拓扑优化技术

拓扑优化技术
拓扑优化技术

拓扑优化技术

第1节基本知识

一、拓扑优化的概念

拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多载荷的物体的最佳材料分配方案。这种方案在拓扑优化中表现为“最大刚度”设计。

与传统的优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量都是预定义好的。用户只需要给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。

拓扑优化的目标—目标函数—是在满足结构的约束(V)情况下减少结构的变形能。减小结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量( i)给每个有限元的单元赋予内部伪密度来实现。这些伪密度用PLNSOL,TOPO命令来绘出。

ANSYS提供的拓扑优化技术主要用于确定系统的最佳几何形状,其原理是系统材料发挥最大利用率,同时确保系统的整体刚度(静力分析)、自振频率(模态分析)在满足工程要求的条件下获得极大或极小值。

拓扑优化应用场合:线性静力分析和模态分析。

拓扑优化原理:满足结构体积缩减量的条件下使目标函数结构柔量能量(the enery of structure compliance—SCOMP)的极小化。结构柔量能量极小化就是要求结构刚度的最大化。

例如,给定V=60表示在给定载荷并满足最大刚度准则要求的情况下省去60%的材料。图19-1表示满足约束和载荷要求的拓扑优化结果。图19-1a表示载荷和边界条件,图19-b 表示以密度云图形式绘制的拓扑结果。

图19-1 体积减少60%的拓扑优化示例

二、拓扑优化的基本过程

拓扑优化的基本步骤如下:

1.定义结构问题定义材料弹性模量、泊松系数、材料密度。

2.选择单元类型拓扑优化功能中的模型只能采用下列单元类型:

● 二维实体单元:Plane2和Plane82,用于平面应力问题和轴对称问题。

● 三维实体单元:Solid92、Solid95。

● 壳单元:SHELL93。

3.指定优化和不优化区域ANSYS只对单元类型编号为1的单元网格部分进行拓扑优

化,而对单元类型编号大于1的单元网格部分不进行拓扑优化,因此,拓扑优化时要确保进行拓扑优化区域单元类型编号为1,而不进行拓扑优化区域单元类型编号大于1即可。

4.定义并控制载荷工况或频率提取可以在单个载荷工况和多个载荷工况下做拓扑优化,单载荷工况是最简便的。

要在几个独立的载荷工况中得到优化结果时,必须用到写载荷工况和求解功能。在定义完每个载荷工况后,要用LSWRITE命令将数据写入文件,然后用LSSOLVE命令求解载荷工况的集合。

5.定义和控制优化过程拓扑优化过程包括定义优化参数和进行拓扑优化两个部分。用户可以用两种方式运行拓扑优化:控制并执行每一次迭代或自动进行多次迭代。

ANSYS有三个命令定义和执行拓扑优化:TOPDEF,TOPEXE和TOPITER。TOPDEF 命令定义要省去材料的量,要处理载荷工况的数目,收敛的公差;TOPEXE命令执行一次优化迭代;TOPITER命令执行多次优化迭代。

(1)定义优化参数首先要定义优化参数。用户要定义要省去材料的百分比,要处理载荷工况的数目,收敛的公差。

命令:TOPDEF

GUI:Main Menu>Solution>Solve>Topological opt

注:本步所定义的内容并不存入ANSYS数据库中,因此在下一个拓扑优化中要重新使用TOPDEF命令。

(2)执行单次迭代定义好优化参数以后,可以执行一次迭代。迭代后用户可以查看收敛情况并绘出或列出当前的拓扑优化结果。可以继续做迭代直到满足要求为止。如果是在GUI方式下执行,在Topological Optimization 对话框(ITER域)中选择一次迭代。

命令:TOPEXE

GUI:Main Menu>Solution>Solve>Topological opt

TOPEXE的主要优点是用户可以设计自己的迭代宏进行自动优化循环和绘图。在下一节,可以看到TOPITER命令是一个ANSYS的宏,用来执行多次优化迭代。

(3)自动执行多次迭代

在定义好优化参数以后,用户可以自动执行多次迭代。在迭代完成以后,可以查看收敛情况并绘出或列出当前拓扑形状。如果需要的话,可以继续执行求解和迭代。TOPITER 命令实际是一个ANSYS的宏,可以拷贝和定制。

