以太网交换机中生成树协议的实现

摘要:生成树算法和协议是自动生成网络拓扑结构的基础。本文阐述了生成树算法和协议的内容,并给出了在以太网交换机中的具体实现过程。我们通过实践证明,该方尖对于解析最优网络拓扑结构效果良好。

关键词:以太网交换机网桥拓扑结构生成树BPDU

以太网交换机在第二层即MAC层必须具有路由功能。目前普遍使用的MAC层路由方式是IEEE802.1组织发布的标准:基于生成树算法的路由。在局域网内的交换机执行了生成树算法以后,会组成一个生成树动态拓扑结构,该拓扑结构使局域网内任意两个工作站之间不存在回路,以防止由此产生的局域网广播风暴,同时,生成树算法还负责监测物理拓扑结构的变化,并能在拓扑结构发生变化之后建立新的生成树。例如当一个交换机坏了或某一条数据通咱断了后,能提供一定的容错能力而重新配置生成树的拓扑结构。交换机根据生成树动态拓扑结构的状态信息来维护和更新MAC路由表,最终实现MAC层的路由。

一、以太网交换机在MAC层体系结构

以太网交换机在MAC层的功能主要是实现LAN的互连。根据IEEE802.1D协议的规定,在MAC层工作的体系结构必须包含以下内容:(1)一个用于连接交换机端口的MAC转发实体;(2)至少两个端口;(3)高层协议实体,其中包括交换机协议实体。如图1所示。

MAC转发实体主要实现交换机不同端口间的内部通信。该实体存储各个端口的工作状态并维护一个过滤数据库。数据库中存放了一张MAC地址表,用以实现MAC层的路由。当数据帧从一个端口的底层服务进程传上来时,MAC实体首先判断目的端口的工作状态,如果目的端口没有被阻塞,MAC转发实体将依据MAC地址表的对应关系将该帧从目的端口转发出去。同时MAC转发实体还可以进行过滤、记录MAC地址等操作。

交换机端口的功能是从与其相连的LAN上接收或传送数据。端口的状态由生成树算法规定,包括转发、学习、监听、阻塞和禁止状态。

高层协议实体位于LLC层,主要用于计算和配置LAN的拓扑结构。下面介绍的生成树协议算法就是运行在该协议实体内,用来实现MAC层的路由。在运行生成树算法时,高层

协议实体可以直接调用MAC转发实体提供的服务,并能读取或更改MAC实体数据库中维护的信息,如从MAC实体中读取或更改某端口的状态信息等。

在运行生成树算法时,交换机的高层协议实体将使用一个统一的组地址01-80-C2-00-00-00作为目的MAC地址,该数据被称为BPDU(桥协议数据单元)。BPDU 中携带了实现生成树算法的有关信息。在实现生成树算法时,从端口接收上来BPDU,由LLC层的服务进程将其传给交换机协议实体。在执行了生成树算法以后,交换机的协议实体将根据算法的结果更新端口的状态信息并更新过滤数据库,以决定交换机端口的工作状态(阻塞或转发等),从而建立生成树拓扑结构。

二、生成树协议

1、生成树协议介绍

生成树协议基于以下几点:(1)有一个唯一的组地址(01-80-C2-00-00-00)标识一个特定LAN上的所有的交换机。这个组地址能被所有的交换机识别;(2)每个交换机有一个唯一的标识(Brideg Identifier);(3)每个交换机的端口有一个唯一的端口标识(Port Identifier)。对生成树的配置进行管理还需要:对每个交换机调协一个相对的优先级;对每个交换机的每个端口调协一个相对的优先级;对每个端口调协一个路径花费。

具有最高优先级的交换机被称为根(root)交换机。每个交换机端口都有一个根路径花费,根路径花费是该交换机到根交换机所经过的各个跳段的路径花费的总和。一个交换机中根路径花费的值为最低的端口称为根端口,若有多个端口具有相同的根路径花费,则具有最高优先级的端口为根端口。

在每个LAN中都有一个交换机被称为选取(designated)交换机,它属于该LAN中根路径花费最少的交换机。把LAN和选取交换机连接起来的端口就是LAN的选取端口(designated port)。如果选取交换机中有两个以上的端口连在这个LAN上,则具有最高优先级的端口被选为选取端口。拓扑结构如图2所示。

由于交换机A具有最高优先级(桥标识最低),被选为根交换机,所以交换机A是LAN A和LAN B的选取交换机;假设交换机B的根路径花费为6,交换机C的根路径花费为4,那么交换机C被选为LAN C的选取交换机,亦即LAN C与交换机A之间的消息通过交换机C转发,而不是通过交换机B。LAN C与交换机B之间的链路是一条冗余链路。

2、BPDU编码

交换机之间定期发送BPDU包,交换生成树配置信息,以便能够对网络的拓扑、花费或优先级的变化做出及时的响应。BPDU分为两种类型,包含配置信息的BPDU包称为配置BPDU(Configuration BPDU),当检测到网络拓扑结构变化时则要发送拓扑变化通知BPDU(Topology cHANGE nOTIFICATION BPDU)。配置BPDU编码如图3所示。

拓扑变化通知BPDU编码如图4所示。

对于配置BPDU,超过35个字节以外的字节将被忽略掉;对于拓扑变化通知BPDU,超过4个字节以外的字节将被忽略掉。

3、形成一个生成树所必需决定的要素

(1)决定根交换机

a、最开始所有的交换机都认为自己是根交换机;

b、交换机向与之相连的LAN广播发送配置BPDU,其root_id与bridge_id的值相同;

c、当交换机收到另一个交换机发来的配置BPDU后,若发现收到的配置BPDU中root_id 字段的值大于该交换机中root_id参数的值,则丢弃该帧,否则更新该交换机的root_i

