初升高数学衔接班教案(教师版)韦达定理的运用

初升高数学衔接班教案(教师版)韦达定理的运用
初升高数学衔接班教案(教师版)韦达定理的运用

方程与方程组以及不等式

韦达定理

一、 【归纳初中知识】

1、一元二次方程的解法在初中时我们已学习过配方法、公式法、因式分解法等主要解法。

2、对于任意的一元二次方程)0(02

≠=++a c bx ax ,通过判别式ac b 42-=?能够判断其方程解的个数。

二、 【衔接高中知识】

我们已经知道)0(02

≠=++a c bx ax 如果有两个解,则其分别为; a ac b b x 2421-+-=,a

ac b b x 2422---= 则我们可以得到???

????=-=+a c x x a b x x 2121 上面揭示了二次方程的根与系数c b a ,,之间关系的等式我们叫做韦达定理,韦达定理在未来高中三年的学习中占据着非常重要的地位。

反之,若21,x x 满足???

????=-=+a c

x x a b x x 2121,则我们可以说21,x x 一定是)

0(02≠=++a c bx ax 的两个解,这叫做韦达定理的逆定理。

三、 【例题精讲】

例1:若21,x x 是0122=-+x x 的两个根,求:

(1)2221x x +;(2)22

2111x x +;(3)21x x -;(4)3231x x +,. 解析:略,注意a

x x x x x x ?=-+=-21221214)(

例2:任意写出一个二次方程,使得它的两个根分别为5-和

32. 解析:0)32)(5(=-+x x 或03103132=-+

x x

例3:已知关于x 的方程014

1)1(22=+++-k x k x ,根据下列条件,分别求出满足条件的k 值.

(1)方程两实根之积为5;(2)方程两实根满足21x x =.

解析:(1)451410)141(4])1([22122=????

????=+=≥+-+-=?k k x x k k (2)??????????

???>?>?-=?=+=?=??=?=无解23010230212121k k x x k x x x x 综上,若21x x =,则2

3=

k

例4:若21,x x 是方程02324222=-++-m m mx x 的两个根,当m 为何值时,2221x x +取得最小值?请你求出这个最小值 解析:23222322)2(2)(222

212212221+-=-+?-=-+=+m m m m m x x x x x x 当43=m 时,有最小值8

7 例5:已知关于x 的方程04)2(222=++-+m x m x 有两个实数根,并且两根平方和比两根

之积大21,求m 的值.

解析:1017163)(221221212221-=??

??≥?--=-+=-+m m m x x x x x x x x

例6:若关于x 的方程02=++a x x 有两个根:

(1)当其中一个大于1,另一个小于1时,求a 的取值范围;

(2)当两个根都小于1时,求a 的取值范围.

解析:(1)由已知设0)1)(1(1,12121<--?<>x x x x 且0>?

所以20

41021)()1)(1(212121--<+=++-=--a a a x x x x x x (2)法一:41204102)1)(1(21≤<-?????

≥-=?>+=--a a a x x 法二:借鉴二次函数图形,根据两根均小于1可知当1=x 时,函数值011>++a ,同时也需满足0≥?

例7:若21,x x 是方程01)12(22=+++-k x k x 的两实数根,且均大于1.

(1)求实数k 的取值范围;

(2)若2

121=x x ,求k 的值 解析:(1)143430)1(4)12(101)12(1)1)(1(22221≠≥???

???≥?≥+-+=?≠?>++-+=--k k k k k k k k x x 且 (2))(171)12(29219)12(3122221

221212121舍去或==?++=??????=+==+?=+=+k k k k x k x x x k x k x x

***例8:已知b a ,是一元二次方程012=--x x 的两个实数根,求)2(2

2-+b a a 的值. 解析:120

101222-=-??????=--=--b b b b a a 01)1()2(2222=+=+-=-+=-+∴ab ab a a b a a b a a

课后习题

1、关于x 的一元二次方程0522=++-a a x ax 其中一个根是0,则a =10-或

2、关于x 的方程07)3(102=-++-m x m x :

(1)若有一个根为0,则7=m ,此时方程另一个根为:1

(2)若两根之和为53-

,则9-=m ,此时方程两个根分别为:1,58- 3、方程01222=-+x x 的两根为21,x x ,则321=-x x

4、设21,x x 为方程02=++q px x 的两根,且1,121++x x 为方程02

=++p qx x 的两根,则________________,==q p 解析:由题意有???-=-=????=++--=+-????=++-=++???=-=+3112)1)(1(221

212121q p p q p q p p x x q x x q x x p x x 和 *5、已知实数c b a ,,满足b a -=6,92

-=ab c ,则____________,______,===c b a 解析:由题意有的两根是方程096,9

6222=++-????+==+c x x b a c ab b a 300)9(4362==?=?≥+-=?∴b a c c

***6、若1≠ab ,且09201952=++a a ,05201992=++b b ,则9

5=a b 解析:的两根为方程09201951,091201915092019509120191505201992222=++??????=+?+?=++=+?+?