命令:TOPITER

GUI :Main Menu>Solution>Solve>Topological opt

每次迭代执行一次LSSOLVE 命令,一次TOPEXE 命令和一次PLNSOL ,TOPO 显示命令。当收敛公差达到(用TOPDEF 定义)或最大迭代次数(用TOPITER 定义)达到时优化迭代过程终止。

6.查看拓扑优化结果 拓扑优化结束后,ANSYS 结果文件(Jobname.RST )将存储优化结果供通用后处理器使用。

要列出结点解和/或绘出伪密度,使用PRNSOL 和PLNSOL 命令的TOPO 变量。要列出单元解和/或绘出伪密度,使用PLESOL 和PRESOL 命令的TOPO 变量。第2节 拓

扑优化设计实例

案例——桥梁的拓扑优化设计

图19-2 拟实行拓扑优化的钢桥示意图

问题 如图19-2所示,欲在道路上建造一座钢质桥,其长为50米,高为20米,左右两端点连接公路两侧,下面左右端点是桥的两个桥墩安装的位置点。桥面施加100e 6 Pa 的载荷,求在体积减小60%条件下寻找最合适的桥梁形状。

条件

弹性模量为2.0×1011 N/m 2,泊松比为0.3。 20m

50m

P=100MPa

解题过程

制定分析方案。分析类型为线弹性性材料的拓扑优化分析,2D实体分析问题,选用四边形8节点实体结构单元Quad 8node 82单元Plane82,不需要设置实常数;边界条件为面左下角和右下角固定,上面受100e6 N/m2的压力作用。

1.ANSYS分析开始准备工作

(1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹

出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。

(2)指定新的工作文件名指定工作文件名。选取Utility>Menu>File>Change

Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“Topo-bridge”,单击OK按钮完成工作文件名的定义。

(3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change

Title对话框,在Enter New Title项输入标题名,本例中输入“Topo problem”为标题名,然后单击OK按钮完成分析标题的定义。

(4)重新刷新图形窗口选取Utility>Menu>Plot>Replot,定义的信息显示在图形窗口

中。

2.定义单元

运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择单元大类为Solid,接着选择Quad 8node 82(Plane82),单击Apply按钮定义第一种单元类型,再次选择Quad 8node 82(Plane82)按OK按钮设置单元类型2,并完成单元类型选择,单击Close按钮完成设置,如图19-3所示。

图19-3 定义单元类型

注:所定义的两种单元均为Plane82,Type1用于拓扑优化,Type2用于非优化区域定义。

3.定义材料属性

运行主菜单Main Menu>Preprocessor>Material Props>Material Models命令,系统显示材料属性设置对话框,在材料属性对话框中依次选择Structure、Linear、Elastic、Isotropic,如图19-4所示。

完成选择后,弹出材料属性输入对话框,分别输入弹性模量2e11,泊松比0.3,如图19-5所示,单击OK按钮完成材料属性输入并返回图19-4。

完成材料属性设置后,单击对话框右上方“X”按钮离开材料属性设置。

4.创建模型

(1)绘制矩形运行主菜单Main

Menu>Preprocessor>Modeling>Create>Areas>rectangle >By Dimention命令,在对话框中分别输入X1=0,Y1=0,X2=50,Y2=20,单击OK按钮完成模型建立。

(2)创建工作平面运行菜单Utility Menu>PlotCtrls>Numbering弹出Plot Numbering Controls选择对话框,Line number置为On,显示线点编号,单击OK按钮完成设置。