d、根路径花费root_path_cost等参数的值,该交换机将以新值继续广播发送配置BPDU。

(2)决定根端口

一个交换机中根路径花费的值为最低的端口称为根端口。

若有多个端口具有相同的最低根路径花费,则具有最高优先级的端口为根端口。若有两个或多个端口具有相同的最低根路径花费和最高优先级,则端口号最小的端口为默认的根端口。

(3)认定LAN的选取交换机

a、开始时,所有的交换机都认为自己是LAN的选取交换机。

b、当交换机接收到具有更低根路径花费的(同一个LAN中)其他交换机发来的BPDU,该交换机就不再宣称自己是选取交换机。如果在一个LAN中,有两个或多个交换机具有同样的根路径花费,具有最高优先级的交换机被先为选取交换机。在一个LAN中,只有选取交换机可以接收和转发帧,其他交换机的所有端口都被置为阻塞状态。

c、如果选取交换机在某个时刻收一了LAN上其他交换机因竞争选取交换机而发来的配置BPDU,该选取交换机将发送一个回应的配置BPDU,以重新确定选取交换机。

(4)决定选取端口

LAN的选取交换机中与该LAN相连的端口为选取端口。若选取交换机有两个或多个端口与该LAN相连,那么具有最低标识的端口为选取端口。

除了根端口和选取端口外,其他端口都将置为阻塞状态。这样,在决定了根交换机、交换机的根端口、以及每个LAN的选取交换机和选取端口后,一个生成树的拓扑结构也就决定了。

4、拓扑变化

拓扑信息在网络上的传播有一个时间限制,这个时间信息包含在每个配置BPDU中,即为消息时限。每个交换机存储来自LAN选取端口的协议信息,并监视这些信息存储的时间。在正常稳定状态下,根交换机定期发送配置消息以保证拓扑信息不超时。如果根交换机失效了,其他交换机中的协议信息就会超时,新的拓扑结构很快在网络中传播。

当某个交换机检测到拓扑变化,它将向根交换机方向的选取交换机发送拓扑变化通知BPDU,以拓扑变化通知定时器的时间间隔中定期发送拓扑变化通知BPDU,直到收到了选取交换机发来的确认拓扑变化信息(这个确认信号在配置BPDU中,即拓扑变化标志位置位),同时选取交换机重复以上过程,继续向根交换机方向的交换机发送拓扑变化通知BPDU。这样,拓扑变化的通知最终传到根交换机。根交换机收到了这样一个通知,或其自身改变了拓扑结构,它将发送一段时间的配置BPDU,在配置BPDU中拓扑变化标志位被置位。所有的交换机将会收到一个或多个配置消息,并使用转发延迟参数的值来老化过滤数据库中的地址。所有的交换机将重新决定根交换机、交换机的根端口、以及每个LAN的选取交换机和选取端口,这样生成树的拓扑结构也就重新决定了。

三、结果及结论

笔者按照上述原理和方法实现的生成树算法运行正常,能够解析出最优的网络拓扑结构。当管理员使某一个端口无效或某一条链路断开后,该算法能及时响应网络的拓扑变化而重新配置生成树的拓扑结构。

以太网技术是第二层网络技术,其网络发现到目前还没有成熟的技术和方法。现有的网管?如HPOpenView?无法提供第二层的网络发现,并且各厂家的网管不能互通,如Cisco的CWSI和3ComTrancend等,须采用专用的协议或方法来实现。

目前,运行在第二层的通用协议有VLAN和SpanningTree?生成树?等,其主要设备是以太网交换机。根据网络的拓扑结构,用以太网交换机组成的LAN一般有3种运行模式:运行SpanningTree协议、不运行SpanningTree协议以及混合式。本文以混合模式为例,结合网桥和SpanningTree的基本原理,介绍一种简单的LAN物理网络拓扑的发现方法。

为方便讨论,在此假定由以太网交换机组成的LAN不支持VLAN技术。将靠近路由器R1的交换机B1设为优先级最低的DR?DesignatedRoot,指定的根?。B1、B2和B3形成一个环路,其上运行SpanningTree协议;对于不运行SpanningTree协议的LAN,一般成树型结构,不能有闭环连接,如B1、B4和B5为单链路级连,不运行SpanningTree协议。

在LAN物理网络拓扑发现以前,网段的网关地址是已知的,如本例中的61.140.216.254。为方便起见,我们假设所有以太网交换机的管理IP地址是已知的,即手工加入的,也可通过SNMP协议发现。如图1所示的61.140.216.253、61.140.216.245、61.140.216.246、61.140.216.215和61.140.216.219共5台以太网交换机的IP地址是已知。

为方便说明,本文将网关看作LAN的根。两台交换机直连时,将靠近根的交换机称作上游交换机,另一台称作下游交换机。下面论述LAN物理拓扑发现的方法。

1? 通过网管向所有交换机发Clear命令,清除交换机上所有的包转发表。

从桥的基本原理得知,以太网交换机动态学习通过它的数据包的MAC地址,并生成包转发表,转发表包含了目的MAC对应的目的端口号。由于交换机管理IP地址之间可能会进行一些相互的访问(如ping或telnet等操作),各个交换机的包转发表比较复杂。为使问题简单化,我们先把各个交换机的包转发表清除掉,让交换机重新学习并生成包转发表,然后继续下面的操作。

2? 利用路由器R1的ARP?地址解析协议?表,得到所有交换机的管理IP地址所对应的MAC地址?以太网物理地址?。

为保证ARP表包含所有交换机的MAC地址,可以执行“ping广播地址”命令,如“ping61.140.216.255?假定图1中管理子网的网模为61.140.216.128?”。路由器接收到该命令后,将从目的地61.140.216.129开始执行ping命令,直到61.140.216.255结束。此时,路由器的ARP表是最全、最新的。

3 ? 从各个交换机中获得包转发表并进行分析。

在交换机B1上,只有通过F0/24端口才能到达MAC地址为00e0.1ece.1bd2的交换机或路由器。同理可知到达其他交换机的端口。通过这个简单的方法可以得到以B1为中心的星型网络结构。但是还存在多个MAC地址同一目的端口的情况,如表2中,0090.0416.d8f8 ?B5?和0800.4ecc.89d8?B4? 都是通过F0/18到达的,这种情况说明存在交换机级连。对交换机B1而言,B5和B4通过同一目的端口F0/18,而到网关的端口号是F0/24,这说明B4和B5是B1的下游交换机,并且两者级连。