?=++x x b a b b

a a

b b b b

故5

9=b a 7、已知关于x 的方程)0(02≠=++a c bx ax 两根之比为5:3,求证:21564b ac = 证明:设222222121211564156415641585,3b ac ac b a c a b a c

k x x a b k x x k x k x =?=?=????

????==-==+?==

8、已知方程05)2(22

2=-+--a x a x 有实数根,且两根之积等于两根之和的2倍,求a 解析:由题意?????==?-=-?+=≤?≥---?≥?)(31)2(45)(24

90)5(4)2(402212

122舍去或a a a a x x x x a a a 综上,1=a

9、若一元二次方程04)1(2=++-x m x 的两个根均满足30≤≤x ,求m 的取值范围 法一:借助函数图像可知:

①当3,0==x x 时函数值均0≥3

1004)1(39≤?≥++-?m m ②350≥-≤?≥?m m 或 ③对称轴5132

10≤≤-?≤+≤

m m 综上,3103≤≤m

法二:设两根为21,x x ,则有31033

503100)3)(3(51602121≤≤????????≥-≤?≥?≤?≥--≤≤-?≤+≤m m m m x x m x x 或

韦达定理与一元二次不等式(教学设计)

韦达定理与一元二次不等式 一、教学目标 通过本节课学习,要达到以下三个目标: (1)知识目标:进一步学习一元二次不等式的解法,体会韦达定理在一元二次不等式中的应用。 (2)能力目标:体会数形结合、转化、分类讨论等数学思想方法,提高运算能力、逻辑思维能力。 (3)情感目标:激发学习数学的热情,培养勇于探索、勇于创新的精神,体会事物之间普遍联系的辩证思想,同时 认识到数学知识源自生产生活实际,是人类文化的结晶 这一特点。 二、教材分析 中学阶段涉及的一元二次内容由二次函数作为铺垫,高中阶段研究圆锥曲线中又有二次曲线,一元二次方程的根公式向我们提示了两根与系数间的密切关系,而韦达定理介绍的根与系数的关系是在求根公式的基础上,根与系数的进一步发现,这一发现在数学学科中具有较强的实用价值,学生在处理有关一元二次方程的问题时,比如一元二次不等式问题,就会多一些思想和方法,让解题更为简单、更为灵活,同时也为今后进一步的学习打下基 础。 三、学情分析 刚从初中升入高一的高职学生,基础薄弱,学习习惯较差,对初

中所学习知识的储备不够丰富,而且数形结合思想方面的缺失,望图生畏,这导致教师在教学过程中带来一定的困难。所以教师必须认识到这些在教学时不可盲目地拔高和追求一次到位,而在今后的学习中不滚动式、螺旋式逐步深化,多关注学生的学习过程。 四、重难点分析 (1)重点:一元二次不等式中韦达定理的应用 (2)难点:根据一元二次不等式的解集写出对应的一元二次不等式 五、教学方法 培养学生学会学习,学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务,如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”在教学过程中教师只是起到帮助建构和促进的作用。所以本节课采用了启发式和探究式相结合的教学方法,让教师的主导性和学生的主体性有机结合,使学生能够愉快的自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,并得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。 六、教学过程 (一)情景引入

最新初中数学之韦达定理

精品文档 精品文档 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根 12,x x ,那么1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 1.不解方程写出下列方程的两根和与两根差 (1)01032=--x x (2)01532=++x x (3)0223422 =--x x 2. 如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 3. 若两数和为3,两数积为-4,则这两数分别为 4. 已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += 5. 若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 6. 已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值: (1)2212x x += ; (2)2 111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = 7.已知关于x 的方程02)15(22=-++-k x k x ,是否存在负数k ,使方程的两个实数根的 倒数和等于4?若存在,求出满足条件的k 的值;若不存在,说明理由。 8.关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( ) (A )0 (B )正数 (C )-8 (D )-4 9.已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -3 10.已知方程0322=--x x 的两根为1x ,2x ,那么2 111x x +=( ) (A )-31 (B) 3 1 (C )3 (D) -3 11. 若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( ) (A )5或-2 (B) 5 (C ) -2 (D) -5或2 12.若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( ) (A )-21 (B) -6 (C ) 21 (D) -2 5 13.分别以方程122--x x =0两根的平方为根的方程是( )

(完整版)《新课程背景下初高中数学教学的衔接研究》课题开题报告

开远市教育科研“小课题” 《新课程背景下初高中数学教学的衔接研究》 课题研究开题报告 立项编号:20120661 课题名称:新课程背景下初高中数学教学的衔接 研究 课题类别:市级一般课题 研究领域:学科教学 课题负责人:刘红映 所在单位:开远市第九中学