1

2

3

4

图19-4 进入材料属性设置

图19-5 定义材料属性

5.划分网格,分配单元属性

(1)划分网格执运行主菜单Main Menu>Preprocessor>Meshing>MeshTool(网格划分

工具)命令,出现MeshTool菜单,在Element Attributes项中选Areas并按Set按钮,出现拾取对话框,按Pick All按钮,弹出单元属性定义对话框,选择如图19-6所示,按OK按钮完成单元属性定义;单击Size Control设置框中Areas项的Set按钮,在单元尺寸对话框中的Element edge length项中输入单元尺寸,本例中输入1,单击OK按钮确定。在MeshTool菜单中设置Mesh下拉框为Areas,Shape项选择Quad(四边形单元网格),选中Free(使用自由网格划分器)。单击Mesh按钮划分网格,在出现的Mesh Areas对话框中单击Pick All按钮,系统将自动完成网格划分,划分网格结果如图19-7所示。

图19-6 定义单元属性

图19-7 划分网格结果

(2)选择不参加拓扑优化部分单元执行菜单Utility Menu>Select>Entities显示选择对

话框,先选择不参加拓扑优化部分的单元,各项设置如图19-8所示,按Apply按钮选择节点;选择依附于所选择节点的单元,各项设置如图19-9所示,按Apply按钮选择单元,按Plot按钮显示所选择的单元如图19-10所示,按OK按钮完成选择。

图19-8 选择不参加拓扑优化节点图19-9 选择不参加拓扑优化单元(3)修改不参加拓扑优化部分单元属性执行菜单Main Menu>Preprocessor>Modeling>

Move/Modify>Elements>Modify Attrib,弹出Modify Elem Attrib单元拾取对话框,单击Pick All按钮弹出Modify Elem Attributes对话框如图19-11所示,Attributrs to change项置为Elem type TYPE,New Attribute Number项输入2(单元类型编号),然后单击OK按钮。

(4)选择所有模型执行菜单Utility Menu>Select>Everything,选择所有模型。

(5)重新刷新图形窗口选取Utility>Menu>Plot>Replot,所有信息显示在图形窗口中。

图19-10 不参加拓扑优化的单元

图19-11 修改单元属性

6.施加约束和载荷

(1)施加约束执行菜单Utility Menu>Plot>Lines显示模型为线。运行主菜单Main

Menu>Solution>Define Loads>Apply>Structural> Displacement>On Keypoints,出现拾取菜单,依次选择关键点1和2(模型左下角和右下角),单击OK按钮出现约束定义对话框,如图19-12所示,选择All DOF约束所有自由度,其它项默认,再单击OK按钮,完成约束定义。

(2)施加载荷运行主菜单Main Menu>Solution>Define Loads>Apply>Structural>

Pressure>On Lines命令,出现拾取菜单,拾取模型上面的线(线的编号为3),单击OK按钮出现载荷定义对话框,如图19-13所示,载荷类型为压力,数值为100e6 N/m2,再单击OK按钮完成载荷的施加。

图19-12 施加约束

图19-13 施加载荷

7.显示模型上的载荷和边界条件

(1)设置显示方式执行菜单Utility Menu>PlotCtrls>Symbols弹出显示符号Symbols

对话框如图19-14所示,Boundary condition symbol项选择All Applied BCs,Surface Load Symbols项选择为Pressure,Show pres and convect as项选择为Arrows,其它项按默认设置,按OK按钮。

图19-14 设置显示方式

(2)将模型上的载荷转化到有限元模型上运行主菜单Main Menu>Solution>Define

Loads>Operate>Transfer to FE>All Solid Lds命令,出现Transfer All Solid Model Loads to FE Model对话框,单击OK按钮。

(3)绘制单元有限元模型上执行Utility Menu>Plot>Replot,施加在单元上的约束和

载荷信息显示在图形窗口中,如图19-15所示。

图19-15 拟执行拓扑优化的有限元模型

8.执行拓扑优化求解

(1)进入拓扑优化求解器执行主菜单Main Menu>Topological Opt。

(2)定义拓扑优化函数SCOMP 执行Main Menu>Topological Opt>Set Up>Advanced Opt>Topo Function,弹出Topological Optimization Function对话框,默认系统设置,按OK 按钮进入Compliance Function设置对话框如图19-16所示,Function name项输入scomp,

Load case number项输入1,然后按OK按钮。

图19-16 定义拓扑优化函数

(3)定义目标函数执行Main Menu>Topological Opt>Set Up>Advanced Opt>Topo Objective,弹出Objective for Topological Optimization对话框,选择目标函数SCOMP,按OK按钮完成目标函数定义。