通过分析B4和B5交换机上的MAC转发表来判断B4和B5交换机的连接情况。交换机B4上的MAC转发表见表3 ?同样只保留了与交换机管理MAC地址有关的条目?。

与交换机B1对应的条目,这是因为发自B1的管理IP地址的数据包一般不通过B4,即上游交换机的数据包一般不通过下游交换机。这样,下游交换机的MAC转发表中不会拥有上游交换机的MAC转发条目。但每台交换机上都有指向网关的MAC转发条目?因执行了“ping61.140.216.255”命令?。由表3可知,到达交换机

800.4ecc.89d8?B5?的目的端口是F0/25,而到达00e0.1ece.1bd2的端口是F0/24。这说明B5是B4的下游交换机,B4与上游交换机B1的端口是F0/24。根据B2、B3和B5交换机的MAC转发表,同理可以判断出B2、B3和B5到上游交换机的端口号,从而得知整个网络的拓扑结构。

4 ? 寻找被SpanningTree隐藏的连接。

由于B1、B2和B3之间运行了SpanningTree协议,B2的端口F0/1处于Block?阻塞?状态,采用上述方法无法得知B2和B3之间存在物理连接。这时,我们可以利用SpanningTree协议本身的特点来发现B2和B3之间的连接。

根据SpanningTree协议,每一个Segment?LAN交换机之间的LAN连接?存在一个DB?DesignatedBridge,指定的桥?。与该Segment连接的交换机的端口都知道本Segment的DB的ID?识别号?,即不同交换机上的端口的DBID相同,说明这些端口连接在同一Segment上。如在图1中,可以通过读取交换机的端口参数得知交换机B3的F0/1端口的DBID是0032.0002.b9cf.1ac0,交换机B2的F0/1端口的DBID同样是0032.0002.b9cf.1ac0,这说明B2的F0/1端口与B3的F0/1端口直连。通过该方法可以发现运行SpanningTree协议的网络结构。

如果全网都运行SpanningTree协议,通过该方法可以快速而简单地发现其网络结构。但该方法不能使用在没有运行SpanningTree协议的LAN上,所以当LAN是混合式时,应综合采用本文所介绍的方法。

事实上,通过SNMP协议同样可以获得上述步骤中的所有信息,从而为实现网管开发提供了条件。此外,笔者为叙述简单起见,在上文中假定由以太网交换机组成的LAN不支持VLAN技术。但实际上,上述方法同样适用于支持VLAN技术的LAN。因支持VLAN的LAN一定存在一个包含所有交换机在内的管理VLAN?缺省情况下为VLAN1?,我们只需把上述方法针对“VLAN1”进行分析,就可以很容易地得到这种LAN的物理拓扑结构。

STP生成树协议原理及配置--从入门到精通

STP生成树协议原理及配置—从入门到精通 生成树协议(Spanning-Tree Protocol,以下简称STP)是一个用于在局域网中消除环路的协议。运行该协议的交换机通过彼此交互信息而发现网络中的环路,并适当对某些端口进行阻塞以消除环路。由于局域网规模的不断增长,STP已经成为了当前最重要的局域网协议之一。 STP的算法 STP将一个环形网络生成无环拓朴的步骤: 选择根网桥(Root Bridge) 选择根端口(Root Ports) 选择指定端口(Designated Ports) 选择根网桥的依据 网桥ID(BID) 网桥ID是唯一的,交换机之间选择BID值最小的交换机作为网络中的根网桥 STP选择根网桥举例 根据网桥ID选择根网桥 选择根端口的依据 在非根网桥上选择一个到根网桥最近的端口作为根端口 选择根端口的依据是: 根路径成本最低 直连(上游)的网桥ID最小 端口(上游)ID最小 根路径成本 根路径成本(开销)-是网桥到根网桥的路径上所有链路的成本之和,默认10M/100M自适应的路径开销为200000 STP选择根端口举例 在非根桥上,选择一个根端口(RP) 选择指定端口的依据 在每个网段上,选择1个指定端口 根桥上的端口全是指定端口 非根桥上的指定端口: 根路径成本最低

端口所在的网桥的ID值较小 端口ID值较小 STP选择指定端口举例 在每个网段选择1个指定端口(DP) STP计算结果 经过STP计算,最终的逻辑结构为无环拓朴 STP举例 经过STP计算后的逻辑拓朴 BPDU(桥协议数据单元) 交换机之间使用BPDU来交换STP信息 BPDU Bridge Protocol Data Unit -桥协议数据单元 使用组播发送BPDU,组播地址为: 01-80-c2-00-00-00 BPDU分为2种类型: 配置BPDU -用于生成树计算 拓朴变更通告(TCN)BPDU -用于通告网络拓朴的变化 BPDU包含的关键字段 STP使用BPDU选择根网桥2-1 交换机启动时,假定自己是根网桥,在向外发送的BPDU中,根网桥ID 字段填写自己的网桥ID STP使用BPDU选择根网桥2-2 当接收到其他交换机发出的BPDU后,比较网桥ID,选择较小的添加到根网桥ID中 STP使用BPDU计算根路径成本2-1 根网桥发送根路径成本为0的BPDU STP使用BPDU计算根路径成本2-2 其他交换机接收到根网桥的BPDU后,在根路径成本上添加接收接口的路径成本,然后转发 生成树端口的状态 生成树计时器 STP状态机 在STP选举过程中,端口是不能转发用户数据的。端口一开始处于阻塞状态,这个状态只能接收BPDU;

三层交换机生成树协议

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 三层交换机生成树协议 甲方:___________________ 乙方:___________________ 日期:___________________

三层交换机生成树协议 篇一:网络工程技术生成树协议 1. 生成树stp的计算推导 (1) 手工计算推导出下图中的根交换机、根端口、指 定端口和阻塞端口 (假设每条链路带宽均为100mbps),最后 在packettracer6.0 模拟器上进行验证,通过抓包路径跟踪 的方法演示当主链路出现故障后的收敛过程和结果。 (2) 若使收敛时间更快速,可以采用哪种该进协议, 该方法的优势是什么? 优势: a、stp没有明确区分端口状态与端口角色,收敛时主要 依赖于端口状态的切换。Rstp比较明确的区分了端口状态与端口角色,且其收敛时更多的是依赖于端口角色的切换。 b、stp端口状态的切换必须被动的等待时间的超时。而 Rstp 端口状态的切换却是一种主动的协商。 c、stp中的非根网桥只能被动的中继bpdu。而Rstp中的非根网桥对bpdu的中继具有一定的主动性。 1、为根端口和指定端口设置了快速切换用的替换端口(alternateport) 和备