《新课程背景下初高中数学教学的衔接研究》 课题开题报告 一、课题名称 《新课程背景下初高中数学教学的衔接研究》 二、课题研究周期 2012年6月—2013年9月(一年) 三、课题提出的背景 2009年云南省进入高中新课改,高中课程标准,教学大纲都有很大变化,数学结构、内容等都与往年有所改变,初高中脱节问题日益突出。近几年来普通高中办学规模不断扩大,学业水平起点不同的新生涌入高中,我校作为普及高中试点学校,学生录取成绩较低,被调查对象15届高一新生,入学数学成绩最高分85,最低分6,平均分约为52.4。初中基础较弱,大部分高一新生学习数学感觉很吃力,教师教学方面也倍感困难,不但要教授高中新知还要补充初中知识,因此研究衔接教学十分必要。通过分析初高中学习衔接方面存在问题,主要集中在以下几点: 1. 教材的变革与深化需要进行衔接教学 教材是课程建设的主要载体,是课程改革的主要内容之一,每次的课程改革都体现出新的课程理念,全新的课程设计,新课程改革后使用的教材,虽然初高中教材的难度都有所降低,但与初中义务制教材相比,高中现行教材(人教A 版)有如下特点:一是容量大,高中必修课本5本,高考考察选修内容理科3本,文科2本,另外高考选作题涉及选修4系列的三本课本。高中知识点增多、灵活性加大、课时减少、课容量增大、进度加快。二是内容抽象,高中教材不仅有大量抽象的数学符号和数学术语,我们既要准确理解他们的意义,区别与初中教学中的差距,同时还要能够运用它们进行推理、运算,这对刚进高中抽象思维能力不强的学生来说难度不小。三是起点高,从整个高中教材编排体系来看,要求高一学年完成必修1、2、3、4四本课本的教学,由于《函数》这一章太难,很容易让学生产生畏惧情绪,新教材又把空间立体几何安排在高一上学期,也超出了部分学生的思维水平和接受能力,造成知识脱节。加上高中受高考指挥棒的牵制,虽然教材缩减了不少内容,但许多教师不敢轻易降低难度,补充了大量的知识,人为加大初高中教材的内容难度差距。 2.学法与教法的变化需要进行衔接教学研究

教案韦达定理

教案韦达定理 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

教案:韦达定理(一) 王伟光 一、教学目标 1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力; 2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。培养逻辑思维及创新思维能力。 二、教学重点、难点 1.教学重点:根与系数的关系的发现及其推导. 2.教学难点:韦达定理的灵活应用. x2+2x﹣4=0 3x2+2x﹣6=0 2x2﹣5x﹣3=0 x 1+x 2 =? x 1 +x 2 =? x 1 +x 2 =? x 1x 2 =? x 1 x 2 =? x 1 x 2 =? 问题1: 对于一元二次方程的一般式ax2+bx+c=0(a≠0)是否也具备这个特征? x 1 +x 2 =-,x 1 ·x 2 =, 如何推导一元二次方程两根和与两根积和系数的关系? 设x 1 、x 2 是方程ax2+bx+c=0(a≠0)的两个根. ∴ a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - =.()0 4 2≥ -ac b 由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与 系数的关系)—韦达定理

三:韦达定理内容: 韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则 1212b c x +x =x x =a a -?,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。其逆命题:如果12x x ,满足1212b c x +x =x x =a a -?,,那么12x x ,是一元二次方程 ()2ax +bx+c=0a 0≠的两个根也成立。 四:韦达定理应用: 韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。金鼎培训将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用等。 (1)、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。 例题1: 若x 1,x 2是一元二次方程x 2﹣7x-2007=0的两根,则x 1+x 2与x 1x 2的值分别是【 】 练习:①下列一元二次方程两实数根和为﹣4的是【 】 A .x 2+2x ﹣4=0 B .x 2﹣4x+4=0 C .x 2+4x+10=0 D .x 2+4x ﹣5=0 韦达(法国1540-1603)

韦达定理在初中数学竞赛应用

韦达定理的应用 例1、 已知实数b a ≠,且满足)1(33)1(2+-=+a a ,2)1(3)1(3+-=+b b 则 b a a a b b +的值为( )(2004年全国初中数学竞赛试题第1题) (A )23 (B )-23 (C )-2 (D )-13 例2、实数t s .分别满足1,01999,01991922≠=++=++st t t s s ,求 t s st 14++的值。 (1999年全国初中数学竞赛试题) 例3、若1≠ab ,且有0520019,092001522=++=++b b a a ,则b a 的值是( ) (2001年全国初中数学联合竞赛试题) (A ) 59 (B )95 (C )52001- (D )92001 例4、已知0325,052322=-+=--n n m m ,其中n m .为实数,求n m 1- 的值。 (2000年江苏省初中数学竞赛试题)

例5、设0122=-+a a ,01224=--b b ,且012 ≠-ab 。 求200322)12(a a b ab +-+的值。(2003年全国初中数学联合竞赛初赛题) 练习: 1、 已知实数b a ,满足027,02722=+-=+-b b a a ,求 b a a b +的值。 2、 已知实数b a ,满足015,01522=--=--b b a a ,求 b a a b +的值。 3、 已知实数b a ,满足025,02522=++=++b b a a ,求 a b b a +。 4、 已知βα,是方程022)2(322=--++m x m x 的两根且 2=βα,求m 的值。 5、 已知21,x x 是方程06)53(422=---m x m x 的两根,且 2321=x x ,求m 的值。 6、 关于x 的方程)(09)(2b a x b a x <=+--的两实根为βα,,求αββα+的值。