(4)定义约束条件执行Main Menu>Topological Opt>Set Up>Advanced Opt>Topo Constraint>By Percentage,弹出Constraint for Topological Opt By Percentage对话框,选择约

束条件VOLUME,按OK按钮进入Constraint for Topological Opt By Percentage定义对话

框,在Percent volume reduct’n中输入60(体积减少60%),按OK按钮完成约束条件定义。

(5)选择优化方法并求解执行Main Menu>Topological Opt>Run,弹出Run

Topological Optimization对话框如图19-17所示,Solution approach项选择Optimality(以体积为约束条件的选该项),Convergence tolerance项输入收敛精度准则值0.0001,Number of iterations项输入迭代次数30,Plot density @ each iteration?项选择Yes(每次迭代计算均刷新显示图形),按OK按钮开始求解。

程序开始求解并每求解一次刷新显示一次,直到求解完成。

图19-17 定义优化方法

9.拓扑优化结果后处理

(1)关闭几何变形显示选择菜单Utility Menu>PlotCtrls>Style>displacement Scaling,

弹出Displacement Display Scaling对话框,将Displace scale factor设置为0.0(关闭),其它项按默认设置,按OK按钮。

(2)设置两色等值图显示选择菜单Utility Menu>PlotCtrls>Style>Contours>Uniform

Contours,弹出Uniform Contours对话框,将Number of contous设置为2(两种颜色显示),其它项按默认设置,按OK按钮。

(3)关闭图形窗口的图例显示选择菜单Utility Menu>PlotCtrls>Windows Controls>

Window Options,弹出Window Options对话框,将Display of legeng设置为off,其它项按默认设置,按OK按钮。

(4)绘制节点伪密度分布图执行Main Menu>Topological Opt>Plot Densities,绘制节点伪密度图如图19-18所示,图中的深颜色为钢桥拓扑优化后的模型。

图19-18 节点伪密度分布图

(5)绘制单元伪密度分布图执行Main Menu>Topological Opt>Plot Dens Unavg,绘制

单元伪密度图如图19-19所示。

图19-19 单元伪密度分布图

(6)绘制目标函数与迭代次数关系曲线执行Main Menu>Topological Opt>Graph

History,弹出Graph Topological Optimization History菜单,选择Objective func(目标函数),

绘制目标函数与迭代次数关系曲线如图19-20所示,可见目标函数经过25次收敛。

图19-20 目标函数随迭代次数变化曲线

(7)读入最后序列结果执行Main Menu> General Postproc>Read Result>Last,读入最后序列结果。

(8)定义单元表在ANSYS中有些数据无法直接访问,需要通过定义单元表完成单元结果的访问。运行主菜单Main Menu>General Postproc>Element Table>Define Table,弹出的菜单按Add…,出现单元表定义对话框如图19-21所示,User label for item项由用户定义表的名称,本例中定义为Toporesult,Results data item项选择如图所示,按OK按钮返回上一菜单,按Close按钮完成单元表定义。(9)绘制桥的概念设计模型选择菜单Utility Menu>Select>Entitied,弹出选择对话框,对话框设置如图19-22所示,按Apply按钮弹出Select Elements by Reaults对话框如图19-23所示,Range of valves项分别输入0.8和1.0(伪密度在0.8—1.0之间),其它项按默认设置,按OK按钮,按图19-22中的Plot按钮显示桥