份端口(backupport) 两种角色,在根 端口/指定端口失效的情况下,替换端口/备份端口就会无 时延地进入转发状态,而无需等待两倍的转发时延(Forwarddelay)时间。 2、在只连接了两个交换端口的点对点链路中,指定端口只需与下游网桥进行一次握手就可以无时延地进入转发 状态。如果是连接了三个以上网桥的共享链路,下游网桥是不会响应上游指定端口发出的握手请求的,只能等待两倍Forwarddelay 时间进入转发状态。 3、将直接与终端相连而不是与其他网桥相连的端口定义为边缘端口(edgeport)。边缘端口可以直接进入转发状态,不需要任何延时。由于网桥无法知道端口是否直接与终端相连,因此需要人工配置。 (3) 交换机端口的颜色灯和闪烁频率,分别代表哪些含义?若要求交换机的端口直接接用户的pc机而不参与stp 运算,应如何进行设置? 颜色灯: 绿色灯表示可以发出 而黄色灯表示阻塞,不能发出闪烁频率:灯光闪烁说明有数据在传输,闪的快就说明比较频繁,也就是连续在端口上酉己置spanning-treeportfast 或

理解快速生成树协议(RSTP)

快速生成树协议(802.1w) 注:本文译自思科的白皮书Understanding Rapid Spanning Tree Protocol(802.1w). ---------------------------------------------------------------------------------------------------------------------- 介绍 Catalyst 交换机对RSTP的支持 新的端口状态和端口角色 端口状态(Port State) 端口角色(Port Roles) 新的BPDU格式 新的BPDU处理机制 BPDU在每个Hello-time发送 信息的快速老化 接收次优BPDU 快速转变为Forwarding状态 边缘端口 链路类型 802.1D的收敛 802.1w的收敛 Proposal/Agreement 过程 UplinkFast 新的拓扑改变机制 拓扑改变的探测 拓扑改变的传播 与802.1D兼容 结论 ---------------------------------------------------------------------------------------------------------------------- 介绍 在802.1d 生成树(STP)标准设计时,认为网络失效后能够在1分钟左右恢复,这样的性能是足够的。随着三层交换引入局域网环境,桥接开始与路由解决方案竞争,后者的开放最短路由协议(OSPF)和增强的内部网关路由协议(EIGRP)能在更短的时间提供备选的路径。 思科引入了Uplink Fast、Backbone Fast和Port Fast等功能来增强原始的802.1D标准以缩短桥接网络的收敛时间,但这些机制的不足之处在于它们是私有的,并且需要额外的配置。快速生成树协议(RSTP;IEEE802.1w)可以看作是802.1D标准的发展而不是革命。802.1D 的术语基本上保持相同,大部分参数也没有改变,这样熟悉802.1D的用户就能够快速的配置新协议。在大多数情况下,不经任何配置RSTP的性能优于思科的私有扩展。802.1w能够基于端口退回802.1D以便与早期的桥设备互通,但这会失去它所引入的好处。

H3C交换机与Cisco交换机STP协议对接注意事项

1、H3C交换机与CISCO交换机的MST互通 (1)由于思科对于mstp摘要计算方法特殊,导致H3C交换机和CISCO交换机在做MSTP对接时,即使它们的域配置相同,各自计算出的配置摘要也会不相同; (2)可通过如下方法和CISCO MSTP实现域内多实例的互通: 保证H3C交换机和CISCO交换机的MSTP域配置完全相同; 在全局和任一个和CISCO交换机相连的端口上使能Configuration Digest Snooping功能:stp config-digest-snooping。 [系统视图]stp config-digest-snooping [端口视图]stp config-digest-snooping (3)由于CISCO的MSTP状态机实现机制与H3C的有所不同,导致CISCO设备与H3C设备相连的指定端口不能快速迁移到Fowarding状态。为实现快速迁移,可在和CISCO设备互连的端口配置下面的命令: [端口视图] stp no-agreement-check [系统视图] stp interface interfacename no-agreement-check 2、H3C交换机与PVST+互通问题 (1)PVST+是基于vlan的私有协议,要与之互通必须满足一定条件才能互通配合; (2)PVST+在端口PVID的VLAN里发送的是标准BPDU报文,但在其它VLAN内发送的是特殊的SNAP报文。对于SNAP封装的Type字段,在以太网封装中,对Type 字段要求是值必须大于0x600,以此来区分Type和Length。 (3)正是由于PVST+报文封装格式中这个字段导致报文可能被许多设备丢弃而不做二层转发。在组网时: access口可以互通。 如果是trunk口,则必须保证下游discarding端口与PVST+逻辑discarding端口一致。也就是说标准stp设备只能做下游设备,不得做根。 PVST+与mstp多实例无法互连。

RSTP快速生成树协议的配置课程设计

石河子大学 信息科学与技术学院 <网络技术>课程设计成果报告
2014—2015 学年第一学期
题目名称:
利用快速生成树协议(RSTP) 实现现交换机之间的冗余链路备份
专 班 学
业: 级: 号:
计算机科学与技术 计科 2012(一)班 2012508013 蒋 曹 能 传 凯 东
学生姓名: 指导教师:
完成日期:二○一五

一 月 七




一 课题介绍 ......................................................................................................................................................... - 3 1.1 课题名称 ............................................................................................................................................... - 3 1.2 课题简介 ............................................................................................................................................... - 3 1.3 课题拓展 ............................................................................................................................................... - 3 二 RSTP 简介....................................................................................................................................................... - 3 三 实验环境介绍 ................................................................................................................................................. - 5 3.1 实验软硬件环境 ................................................................................................................................... - 5 3.2 实验参数 ............................................................................................................................................... - 5 3.3 实验拓扑图 ........................................................................................................................................... - 8 四 实验内容 ......................................................................................................................................................... - 8 五 实验详细步骤 ................................................................................................................................................. - 9 5.1 绘制实验拓扑 ....................................................................................................................................... - 9 5.2 交换机及 PC 的基本配置 .................................................................................................................... - 9 5.3 Spanning-tree 的配置 .......................................................................................................................... - 13 5.3 链路测试 ............................................................................................................................................. - 14 六 课题总结 ....................................................................................................................................................... - 17 附录 A 参考文献................................................................................................................................................ - 18 -