数学初高中衔接教学讲义

初高中衔接教学讲义 一、常用公式 我们还可以通过证明得到下列一些乘法公式: (1)立方和公式 2233 ()()a b a a b b a b +-+=+; (2)立方差公式 2233 ()()a b a a b b a b -++=-; (3)三数和平方公式 2222 ()2()a b c a b c a b b c a c ++=+++++; (4)两数和立方公式 33223 ()33a b a a b a b b +=+++; (5)两数差立方公式 332 2()33a b a a b a b b -=-+-. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++. 例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 例3 ABC ?三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ?的形状. 例4 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值; (2)求2212 11 x x +的值;(3)求x 13+x 23的值. 练 习:填空 2222(2)4(a b c a b c +-=+++ ). 若2 12x mx k ++是一个完全平方式,则k 等于 (用m 表示) 已知:1,a x a +=用x 表示3 31a a +=_____________.

二、因式分解 2.1.十字相乘法 例5(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-. (5)222456x xy y x y +--+- 2.2.求根法 例6(1)221x x +-; (2)2244x xy y +-. 练 习 分解因式: (1)x 2+6x +8; (2)8a 3-b 3; (3)x 2-2x -1; (4)4(1)(2)x y y y x -++- (5)4 2 4139x x -+; (6)22 215x xy y -- (7)2 2 222b c ab ac bc ++++; (8)22 35294x xy y x y +-++-

高中数学_方程的根与函数的零点教学设计学情分析教材分析课后反思

§3.1.1 方程的根与函数的零点 一、导入新课(直接导入) 教师直接点出课题:上一章我们研究函数的图象性质,这一节我们讨论函数的应用,方程的根与函数的零点。 1、先观察下列三个一元二次方程的根与其相应的函数的图象: ①方程2 230x x --=与函数2 23y x x =--; ②方程2 210x x -+=与函数2 21y x x =-+; ③方程2 230x x -+=与函数2 23y x x =-+; 教师引导学生解方程,画函数图象(教师在黑板画出第一个函数图象),并引导学生发现方程的根与函数图象和x 轴交点坐标的关系。 容易知道,①中方程的两个根为121;3x x =-=,函数图象与x 轴有两个交点(-1,0),(3,0), ②中方程的两个实数根为121x x ==,函数图象与x 轴有一个交点(1,0),③中方程无实数根,函数图象与x 轴无交点。 在上面的三个例子中,我们发现: 方程有根,函数图象与x 轴就有交点,并且方程的根与函数图象与x 轴的交点横坐标相等。 2、那这个结论对一般的一元二次方程及其相应的函数也成立吗?(学生同桌之间交流完成下表) 0>V 0=V 0

函数 (2b a -+V ,0) ( 2b a --V ,0) (2b a -,0) 无交点 学生自行验证上述结论,结论成立。 3、这个结论对一般的方程及其相应的函数也成立吗? 函数y=f(x)与x 轴的交点在x 轴上,交点的纵坐标为0,那么,横坐标就是0= f(x)的解,也就是方程f(x)= 0的根。若方程有根,则说明所求的横坐标存在,即函数图象与x 轴的交点存在,且方程的根与函数图象与x 轴的交点横坐标相等。结论依然成立。 二、构建概念 由上述结论可知,函数图象与x 轴的交点可以把函数图象和方程联系起来,这样的点他还有一个特别的名字:零点。那么,怎样用数学语言来描述零点呢? 请看课本第87页的定义: 定义(教师板书):对于函数y=f(x),我们把使f(x)= 0的实数x 叫做函数y=f(x)的零点。 说明:1、零点不是点,而是实数; 2、零点就是方程的根。 我们结合所学的零点一起来描述一下刚刚的结论: 方程f(x)= 0有根 ?函数y=f(x)图象与x 轴有交点 ?函数y=f(x)有零点 三、例题演练 求下列方程的零点 3 2)3()4)(3)(2)(1()2(8 )1(23+-=----=-=x x y x x x x y x y 四、诱导启发 1、通过上面的学习,同学们都有哪些求函数零点的方法呢? (①求相应方程的根,②利用函数图象求交点) 2、若一个函数图象不能直接画出,它相应的方程也不易求根,我们又有什么方法来求得它的零点呢? 请同学们看课本例二。 例2、求函数f (x)=ln 26x x +-的零点的个数。(不易求根,不易画图) 学生会觉得非常困难,激发学生的好奇心和好胜心,并加以引导。 同学们,我们先把这个题目放在一边,来观察函数2 23y x x =--的图象(之前已在黑板上画出)。我们发现2 23y x x =--在区间[-2,1]上有零点,计算f (-2)·f (1)在区间[2,4]上呢?

