (10) 5.2相关参数 (11) 六课程设计体会与建议 (11) 6.1 设计体会 (11) 6.2 设计建议 (12) 七参考文献 (12)

一设计目的 (1)了解LC谐振回路的选频原理和回路参数对回路特性的影响。 (2)掌握高频单调谐放大器的构成和工作原理。 (3)掌握高频单特性放大器的等效电路、性能指标要求及分析设计。 (4)掌握高频单调谐放大器的设计方案和测试方法。 二设计思路 2.1 电路的功能 所谓谐振放大器,就是采用谐振回路作负载的放大器。根据谐振回路的特性,谐振放大器对于靠近谐振频率的信号,有较大的增益;对于远离谐振频率的信号,增益迅速下降。所以,谐振放大器不仅有放大作用,而且也起着滤波或选频的作用。高频小信号放大器的作用是无失真的放大某一频率围的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 2.2设计的基本要求 (1)通过具体计算,选择器件给出电路设计电路 (2)给出最终实现电路 (3)进行仿真校验 (4)作出设计总结 三设计过程 3.1设计电路

低频小信号放大器的设计

1. 设计任务及要求 1.1 设计任务: 运用放大器原理等知识,设计一个低频小信号放大器。 1.2 设计要求: 1)放大倍数≥1000(60db); 2)共模抑制比K CMR ≥60db; 3)输入阻抗R i ≥10M; 4)频带范围0~100HZ; 5)信噪比SNR≥40db; 2. 方案设计 2.1.1同相放大电路 输入电压u i接至同相输入端,输出电压u o通过电阻R F仍接到反相输入端。 R 2的阻值应为R 2 =R 1 //R F . 根据虚短和虚断的特点,可知I - =I + =0, 则有 o F u R R R u? + = - 1 1 且 u - =u + =u i ,可得: i o F u u R R R = ? + 1 1 1 F i o uf R R 1 u u A+ = = 同相比例运算电路输入电阻为:∞ = = i i if i u R 输出电阻: R of =0 因此选择同相放大电路满足输入阻抗足够大 2.1.2 差分放大电路 差动输入比例运算(即减法运算) 在差动放大电路中,有两个输入端,当在这两个端子上分别输入大小相等、相位相反的信号,(这是有用的信号)放大器能产生很大的放大倍数,我们把这种信号叫做差模信号,这时的放大倍数叫做差模放大倍数。如果在两个输入端分别输入大小相等,相位相同的信号,(这实际是上一级由于温度变化而产生的信号,是一种有害的东西),我们把这种信号叫做共模信号,这时的放大倍数叫做共模放大倍数。 由差模放大倍数和共模放大倍数可求差模增益A vd 和共模增益A cd ,共模抑制 比K CMR =20log(A vd /A cd ) 2.1.3 仪表放大器

高频小信号放大器——典型例题分析

高频小信号放大器——典型例题分析 1.集成宽带放大器L1590的内部电路如图7.5所示。试问电路中采用了什么方法来扩展通频带的?答:集成宽放L1590是由两级放大电路构成。第一级由V1、V2、V3、V6构成;第二级由V7~V10构成,三极管V11~V16、二极管V17~V20和有关电阻构成偏置电路。其中第一级的V1、V3和V2、V6均为共射-共基组合电路,它们共同构成共射-共基差动放大器,这种电路形式不仅具有较宽的频带,而且还提供了较高的增益,同时,R2、R3和R4引入的负反馈可扩展该级的频带。V3、V6集电极输出的信号分别送到V7、V10的基极。第二级的V7、V8和V9、V10均为共集-共射组合电路,它们共同构成共集-共射差动放大器,R18、R19和R20引入负反馈,这些都使该级具有很宽的频带,改变R20可调节增益。应该指出,V7、V10的共集组态可将第一级和后面电路隔离。由于采取了上述措施,使L1590的工作频带可达0~150MHZ。顺便提一下,图中的V4、V5起自动增益控制(AGC)作用,其中2脚接的是AGC电压。图7.5 集成宽放L1590的内部电路2.通频带为什么是小信号谐振放大器的一个重要指标?通频带不够会给信号带来什么影响?为什么?答:小信号谐振放大器的基本功能是选择和放大信号,而被放大的信号一般都是已调信号,包含一