交换机知识生成树协议

交换机知识--生成树协议 STP(Spanning Tree Protocol,生成树协议)是根据IEEE 802.1D 标准建立的,用于在局域网中消除数据链路层物理环路的协议。运行该协议的设备通过彼此交互信息发现网络中的环路,并有选择的对某些端口进行阻塞,最终将环路网络结构修剪成无环路的树型网络结构,从而防止报文在环路网络中不断增生和无限循环,避免设备由于重复接收相同的报文所造成的报文处理能力下降的问题发生。 STP采用的协议报文是BPDU(Bridge Protocol Data Unit,桥协议数据单元),也称为配置消息,BPDU 中包含了足够的信息来保证设备完成生成树的计算过程。STP即是通过在设备之间传递BPDU来确定网络的拓扑结构。 BPDU格式及字段说明 要实现生成树的功能,交换机之间传递BPDU报文实现信息交互,所有支持STP协议的交换机都会接收并处理收到的报文。该报文在数据区里携带了用于生成树计算的所有有用信息。 标准生成树的BPDU帧格式及字段说明: Protocol identifier:协议标识 Version:协议版本 Message type:BPDU类型 Flag:标志位 Root ID:根桥ID,由两字节的优先级和6字节MAC地址构成 Root path cost:根路径开销 Bridge ID:桥ID,表示发送BPDU的桥的ID,由2字节优先级和6字节MAC地址构成 Port ID:端口ID,标识发出BPDU的端口 Message age:BPDU生存时间

Maximum age:当前BPDU的老化时间,即端口保存BPDU的最长时间 Hello time:根桥发送BPDU的周期 Forward delay:表示在拓扑改变后,交换机在发送数据包前维持在监听和学习状态的时间 STP的基本概念 桥ID(Bridge Identifier):桥ID是桥的优先级和其MAC地址的综合数值,其中桥优先级是一个可以设定的参数。桥ID越低,则桥的优先级越高,这样可以增加其成为根桥的可能性。 根桥(Root Bridge):具有最小桥ID的交换机是根桥。请将环路中所有交换机当中最好的一台设置为根桥交换机,以保证能够提供最好的网络性能和可靠性。 指定桥(Designated Bridge):在每个网段中,到根桥的路径开销最低的桥将成为指定桥,数据包将通过它转发到该网段。当所有的交换机具有相同的根路径开销时,具有最低的桥ID的交换机会被选为指定桥。 根路径开销(Root Path Cost):一台交换机的根路径开销是根端口的路径开销与数据包经过的所有交换机的根路径开销之和。根桥的根路径开销是零。 桥优先级(Bridge Priority):是一个用户可以设定的参数,数值范围从0到32768。设定的值越小,优先级越高。交换机的桥优先级越高,才越有可能成为根桥。 根端口(Root Port):非根桥的交换机上离根桥最近的端口,负责与根桥进行通信,这个端口到根桥的路径开销最低。当多个端口具有相同的到根桥的路径开销时,具有最高端口优先级的端口会成为根端口。 指定端口(Designated Port):指定桥上向本交换机转发数据的端口。 端口优先级(Port Priority):数值范围从0到255,值越小,端口的优先级就越高。端口的优先级越高,才越有可能成为根端口。 路径开销(Path Cost):STP协议用于选择链路的参考值。STP协议通过计算路径开销,选择较为“强壮”的链路,阻塞多余的链路,将网络修剪成无环路的树型网络结构。 生成树基本概念的组网示意图如图所示。交换机A、B、C三者顺次相连,经STP计算过后,交换机A被选为根桥,端口2和端口6之间的线路被阻塞。 桥:交换机A为整个网络的根桥;交换机B是交换机C的指定桥。 端口:端口3和端口5分别为交换机B和交换机C的根端口;端口1和端口4分别为交换机A和交换机B 的指定端口;端口6为交换机C的阻塞端口。

Cisco交换机之STP协议简单详解

Cisco交换机之STP协议简单详解及实验 Cisco交换机之STP协议简单详解及实验 前面的学习中,我们已经掌握通过交换机组网,但是,怎样加强企业网络的可靠性呢?在实际网络环境中,可以通过物理环路解决网络的可靠性,当一跳链路断开或者出现故障,另一条链路任然可以传输数据,但是,在交换网络中,当交换机收到一个未知目的地址的数据帧,交换机会广播出去,这样,在交换网络中,就会产生一个双向广播环,甚至广播风暴,导致交换机死机。 本章的STP(Spanning Tree Protocol 生成树协议),它就是在逻辑上断开物理环路,防止产生广播风暴,而一旦正在用的线路出现故障,被逻辑断开的线路又重新接通,继续传输数据。 在介绍STP之前,首先回顾一下交换机的工作原理 (1)交换机通过学习数据帧中的源MAC地址生成MAC地址表。 (2)交换机查看数据帧的目标MAC地址,根据MAC地址表转发数据。 (3)如果交换机MAC地址表中没有匹配项,则向除了收到这个数据帧的端口以外的所有端口广播这个数据帧。 如果在一个物理环路的网络中,交换机收到一个未知目标地址的数据帧,它会向其他交换机广播,而其他交换机也没有相应的MAC地址对应,又会向除接受端口之外的端口广播,这样,在网络中就产生了双向广播环。 一.STP概述 1.STP叫做生成树协议,就是把一个环形的结构改变成一个树形的结构 二.STP工作原理 1.生成树算法 (1)选择根网桥(Root Bridge) 选择根网桥的依据是网桥ID(8字节的字段)前2字节为网桥优先级(范围是0--65535,默认值是32768),后6字节是网桥的MAC地址。 (2)选择根端口(Root Ports) 选择根端口的依据按照顺序是: 到根网桥最底的根路径成本 直连的网桥ID最小 端口ID最小 下面是带宽与路径成本的关系 链路带宽(Mb/s)路径成本 10 100 16 62 45 39 100 19 155 14 622 6 1000 4 10000 2 端口ID是一个2字节的STP参数,前8位是端口优先级(范围是0--255,默认是128)后8位是端口编号,注意:端口编号不是端口号,但是端口号低的端口,端口编号值也较小。