第6讲韦达定理推理及常见计算-人教版暑假班九年级数学上册教学案(教育机构专用)

圆梦堂文化培训学校精品班教案 第 6 讲 1.根与系数的关系的猜想及证明 猜想:两根的和、两根的积与一元二次方程的系数a 、b 、c 有什么关系? 结论:=+21x x _____________,=21x x _____________。 证明猜想:一元二次方程 )0( 02≠=++a c bx ax 的求根公式: a ac b b 242-±-a c a ac a ac b b a a c b b a ac b b x x a b a b a ac b b a ac b b x x a ac b b x a a c b b x ==--=---?-+-=?∴- =-=---+-+-=+∴---= -+-=22 22222122212221444)4(242422242424,24

●归纳:一元二次方程根与系数的关系:(由于这是数学家韦达提出并证明了的,所以后人为了纪念就把这个公式叫做韦达定理) 即:两根之和等于方程一次项系数与二次项系数的比的相反数;两根之积等于常数项与二次项系数的比。 ●注意,韦达定理使用的前提:(042 ≥-ac b 且0≠a ) 2.用到根与系数的关系的几种常见的求值 (1) (2) (3) (4) (5) (6) 类型一:利用根的判别式判断一元二次方程根的情况 【例1】不解方程,求一元二次方程01322 =-+x x 两个根的①平方和;②倒数和。 答案:① 4 13 ②3 a c x x a b x x x x a c bx ax = ?-=+≠=++2121212,,,)0(0则的两根为 若方程

【例2】不解方程,求下列方程两个根的和与积: (1) 1562 =-x x ; (2) 9732 +-=x x ; (3) 2 415x x =--; 答案:(1)x 1+x 2=6, x 1x 2=-15 (2)x 1+x 2=-37, x 1x 2=3 (3)x 1+x 2=45-, x 1x 2=-4 1 【例3】求运用根与系数的关系一个一元二次方程,使它的两个根是:2 5 , 310- 答案:0505603 25 6522 =-+=-+ x x x x 或 1、设 21,x x 是方程0142 =+-x x 的两个根,则 =+21x x =21x x () 2 212 221-+=+x x x x = ()=-221x x ()2 =-214x x =+2 11 1x x 答案:4、 1、 2x 1x 2、 14 、 X 1+X 2 、12 4

一元二次方程之韦达定理

一对一个性化辅导教师授课学案 学生姓名年级初三科目数学授课老师相老师总课时数第几次课 3 授课时间审核人 本次课课题一元二次方程根与系数的关系应用例析及训练 教学目标韦达定理 授课内容 教学内容 对于一元二次方程,当判别式△= 时,其求根公式为:;若两根为,当△≥0时,则两根的关系为:;,根与系数的这种关系又称为韦达定理;它的逆定理也是成立的,即当,时,那么 则是的两根。一元二次方程的根与系数的关系,综合 性强,应用极为广泛,在中学数学中占有极重要的地位,也是数学学习中的重点。学习中,老师除了要求同学们应用韦达定理解答一些变式题目外,还 常常要求同学们熟记一元二次方程根的判别式 存在的三种情况,以及应用求根公式求出方程 的两个根,进而分解因式,即 。下面就对应用韦达定理可能出现的问题举例 做些分析,希望能给同学们带来小小的帮助。 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解?

分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 说明:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而 筛选出,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。 分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 说明:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。

初高中数学衔接研究报告

初高中数学衔接研究报告

————————————————————————————————作者: ————————————————————————————————日期: ?

初高中数学衔接教学的实验与研究研究报告 平舆县第一高级中学“初高中数学衔接教学的实验与研究”课题组 执笔人:韩雨濛 摘要: 国家教委在八十年代对初中数学教学要求和内容的调整,较大地降低了有关知识的要求,造成了初、高中数学教学的较为严重的脱节。从高一数学老师的现状看:各校大部分是教学不足5年的青年教师,有学历,有热情,但对高一数学教材不熟悉,对初中数学教材知之更少,他们急需要有一个学习、了解初高中数学数学教材的衔接与初高中教学的差异,以便于更好的组织教学,使学生更快适应高中、 一、问题的提出 1.学生升入高中学习之后,无论选择理科或者文科的学习,数学课程都是必须继续学习的课程之一。初高中数学教学内容上有很强的延续性,初中数学是高中数学学习的基础,高中数学是建立在初中数学基础上的延续与发展,在教学内容上、思想方法上,均密切相关。因此,从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在高中刚开始阶段强化初高中衔接点的教学,为学生进一步深造打下基础,是高中数学教学必须研究的重要课题。 2.初高中数学教学衔接研究,主要从初高中数学教学内容、基本的数学思想方法、新课程标准对数学教学的要求,试图找出初高中数学教学衔接的相关关