定的边频,小信号谐振放大器的通频带的宽窄直接关系到信号通过放大器后是否产生失真,或产生的频率失真是否严重,因此,通频带是小信号谐振放大器的一个重要指标。通频带不够将使输入信号中处于通频带以外的分量衰减,使信号产生失真。3.超外差接收机(远程接收机)高放管为什么要尽量选用低噪声管?答:多级放大器的总噪声系数为由于每级放大器的噪声系数总是大于1,上式中的各项都为正值,因此放大器级数越多,总的噪声系数也就越大。上式还表明,各级放大器对总噪声系数的影响是不同的,第一级的影响最大,越往后级,影响就越小。因此,要降低整个放大器的噪声系数,最主要的是降低第一级(有时还包括第二级)的噪声系数,并提高其功率增益。综上所述,超外差接收机(远程接收机)高放管要尽量选用低噪声管,以降低系统噪声系数,提高系统灵敏度。4.试画出图7.6所示放大器的交流通路。工作频率f=465kHZ。答:根据画交流通路的一般原则,即大电容视为短路,直流电源视为短路,大电感按开路处理。就可以很容易画出其交流通路。对于图中0.01μF电容,因工作频率为465kHZ,其容抗为,相对于与它串联 和并联的电阻而言,可以忽略,所以可以视为短路。画出的交流通路如图7.7所示。图7.6 图7.75.共发射极单调谐放大器如图7.2所示,试推导出 谐振电压增益、通频带及选择性(矩形系数)公式。解:单

高频电子线路实验报告高频小信号调谐放大器

太原理工大学现代科技学院高频电子线路课程实验报告 专业班级测控1001班 学号 姓名 指导教师

实验一高频小信号调谐放大器 一、实验目的 小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号微弱信号的线性放大。在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数、通频带、矩形系数),进一步掌握高频小信号调谐放大器的工作原理。学会小信号调谐放大器的设计方法。 二、实验仪器 1.BT-3(G)型频率特性测试仪(选项)一台 2.20MHz模拟示波器一台 3.数字万用表一块 4.调试工具一套 三、实验原理 图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。 图1 小信号调谐放大器 该放大电路在高频情况下的等效为如图1-2所示,晶体管的4个y参数y ie,y oe,y fe 及y re分别为:

输入导纳(1-1) 输出导纳(1-2) 正向传输导纳(1-3) 反向传输导纳(1-4) 图1-2 放大器的高频等效回路 式中,gm——晶体管的跨导,与发射极电流的关系为 (1-5) gb’e——发射结电导,与晶体管的电流放大系数β及IE有关 其关系为(1-6) rb’b——基极体电阻,一般为几十欧姆; Cb’c——集电极电容,一般为几皮法; Cb’e——发射结电容,一般为几十皮法至几百皮法。 由此可见,晶体管在高频情况下的分布参数除了与静态工作电流IE,电流放大系数β关外,还与工作频率ω有关。晶体管手册中给出的分布参数一般是在测试条件一定的情况下测得的。如在f0=30MHz,I E=2mA,U CE=8V条件下测得3DG6C的y参数为: 如果工作条件发生变化,上述参数则有所变动。因此,高频电路的设计计算一般采用工

实验一小信号调谐(单双调谐)放大器实验

实验一高频小信号调谐放大器实验 一、实验目的 1.掌握小信号调谐放大器的基本工作原理; 2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算; 3.了解高频小信号放大器动态范围的测试方法; 二、实验原理 1-1a1-1b (一)单调谐放大器 小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图1-1(a)所示。该电路由晶体管Q1、选频回路T1二部分组成。它不仅对高频小信号进行放大,而且还有一定的选频作用。本实验中输入信号的频率f S=12MHz。基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。 表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。 放大器各项性能指标及测量方法如下: 1.谐振频率 放大器的调谐回路谐振时所对应的频率f0称为放大器的谐振频率,对

于图1-1(a )所示电路(也是以下各项指标所对应电路),f 0的表达式为 ∑ = LC f π210 式中,L 为调谐回路电感线圈的电感量; ∑C 为调谐回路的总电容,∑C 的表达式为 ie oe C P C P C C 2221++=∑ 式中,C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。 谐振频率f 0的测量方法是: 用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。 2.电压放大倍数 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的表达式为 G g p g p y p p g y p p v v A ie oe fe fe i V ++-=-=- =∑2 22 1212100 式中,∑g 为谐振回路谐振时的总电导。要注意的是y fe 本身也是一个复数,所以谐振时输出电压V 0与输入电压V i 相位差不是180o而是为180o+Φfe 。 A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a )中输出信号V 0及输入信号V i 的大小,则电压放大倍数A V0由下式计算: A V0=V 0/V i 或A V0=20 lg (V 0/V i ) d B 3.通频带 由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