STP 生成树协议配置

实验八生成树配置 实验1 【实验名称】 生成树协议STP 【实验目的】 理解生成树协议STP的配置及原理。 【背景描述】 某学校为了开展计算机教学和网络办公,建立了一个计算机教室和一个校办公区,这两处的计算机网络通过两台交换机互连组成内部校园网,为了提高网络的可靠性,网络管理员用2条链路将交换机互连,现要在交换机上做适当配置,使网络避免环路。 本实验以2台S2126G交换机为例,2台交换机分别命名为SwitchA, SwitchB。PC1与PC2在同一个网段,假设IP地址分别为192.168.0.137,192.168.0.136,网络掩码为255.255.255.0 。 【实现功能】 使网络在有冗余链路的情况下避免环路的产生,避免广播风暴等。 【实验拓扑】 F0/3F0/3 【实验设备】 S2126G(2台) 【实验步骤】

第一步:在每台交换机上开启生成树协议.例如对SwitchA做如下配置: SwitchA#configure terminal !进入全局配置模式 SwitchA(config)#spanning-tree !开启生成树协议 SwitchA(config)#end 验证测试:验证生成树协议已经开启 SwitchA#show spanning-tree !显示交换机生成树的状态 StpVersion : MSTP SysStpStatus : Enabled BaseNumPorts : 24 MaxAge : 20 HelloTime : 2 ForwardDelay : 15 BridgeMaxAge : 20 BridgeHelloTime : 2 BridgeForwardDelay : 15 MaxHops : 20 TxHoldCount : 3 PathCostMethod : Long BPDUGuard : Disabled BPDUFilter : Disabled ###### MST 0 vlans mapped : All BridgeAddr : 00d0.f8ef.9e89 Priority : 32768 TimeSinceTopologyChange : 0d:0h:0m:8s TopologyChanges : 0 DesignatedRoot : 800000D0F8EF9D09 RootCost : 200000 RootPort : Fa0/1 CistRegionRoot : 800000D0F8EF9E89 CistPathCost : 0 SwitchA#show spanning-tree interface fastthernet 0/1 !显示交换机接口fastthernet 0/1的状态 PortAdminPortfast : Disabled PortOperPortfast : Disabled PortAdminLinkType : auto PortOperLinkType : point-to-point PortBPDUGuard: Disabled PortBPDUFilter: Disabled

STP生成树协议原理与算法简析

STP生成树协议原理与算法简析 简介 在实际的网络环境中,物理环路可以提高网络的可靠性,当一条线路断掉的时候,另一条链路仍然可以传输数据。但是,在交换网络中,当交换机接收到一个未知目的地址的数据帧时,交换机的操作是将这个数据帧广播出去,这样,在存在物理的交换网络中,就会产生一个双向的广播环,甚至产生广播风暴,导致交换机死机。这就产生一个矛盾,需要物理环路来提高网络可靠性,而环路又可能产生广播风暴,如何才能两全其美呢? 本章将要讲述的STP,就是用来解决这个矛盾的。STP(Spanning Tree Protocol,生成树协议)是根据IEEE 802.1D 标准建立的,用于在局域网中消除数据链路层物理环路的协议。运行该协议的设备通过彼此交互信息发现网络中的环路,并有选择的对某些端口进行阻塞,最终将环路网络结构修剪成无环路的树型网络结构,从而防止报文在环路网络中不断增生和无限循环,避免设备由于重复接收相同的报文所造成的报文处理能力下降的问题发生。 STP采用的协议报文是BPDU(Bridge Protocol Data Unit,桥协议数据单元),也称为配置消息,BPDU中包含了足够的信息来保证设备完成生成树的计算过程。STP即是通过在设备之间传递BPDU来确定网络的拓扑结构。 1 STP 生成树协议 1.1 STP的主要作用 消除环路:通过阻断冗余链路来消除网络中可能存在的路径回环。 链路备份:当前活动路径发生故障时,激活冗余备份链路,恢复网络连通性。 1.2 STP的基本原理: 通过在交换机之间传递一种特殊的协议报文——BPDU(在IEEE 802.1D中这种协议报文被称为“配置消息”)来确定网络的拓扑结构。配置消息中包含了足够的信息来保证交换机完成生成树计算。(注:此BPDU被称为配置BPDU,另外STP还有TCN BPDU。)

最新实验3:交换机端口配置与生成树协议配置

实验3:交换机端口配置与生成树协议配 置

实验三:交换机端口配置与生成树协议配置 一、实验目的 掌握Quidway系列以太网交换机端口常见配置命令的使用方法、重点掌握端口聚合的配置命令的使用方法;掌握STP协议基本配置,通过改变交换机参数来改变生成树结构,从而进一步加深对STP协议的理解。 二、实验原理和内容 1、交换机的基本工作原理 2、配置交换机的方法和命令 3、STP的基本原理及配置 三、实验环境以及设备 环境一:2台交换机、2台Pc机、双绞线若干 环境二:4台交换机、2台Pc机、双绞线若干 四、实验步骤(操作方法及思考题) 0、在作实验前,请在用户视图下使用“reset saved-configuration”命令和“reboot” 命令分别将2台交换机的配置都清空,以免前一个班的实验留下的配置对本次实验产生影响。 1、请任选一台交换机,练习使用如下端口配置或显示命令,请把它们的语法和 功能写到实验报告中。 (1)description(1分) (2)duplex(1分) (3)speed(1分)