键点,从而为高中数学教学提出有用的建议,让高一学生尽快适应高中数学,从而进行有效的学习。 3.近年来初高中数学教学衔接作为“初高中教学衔接”这一宏观课题,在很多地方被人们提及,一些教育科研部门也作过尝试,试图寻找其间的规律与共性,但大多是从教学内容上进行简单地分类研究,也没有作为专项课题进行研究。因为这一课题将直接影响学生高中数学学习的效果,因此有进行全面研究的重要价值。 二、选题目的与意义 1.找出初高中数学教学衔接的相关关键点,从而为高中数学教学提出有用的建议,为学生适应高中数学学习进行有效地定位。 2.从教学内容、数学思想方法上,理顺初高中数学之间的关系,进而在高中初期阶段强化初高中衔接点的教学,为学生进一步深造打下基础。 3.为学生有效适应高中阶段的数学学习打好基础,提高教师对新课程理念以及学科课程目标的全面、深刻地理解; 三、课题研究目标 1、通过研究,促使教师从研究的视角来审视初高中数学衔接问题,在课堂教学中更多地关注学生的这一学习主体。反思自身的教学思想和教学行为。寻找初高中数学教材的知识衔接,结合旧知识,寻找新知识的结合点和突破点,充分发挥数学本身所具有的激发、推动学生学习的动力。

课题一元二次方程根与系数的关系(韦达定理)(教案)

课题:一元二次方程根与系数的关系(韦达定理)(教案) 编者:隋宝娥 教学目标:1.掌握判别式与韦达定理;2能运用韦达定理解决相关问题;培养学生综合运用只是的能力 教学重点:判别式、韦达定理 教学难点:韦达定理的应用 教学方法:讲练结合 教学手段:实物投影教学过程:(一)复习引入:初中学过一元二次方程根的判别式。一元二次方程ax2+bx+c=o何时有两个不同的实根?有两个相同的实根?没有实根?当方程有实根时,我们如何求出实根?提问学生求根公式,强调方程的根用系数表示,我们有必要进一步研究根与系数的关系。引出新课 (二)新课讲授:由求根公式我们知道方程的两根x i=^ 八;%2=二2 ,教 2a 2a 师引导学生探究x i+x2=- b x i x2=— (a = 0)强调这就是我们今天要研究的韦 a a 达定理,让学生背过。 例1、不解方程,判定解的个数。 2 2 2 (1)5(x +1)-3x=0 (2)2x -(4k+1)x+2k -1=0 目的:练习巩固判别式。学生完成,教师展示实物投影。 例2、已知方程5x2+kx-6=0 有一个根为2,求另一个根和k的值 解法:直接用韦达定理。求出另一根-0.6 k= -7 例3、若方程x2+x-1=0的两根为X1,X2,用韦达定理计算(1)X21+X22;(2)丄+—; x1 x2 3 3 (3)|x1-x2|;(4)x 1 +x2 ;(5)(X1-1)(X2-1) 解:由韦达定理得:X1+X2=-1,X1X2= -1 (1) 2 2 2 X 1+X2 =(X1+X2) -2X1X2=3 (2) 1 1 + -X1x2 =1 X1 X2X1X2 (3) |X1-X2|2 = =(X1- X2)2= :(X1+X2)2-4X1X2=5 |X1-X2|= ■- 5

韦达定理(根与系数的关系)全面练习题及答案

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

初高中数学衔接教案

第一讲 数与式 数与式的运算 1.1.1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即 ,0,||0,0,,0.a a a a a a >?? ==??-,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5). 1.1. 2. 乘法公式 我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式: (1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-; (3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++. 例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.

教案韦达定理

教案:韦达定理(一) 王伟光 一、教学目标 1.通过根与系数的关系的发现与推导,进一步培养学生分析、观察、归纳、猜想的能力和推理论证的能力; 2.通过本节课的学习,向学生渗透由特殊到一般,再由一般到特殊的认识事物的规律。培养逻辑思维及创新思维能力。 二、教学重点、难点 1.教学重点:根与系数的关系的发现及其推导. 2.教学难点:韦达定理的灵活应用. 三、课前练习: x2+2x﹣4=0 3x2+2x﹣6=0 2x2﹣5x﹣3=0 x 1+x 2 =? x 1 +x 2 =? x 1 +x 2 =? x 1?x 2 =? x 1 ?x 2 =? x 1 ?x 2 =? (一)定理的发现及论证 问题1: 对于一元二次方程的一般式ax2+bx+c=0(a≠0)是否也具备这个特征? x1+x2=-,x1·x2=, 如何推导一元二次方程两根和与两根积和系数的关系? 设x1、x2是方程ax2+bx+c=0(a≠0)的两个根. ∴ a ac b b x 2 4 2 1 - + - =, a ac b b x 2 4 2 2 - - - =.()0 4 2≥ -ac b

由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)—韦达定理 三:韦达定理内容: 韦达定理说的是:设一元二次方程()2ax +bx+c=0a 0≠有二实数根12x x ,,则 1212b c x +x =x x =a a -?,。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a ,b ,c 的关系。其逆命题:如果12x x ,满足1212b c x +x =x x =a a -?,,那么12x x ,是一元二次方程 ()2ax +bx+c=0a 0≠的两个根也成立。 四:韦达定理应用: 韦达定理及其逆定理作为一元二次方程的重要理论在初中数学教学和中考中有着广泛的应用。金鼎培训将其应用归纳为:①不解方程求方程的两根和与两根积; ②求对称代数式的值; ③构造一元二次方程; ④求方程中待定系数的值; ⑤在平面几何中的应用;⑥在二次函数中的应用等。 (1)、不解方程求方程的两根和与两根积:已知一元二次方程,可以直接根据韦达定理求得两根和与两根积。 韦达(法国1540-1603)