第三章 单极低频小信号放大器

课题3.1~3.2放大器的基本概念 课型 新课 授课班级17机电授课时数 2 教学目标 1.了解扩音机的方框图,知道放大器的放大倍数,会计算增益 2.了解单级低频小信号放大器的基本组成,明确电路中电压电流符号法则等 3.理解设置静态工作点的作用 教学重点 静态工作点的作用 教学难点 增益和静态工作点 学情分析 学生已经了解三极管的基本特点及作用教学方法 讲解法、读书指导法、讨论法 教后记 通过本次课的学习,学生对三极管的作用已有了一个基本认识,同时也能通过读图利用公式进行计算三极管的静态工作点和增益,但对于增益的求解还存在一些困难,主要是因为学生在对数学习这一块掌握不是很好

A .引入 在电子线路中,能将微弱的电信号放大,转换或较强的电信号的电路,称为放大器。 B .新授课 3.1 放大器的基本概念 3.1.1 放大器概述 一、晶体三极管的基本结构 1.方框图 2.特点 放大器: 1 输出功率比输入功率大。 2 有功率放大作用。 变压器的输入功率与输出功率相同,因此不能称为放大器。 3.1.2 放大器的放大倍数 一、放大倍数的分类 1.电压放大倍数A v i o v v A v = 2.电流放大倍数A i i o i i A i = 3.功率放大倍数A p v i p A A V I V I P P A ?=== i i o o o 1 二、放大器增益 放大倍数较大,可取对数,称为增益G。 单位为分贝(用dB 表示)。 1.功率增益G p = 10 lg A p (dB ) 2.电压增益G v = 20 lg A v (dB ) 3.电流增益G i = 20 lg A i (dB ) 例题: 1.放大电路第一级40 dB ,第二级 -20 dB ,求总的增益, (学生思考:变压器是否是放大器) (教师画电路图,讲解放大器的基本工作原理) (师生共同得出结论:变压器不是放大器) (教师讲解电压放大倍数,学生探讨研究电流和功率的放大倍数) (教师讲解放大倍数的增益表示法,学生练

单调谐高频小信号放大器

沈阳航空航天大学北方科技学院 课程设计说明书 课设题目单调谐高频小信号放大器设计 专业通信工程 班级 B141211 学号 B14121137 学生姓名杨一凡 指导教师李秀人 日期 2013.12

沈航北方科技学院 课程设计任务书 教学系部信息工程系专业通信工程 课程设计题目单调谐高频小信号放大器设计 班级B141211学号姓名 课程设计时间: 2013 年12 月16 日至2013 年12 月29 日 课程设计的内容及要求: (一)主要内容 本课题旨在根据已有的知识及搜集资料设计一个单调谐高频小信号放大器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容参照课设报告文档模版要求,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析。 技术指标:谐振频率6MHz,谐振增益≥20dB,通频带≥0.5MHz。输入高频小信号(峰-峰值)100mv。Vcc=12V,R L=1KΩ。 (二)基本要求 根据题目及基本要求(技术指标)查阅相关资料和书籍,设计(计算)电路,确定元器件参数(3天)。 待电路设计完成后,上机进行电路仿真(使用Multisim)。仿真过程中用到的仪器、调试方法、排故过程及电路技术指标的测量要做记录,最终写到报告中(4天)。报告正文按目录要求撰写,其他内容见格式说明(3天)。

(三)主要参考书 [1] 高如云等.通信电子线路(第三版). 西安电子科技大学出版社,2007,11 [2] 赵春华等. Multisim9电子技术基础仿真实验. 机械工业出版社,2007,05 [3] 华永平.电子线路课程设计—仿真、设计与制作.东南大学出版社,2002 (四)评语 (五)成绩 指导教师年月日