(4)flow-control(1分) (5)display interface(1分) 答:对以太网端口进行必要的描述:[Quidway-Ethernet0/1]description <任意词> 端口工作模式配置:[Quidway-Ethernet0/1] duplex { full | half | auto} 端口速率配置:[Quidway-Ethernet0/1] speed { 10 | 100 | 1000 | auto } 流量控制配置:[Quidway-Ethernet0/1] flow-control [Quidway-Ethernet0/1] undo flow-control 显示端口配置信息:[任意视图] display interface ethernet0/1 2、链路聚合配置: ?Skip Record If...? 图1:链路聚合配置 (1)请采用2台交换机组网,交换机之间通过3条双绞线互连,网络环境如图1所示(注:E0/1即为 Ethernet0/1端口,在39或36系列的交 换机上,是E1/0/1端口)。请分别在两台交换机上输入必要的命 令,实现三条链路的聚合。请把你所输入的命令写到实验报告中。 (两台交 (2)换机上的命令都要写)(10分) 答:SwitchA: SwitchB: [Quidway]sysname SwitchA [Quidway]sysname SwitchB [SwitchA]interface ethernet0/1 [SwitchB]interface ethernet0/1 [SwitchA -Ethernet0/1] duplex full [SwitchB -Ethernet0/1] duplex full [SwitchA -Ethernet0/1] speed 100 [SwitchB -Ethernet0/1] speed 100 [SwitchA-Ethernet0/1]return [SwitchA-Ethernet0/1]return sys sys [SwitchA]interface ethernet0/2 [SwitchB]interface ethernet0/2 [SwitchA -Ethernet0/2] duplex full [SwitchB -Ethernet0/2] duplex full

交换机生成树协议

竭诚为您提供优质文档/双击可除 交换机生成树协议 篇一:交换机生成树协议指导书 交换机生成树协议指导说明 一、实训目的: 掌握生成树一些的启动和配置方法,掌握生成树协议的查看命令。 二、背景描述: 你是某公司的网管,为保证公司里的网络正常通讯,你将三台交换机连接起来,但是这样会出现环路,你必须想一个方法来清除交换机的环路。 三、实训设备: 1.电脑 2.思科模拟器packettracer 三、实训任务 任务:交换机生成树协议 四、实训步骤 任务:交换机生成树协议 默认的,在思科设备上,生成树协议是开启的,但是在

其他厂家的设备中,生成树协议是关闭的,需要手动开启。 在Vlan1-3上面开启生成树协议 switch(config)#spanning-treevlan1-3 开启所有access接口的端口快速转换功能 switch(config)#spanning-treeportfastdefault 在Vlan1-3上面关闭生成树协议 switch(config)#nospanning-treevlan1-3 在所有Vlan端口上开启生成树协议 switch(config)#spanning-treemodepvst 在所有Vlan端口上开启快速生成树协议 switch(config)#spanning-treemoderapid-pvst 配置生成树协议的优先级 switch(config)#spanning-treevlanxxpriority参 数;xx指的是vlanid 设置根交换机(主) switch(config)#spanning-treevlanxxrootprimary设置根交换机(主) 设置根交换机(备) switch(config)#spanning-treevlanxxrootsecondary 设置Vlan端口优先级(一般来说,根端口的优先级为1)switch(config-if)#spanning-treevlanxxport-priority 参数设置根端口

Cisco交换机VLAN配置及生成树协议

实验六交换机VLAN配置及生成树协议 6.1 交换机的VLAN (略,见课本) 6.2 交换机生成树协议 (略,见课本) 6.3 实验六交换机VLAN配置及生成树协议 6.3.1实验目的 理解交换机VLAN的基本概念与工作原理,了解VLAN协议IEEE 802.1Q。在掌握交换机基本配置操作的基础上,学会在交换机上对规划的VLAN作相应配置。 理解交换机生成树的基本概念与工作原理,了解生成树协议802.1D与快速生成树协议802.1W,学会在交换机上设置生成树功能。 6.3.2 实验准备 (1)实验设备 ?锐捷路由组网实验台,每个机架上有4台锐捷路由器、4台锐捷交换机,本次实验每组使用2台锐捷交换机,一个机架可供2组同时做实验; ?带9针COM口、双10/100M网卡的PC机若干台。 ?PC机COM口连接交换机的console口配置用的连线: 说明:用锐捷路由组网实验台实验时:因为用户PC机本身的网卡 NIC1已插有RJ45 UTP线连接到机房核心交换机再连到实验机架上 的锐捷管理控制服务器,而后者已有串口线连接到机架上各交换机 的console口,PC机可通过使用HTTP Web网页的方法访问锐捷管 理控制服务器,间接由其串口向交换机的console口发出配置命令, 因此用户PC机COM口不再需要连接交换机的console口; ?PC机与交换机连接用的RJ45-to-RJ45 straight-through cable (RJ45 UTP直通线) 2根: 说明:用锐捷路由组网实验台实验时:因为用户PC机本身的网卡 NIC2已插RJ45 UTP直通线连接到实验台机架下部理线架上的相应插 座,因此只需用RJ45 UTP直通线将实验台下部的理线架上相应插座

Cisco快速生成树协议RSTP协议原理及配置

Cisco快速生成树协议RSTP协议原理及配置

实验8 Cisco 快速生成树协议RSTP 协议原理及配置 一、相关知识介绍 1、生成树协议的主要功能有两个:一是在利用生成树算法、在以太网络中,创建一个以某台交换机的某个 端口为根的生成树,避免环路。二是在以太网络拓扑发生变化时,通过生成树协议达到收敛保护的目的。 2、根网桥的选择流程: (1)第一次启动交换机时,自己假定是根网桥,发出BPDU报文宣告。 (2)每个交换机分析报文,根据网桥ID选择根网桥,网桥ID小的将成为根网桥(先比较网桥优先级,如果相等,再比较MAC地址)。 (3)经过一段时间,生成树收敛,所有交换机都同意某网桥是根网桥。 (4)若有网桥ID值更小的交换机加入,它首先通告自己为根网桥。其它交换机比较后,将它当作新的根网桥而记录下来。 3、RSTP 协议原理 STP并不是已经淘汰不用,实际上不少厂家目前还仅支持STP。STP的最大缺点就是他的收敛时间太长,对于现在网络要求靠可靠性来说,这是不允许的,快速生成树的目的就是加快以太网环路故障收敛 的速度。 (1)RSTP 5种端口类型 STP定义了4种不同的端口状态,监听(Listening),学习(Learning),阻断(Blocking)和转发(Forwarding),其端口状态表现为在网络拓扑中端口状态混合(阻断或转发),在拓扑中的角色(根 端口、指定端口等等)。在操作上看,阻断状态和监听状态没有区别,都是丢弃数据帧而且不学习MAC 地址,在转发状态下,无法知道该端口是根端口还是指定端口。RSTP有五种端口类型。根端口和指定端口这两个角色在RSTP中被保留,阻断端口分成备份和替换端口角色。生成树算法(STA)使用BPDU来决定端口的角色,端口类型也是通过比较端口中保存的BPDUB来确定哪个比其他的更优先。 1)根端口:非根桥收到最优的BPDU配置信息的端口为根端口,即到根桥开销最小的端口,这点和STP 一样。请注意图8-16上方的交换机,根桥没有根端口。按照STP的选择根端口的原则,SW-1和SW-2和根连接的端口为根端口。 2)指定端口:与STP一样,每个以太网网段段内必须有一个指定端口。假设SW-1的BID比SW-2 优先,而且SW-1的P1口端口ID比P2优先级高,那么P1为指定端口,如图8-17所示。