初中数学竞赛辅导-韦达定理及其应用

学科:奥数年级:初三 不分版本期数:346 本周教学内容:韦达定理及其应用 【内容综述】 设一元二次方程有二实数根,则, 。 这两个式子反映了一元二次方程的两根之积与两根之和同系数a,b,c的关系,称之为韦达定理。其逆命题也成立。韦达定理及其逆定理作为一元二次方程的重要理论在初中数学竞赛中有着广泛的应用。本讲重点介绍它在五个方面的应用。 【要点讲解】 1.求代数式的值 应用韦达定理及代数式变换,可以求出一元二次方程两根的对称式的值。 ★★例1若a,b 为实数,且,,求的值。 思路注意a,b 为方程的二实根;(隐含)。 解(1)当a=b时, ; (2 )当时,由已知及根的定义可知,a,b分别是方程的两根,由韦达定理得 ,ab=1. 说明此题易漏解a=b 的情况。根的对称多项式,,等都可以用 方程的系数表达出来。一般地,设,为方程的二根,,则有递推关系。 其中n为自然数。由此关系可解一批竞赛题。 附加:本题还有一种最基本方法即分别解出a,b值进而求出所求多项式值,但计算量较大。

★★★例2 若,且,试求代数式的值。 思路 此例可用上例中说明部分的递推式来求解,也可以借助于代数变形来完成。 解:因为,由根的定义知m ,n 为方程 的二不等实根,再由韦达定理, 得 , ∴ 2.构造一元二次方程 如果我们知道问题中某两个字母的和与积,则可以利用韦达定理构造以这两个字母为根的一元二次方程。 ★★★★例3 设一元二次方程的二实根为和。 (1)试求以和为根的一元二次方程; (2)若以 和 为根的一元二次方程仍为 。求所有这样的一元二次方 程。 解 (1)由韦达定理知 , 。 , 。 所以,所求方程为 。 (2)由已知条件可得 解之可得由②得,分别讨论 (p,q )=(0,0),(1,0),(1-,0),(0,1),(2,1),(2-,1)或(0, 1-)。 于是,得以下七个方程 , , , ,, 01x 2x 2=++,01x 2=-,其中01x 2=+无实数根,舍去。其余六个方程均为所求。

初高中数学教学衔接问题的研究

北京家教 找家教上阳光家教网 初高中数学教学衔接问题的研究 唐惠荣 一、研究背景 “八五”期间,市政府制定了上海市建设一流基础教育规划,并着手制定《进入21世纪的中小学数学教育行动纲领》。中小学数学教育是整个基础教育的重要内容之一,对于培养学生辩证唯物主义的世界观和方法论具有独特的作用。然而中学作为基础教育的重要组成部分,由于受办学条件的限制,严重影响教育质量的提高,高中数学教育质量的下降是中学教学所面临的共同问题。随着高中教育规模的扩大,大量学生进入高中学习,学生由初中升入高中后,普遍认为数学难学,许多学生在初中阶段数学成绩较好,但步入高中后数学成绩明显下降。究其原因主要在于初、高中数学未能很好衔接。 初、高中数学教学衔接问题存在的原因主要有以下三个方面: (1) 教材内容方面:初中数学教材通俗易懂,难度不大,侧重于定量计算;而高中数学教材,较多研究的是变量和集合,不但注重定量计算,且需作定性研究,注重于各种数学思维能力的提高、空间想象能力的培养等,在初、高中教材知识点衔接上有脱节现象。 (2) 教学方法方面:初中教师的教学主要依据初中学生特点及教材的内容,教学进度较慢,对重点内容及疑难问题都有较多时间反复强调、答疑解惑;而高中教师在处理高中教材时却没有充裕的时间去反复强调教材内容,对于习惯于初中教师教法的学生进入高中后,难以适应高中教师的教法。另外,初中教师在知识点的处理上侧重记忆,学生只要记住概念、公式、定理和法则,就能取得较好的成绩,而高中教师在教学中,不仅要对教材中的概念、公式、定理和法则加以认真讲解,还要重视学生各种能力的培养,加上其他原因,要求教学中不但重视书本上内容,还要补充各种课外知识,对习惯于“ 依样画葫芦”缺乏“举一反三”能力的高一学生,显然无法接受。 (3) 学习方法方面:初中学生习惯于跟着老师转,不善于独立思考和刻苦钻研数学问题,缺乏归纳总结能力。进入高中后,则要求学生勤于思考、勇于钻研、善于触类旁通、举一反三、归纳探索规律。然而高一新生往往沿用初中一套学习方法,不善于抓住学习中自学、阅读、复习、小结等必要环节,对高中学习内容缺乏必要的抽象思维能力和空间想象能 力。 二、概念内涵的界定 教学内容的衔接。以《衔接教材》为载体,通过相关知识点的比较和补充、单元知识的补充,达到完成初、高中知识和能力的衔接的目的。 教学方法的衔接。以《衔接教材》为载体,通过问题教学融合衔接教学模式的探索和实践,达到完成初、高中教学衔接的目的。