(一)小信号调谐放大器基本工作原理

实验室 时间段 座位号 同组人翁洁意 电子科技大学 信息工程学院 通信电子线路实验报告 实验名称小信号调谐放大器 姓名王颖 学号 15934104 指导老师建岚

一.实验目的 1.利用实验箱熟悉电子元器件和高频电子线路实验系统; 2.掌握单调谐和双调谐放大器在有负载和无负载的情况下的基本工作原理; 3.掌握用点测法测量放大器幅频特性的方法; 4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响; 5.了解放大器动态围的概念和测量方法。 二.实验容 1.采用点测法测量单调谐和双调谐放大器的幅频特性; 2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数; 3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响; 4.用示波器观察放大器的动态围; 5.观察集电极负载对放大器幅频特性的影响。 三.实验步骤 1.实验准备 在实验箱主板上插装好无线接收与变频模块,接通实验箱上电源开关,按下模块上白色电源开关(POWER),此时模块上电源指示灯亮。 2.单调谐回路谐振放大器幅频特性测量 我们测量幅频特性使用的是点测法。点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。 点测法,其步骤如下: ①2K1置“OFF”位,即断开集电极电阻2R3。2K2置“单调谐”位,此时2C6被短路,放大器为单调谐回路。高频信号源输出连接到调谐放大器的输入端(2P01)。示波器CH1接放大器的输入端2TP01,示波器CH2接调谐放大器的输出端2TP02,调整高频信号源

单级低频电压放大电路

东南大学电工电子实验中心 实验报告 课程名称:电子线路实践 第三、四次实验 实验名称:单级低频电压放大电路 院(系):电气工程学院专业: 姓名:学号: 实验室:实验组别:无同组人员:实验时间:评定成绩:审阅老师:

实验报告格式 实验准备: 1.实验目的和要求(或电路需要实现的功能及主要功能指标) 2.实验原理及实现方案 3.实验电路设计与参数选择 4.需要设计的参数及数据测量方法 5.理论计算数据或软件模拟数据 6.实验数据记录格式 7.实验使用仪器准备(包括仪器的名称、型号、规格、编号、实用状况) 8.实验过程或实验步骤 实验过程: 1.实验步骤与实验数据记录 2.实验最终电路与电路参数 3.实验中出现的问题及解决方案 实验总结: 1.实验数据处理 2.实验误差分析 3.实验结果讨论 4.思考题 一、实验目的和要求 1、掌握单级放大电路的工程估算、安装和调试; 2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频特性等的基本概 念以及测量方法; 3、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流电压表、函数发生器的使 用技能训练。 二、实验原理 预习思考: 1、器件资料: 上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表: 封装示意图如右图

2、 偏置电路: 教材图1-3中偏置电路的名称是什么,简单解释是如何自动调节BJT 的电流I C 以实现稳定直流工作点的作用的,如果R 1 、R 2取得过大能否再起到稳定直流工作点的作用,为什么? 答:该电路为射极偏置电路。 利用R1、R2构成的分压器给三极管基极b 提供电位UB 。如果满足电流I1>>IBQ 的条件,基极电位可以近似由U B=2 11R R R += ?Vcc 。当环境温度升高,ICQ 增大,RE 压降增大。由于基极电位固定, 发射极上电压减小,IBQ 减小,使得ICQ 减小,通过这样的自动调节ICQ 趋于稳定。 如果R1 、R2取得过大,R1中电流很小,不能满足R1R2支路中的电流I1>>IBQ 的条件。此时,UBQ 在温度变化时无法保持基本不变,直流工作点稳定的实现失效。 3、 电压增益: (I) 对于一个低频放大器,一般希望电压增益足够大,根据您所学的理论知识,分析有哪些方法可以提 高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。 答:依据电压增益计算公式 ' '' 26(1)300(1) L L L V be b e CQ R R R A mV r r r I βββββ???=- =-=- ++++ 采用下述方法可以提高电压增益: ? 增大集电极电阻RC 和负载的输入阻抗RL 。缺点:RC 太大,受VCC 的限制,会使晶体管进入饱 和区,电路将不能正常工作。 ? Q 点适当选高,即增大ICQ 。缺点:电路耗电大、噪声高。 ? 选取高β值的三极管 ? 选用多极放大电路级联形式来获取足够大的电压增益。一般二级电路的放大倍数可达几百倍,三 级电路的放大倍数可达几千倍。缺点:电路较复杂,输出信号易产生自激,需采取措施消除。 最佳方案是:在射结电阻两端并联一个大电容,对于交流近似短路,但不影响工作点的大小和稳定性,成为射极旁路电容。 (II) 实验中测量电压增益的时候用到交流毫伏表,试问如果用万用表或示波器可不可以,有什么缺点。 答:在频率低于100KHz 时万用表(指多功能数字式万用表,且其频率测量指标在100khz 以上)的交流挡和交流毫伏表都可以比较精确得测量交流电压,当频率大于100KHz 小于1MHz 时,万用表的测量精度下降,只能采用交流毫伏表测量,对于更高频率的信号,必须选择高频毫伏表测量。而示

相关文档
最新文档