以太网交换机中生成树协议的实现

摘要:生成树算法和协议是自动生成网络拓扑结构的基础。本文阐述了生成树算法和协议的内容,并给出了在以太网交换机中的具体实现过程。我们通过实践证明,该方尖对于解析最优网络拓扑结构效果良好。 关键词:以太网交换机网桥拓扑结构生成树BPDU 以太网交换机在第二层即MAC层必须具有路由功能。目前普遍使用的MAC层路由方式是IEEE802.1组织发布的标准:基于生成树算法的路由。在局域网内的交换机执行了生成树算法以后,会组成一个生成树动态拓扑结构,该拓扑结构使局域网内任意两个工作站之间不存在回路,以防止由此产生的局域网广播风暴,同时,生成树算法还负责监测物理拓扑结构的变化,并能在拓扑结构发生变化之后建立新的生成树。例如当一个交换机坏了或某一条数据通咱断了后,能提供一定的容错能力而重新配置生成树的拓扑结构。交换机根据生成树动态拓扑结构的状态信息来维护和更新MAC路由表,最终实现MAC层的路由。 一、以太网交换机在MAC层体系结构 以太网交换机在MAC层的功能主要是实现LAN的互连。根据IEEE802.1D协议的规定,在MAC层工作的体系结构必须包含以下内容:(1)一个用于连接交换机端口的MAC转发实体;(2)至少两个端口;(3)高层协议实体,其中包括交换机协议实体。如图1所示。 MAC转发实体主要实现交换机不同端口间的内部通信。该实体存储各个端口的工作状态并维护一个过滤数据库。数据库中存放了一张MAC地址表,用以实现MAC层的路由。当数据帧从一个端口的底层服务进程传上来时,MAC实体首先判断目的端口的工作状态,如果目的端口没有被阻塞,MAC转发实体将依据MAC地址表的对应关系将该帧从目的端口转发出去。同时MAC转发实体还可以进行过滤、记录MAC地址等操作。 交换机端口的功能是从与其相连的LAN上接收或传送数据。端口的状态由生成树算法规定,包括转发、学习、监听、阻塞和禁止状态。 高层协议实体位于LLC层,主要用于计算和配置LAN的拓扑结构。下面介绍的生成树协议算法就是运行在该协议实体内,用来实现MAC层的路由。在运行生成树算法时,高层

计算机网络实验三 生成树的协议配置

惠州学院《计算机网络》实验报告 实验三生成树的协议配置 一.实验目的 在掌握环路产生的原因及危害性的基础上,学习STP的功能、原理及配置方法,从而了解利用冗余链路来提高网络安全性和可靠性的相关技术。 二.实验环境 1.交换机2台,二层三层均可,本实验使用的是二层交换机 2.实验用PC机2台 3.Console电缆2根 4.直连双绞线2根 5.交叉双绞线2根 三.实验内容和要求 (1)掌握链路冗余的重要性。 (2)了解广播风暴对网络性能造成的影响。 (3)掌握STP、RSTP和MSTP的概念以及相互之间的区别。 (4)学习生成树协议的配置方法。 四.网络拓扑图 五、实验步骤 生成树协议在部分交换机(如思科)上是自动打开的,管理员不需要进行配置。但在一些交换机(如锐捷)上默认是关闭的,如果网络中存在环路,则必须手动开启。根据如上的拓扑图,具体配置如下: 1.在交换机A上创建一个VLAN,然后将与PC1连接的端口添加到VLAN 10中。同时,将用于交换机之间连接的两个端口设置为tag模式。 Switch-A#configure terminal Switch-A(config)#vlan 10

Switch-A(config-vlan)#name test Switch-A(config-vlan)#exit Switch-A(config)#interface FastEthernet 0/6 Switch-A(config-if)#switchport access vlan 10 Switch-A(config-if)#end Switch-A(config)#interface FastEthernet 0/3 Switch-A(config-if)#Switchport mode trunk Switch-A(config-if)#exit Switch-A(config)#interface FastEthernet 0/4 Switch-A(config-if)#Switchport mode trunk Switch-A(config-if)#end 2.在交换机B上创建一个VLAN,然后将与PC2连接的端口添加到VLAN 10中。同时,将用于交换机之间连接的两个端口设置为tag模式。 Switch-B#configure terminal Switch-B(config)#vlan 10 Switch-B(config-vlan)#name test Switch-B(config-vlan)#exit Switch-B(config)#interface FastEthernet 0/6 Switch-B(config-if)#switchport access vlan 10 Switch-B(config-if)#end Switch-B(config)#interface FastEthernet 0/3 Switch-B(config-if)#Switchport mode trunk Switch-B(config-if)#exit Switch-B(config)#interface FastEthernet 0/4 Switch-B(config-if)#Switchport mode trunk Switch-B(config-if)#end 3.如果该交换机没有启用生成树协议,则分别在A和B交换机上启用相应的协议,以免产生环路。Cisco交换机开启生成树协议的命令为:spanning-tree vlan 1 Switch-A(config)#spanning-tree vlan 1 Switch-B(config)#spanning-tree vlan 1 锐捷交换机开启生成树协议的命令为:spanning-tree mode rstp 六、实验截图

相关文档
最新文档