十字相乘法与韦达定理

十字相乘法与韦达定理 十字相乘法 一、知识准备: (1)左边:a x +与b x +的形式; (2)右边:二次项系数为1;常数项的和)(b a +为一次项的系数; 常数项的积ab 作为常数项; 直接写出结果: )3)(2(++x x = , )4)(3(--x x = , )2)(5(-+x x = , )6)(8(+-x x = , 二、探究活动: 1、ab x b a x b x a x +++=++)())((2 反过来:=+++ab x b a x )(2 也就是说,对于二次三项式q px x ++2 ,如果常数q 能分解为两个因数a ,b 的积,并且 常数q 等于两个因数a ,b 的和时,就可以用上面的公式分解因式。 (1)对于二次项系数为1的二次三项式:方法的特征是“拆常数项,凑一次项”(多试) ①当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同; ②当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相 同. 练习:解方程(用十字相乘法) (2) 对于二次项系数不是1的二次三项式 它的特征是“拆两头,凑中间,多试验” 2522+-x x ; 3832-+x x 6752--x x (3)解方程:15442 -+x x =0 3562 -+x x =0 413102 ++x x =0 注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的 1、把下列各式分解因式: 2、已知:x x 2 11240-+>,求x 的取值范围。 3、已知:长方形的长、宽为x 、y ,周长为16cm ,且满足x y x xy y --+-+=2 2 220,求长方形的面积。 课后作业 1.如果))((2 b x a x q px x ++=+-,那么p 等于 ( ) A .ab B .a +b C .-ab D .-(a +b ) 2.如果305)(2 2 --=+++?x x b x b a x ,则a= ,b= ; 3.多项式a x x +-32 可分解为(x -5)(x -b ),则a= ,b= ;

初中数学代数复习之韦达定理

代数复习三-----------一元二次方程根与系数的关系 现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着许多应用.本节将对一元二次方程根的判别式、根与系数的关系进行阐述. 一)、一元二次方程的根的判断式? 一元二次方程2 0 (0)a x b x c a ++=≠, 用配方法将其变形为: (1) 当240b ac ->时,右端是正数.因此,方程有两个不相等的实数根: (2) 当240b ac -=时,右端是零.(3) 当240b ac -<时,右端是负数.因此,方程没有实数根. 由于可以用24b ac -的取值情况来判定一元二次方程的根的情况.因此,把 24b ac -叫做一元二次方程20 (0)ax bx c a ++=≠的根的判别式,表示为:24b ac ?=- 【例1】不解方程,判断下列方程的实数根的个数: (1) 22310x x -+= (2) 24912y y += (3) 25(3)60x x +-= 解:(1) 2(3)42110?=--??=>,∴ 原方程有两个不相等的实数根. (2) 原方程可化为:241290y y -+= 2(12)4490?=- -??=,∴ 原方程有两个相等的实数根. (3) 原方程可化为:256150x x -+= 2(6)45152640?=--??=-<,∴ 原方程没有实数根. 说明:在求判断式时,务必先把方程变形为一元二次方程的一般形式.

【例2】已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围: (1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根 (3)方程有实数根; (4) 方程无实数根. 解:2(2)43412k k ?=--??=- (1) 1 41203k k ->?<; (2) 141203k k -=?= ; (3)31 0124≤?≥-k k ; (4) 31 0124>?<-k k . 【例3】已知实数x 、y 满足22210x y xy x y +-+-+=,试求x 、y 的值. 解:可以把所给方程看作为关于x 的方程,整理得: 22(2)10x y x y y --+-+= 由于x 是实数,所以上述方程有实数根,因此: 222[(2)]4(1)300y y y y y ?=----+=-≥?=, 代入原方程得:22101x x x ++=?=-.综上知:1,0x y =-= 二)、一元二次方程的根与系数的关系 一元二次方程20 (0)ax bx c a ++=≠的两个根为: x x == 所以:12b x x a += +=-, 22122 2()422(2)4b b b ac c x x a a a a a -+----?=?=== 韦达定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么: 说明:以通常把此定理称为”韦达定理”. 【例4】若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2) 12 11x x +; (3) 12(5)(5)x x --;(4) 12||x x -. 分析:本题若直接用求根公式求出方程的两根,再代入求值,将会出现复杂

初高中数学衔接教案(含答案)

第一讲 数与式 1.1 数与式的运算 1.1.1.绝对值 绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即 ,0,||0,0,,0.a a a a a a >?? ==??-, 即24x -+>4,解得x <0, 又x <1, ∴x <0; ②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4, ∴不存在满足条件的x ; ③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4. 综上所述,原不等式的解为 x <0,或x >4. 解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为 |P A |+|PB |>4. 由|AB |=2,可知 点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4. 练 习 1.填空: (1)若5=x ,则x =_________;若4-=x ,则 x =_________. (2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题: 下列叙述正确的是 ( ) (A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5). 1 0 C |x -1| |x -3| 图1.1-1

相关文档
最新文档