的概念设计图19-24。

图19-21 定义单元表

图19-22 选择结果图19-23 定义伪密度范围

图19-24 钢桥经拓扑优化设计的概念模型

第3节本章小结

1.载荷对结果的影响

拓扑优化结果对载荷情况十分敏感。很小的载荷变化将导致很大的优化结果差异。

2.网格划分密度对结果的影响

拓扑优化结果对网格划分密度敏感。一般来说,很细的网格可以产生“清晰”的拓扑结果,而较粗的网格会生成“混乱”的结果。但是,较大的有限元模型需要更多的收敛时间。

3.桁架形状的拓扑结果产生的原因

在一些情况下会得到桁架形状的拓扑结果,这种情况通常在指定很大的体积减少值和较细的网格划分时出现,很大的体积减少值如80%或更大(TOPDEF命令)。

4.多个载荷工况求解

如果有多个载荷工况时,有多种方式将其联合进行拓扑优化求解。例如,考虑有五个载荷工况的情况。可以选择使用五个单独的拓扑优化分析过程,也可以使用包括这五个工况的

基于拓扑优化的车身结构研究---经典

基于拓扑优化的车身结构研究 瞿元王洪斌张林波吴沈荣 奇瑞汽车股份有限公司,安徽芜湖,241009 摘要:随着CAE技术的发展,虚拟仿真技术在汽车开发中的作用也愈来愈显著。而前期工程阶段,如何布置出合理的车身骨架架构,一直是个相对空白的地带,也是整车正向开发过程中绕不过的坎。尽管研发工程师根据经验,参照现有车型的结构特点,也能进行车身骨架架构的设定,但总是缺乏有效手段直观地反映不同车型结构布置的特点。本文用拓扑优化的方法,从结构基本特征的角度来审视这一问题,并运用该方法对某SUV车身结构进行研究,获得一些直观性的结论。 关键词:车身,前期工程,拓扑优化 1引言 随着对整车研发过程认识的加深,以及对正向开发过程的探索,在车型开发前期,对车身结构做出更合理的规划显得愈来愈重要。常规的研发思路之一是通过参考已有车型的结构,经过适当的修改,形成新的结构,并用于新车型中。但是对于原始车型的设计思路、结构布置的原因等缺乏系统的理解,或者理解不深,往往在更改过程中产生新的问题。为了部分解决上述问题,本文从结构拓扑优化的角度,对某SUV 车型车身结构的总体布置进行初步探讨,以期加深对结构布置的理解。 2研究方法概述 合理化的车身结构,是满足整车基本性能的重要保障。为了能够实现结构的最优布置,文献[1]使用了拓扑优化工具来布置车身结构。其基本思路是从造型以及车内空间布置出发,建立车身空间的基础网格模型,然后根据一定的工况要求,对基础网格进行拓扑分析,并根据拓扑结果建立梁、板壳模型,并进行多项性能的优化,从而实现车身结构的正向开发。本文借助于该思想,建立研究对象的结构空间包络,并对该包络进行拓扑分析,然后将仿真结果与原始结构进行比较,寻找车身结构中的关键点,推测初始结构可能的布置思想,从而加深对该研究思路的理解。其基本过程如下图所示:

多工况应力约束下连续体结构拓扑优化设计

多工况应力约束下连续体结构拓扑优化设计ΞTOPOLOG Y OPTIMIZATION DESIGN OF THE CONTINUUM STRUCTURE FOR MU L TIPL E LOADING CON DITIONS WITH STRESS CONSTRAINTS 王 健ΞΞ (山东理工大学交通与车辆工程学院,淄博255012)  程耿东 (大连理工大学工程力学研究所,大连116024) WAN G Jian (Traffic and Vehicle Engineering School,Shandong Univer sity o f Technology,Zibo255012,China) CHEN G Gengdong (Research Institute o f Engineering Mechanics,Dalian Univer sity o f Technology,Dalian116024,China) 摘要 建立多工况应力约束条件下连续体结构拓扑优化的数学模型,给出求解方法。采用包络法处理大量的应力约束,用改进的满应力法进行求解,方法简单、实用。提出的分层优化技术能使最优结构更为清晰。分层优化方法的基本思想是按载荷大小分为几个层次,后面层次的拓扑优化以前面层次得到的最优拓扑为基础,通过逐层优化,最终得到最优结构。分层优化时主要考虑属于本层载荷的影响,避免大小载荷混在一起,最优拓扑模糊不清的问题。为解决各层优化单元厚度相差太大,易造成结构刚度矩阵奇异的问题,提出对相应参数的调整方法。算例表明该方法是有效的。 关键词 结构拓扑优化 应力约束 连续体结构 满应力法 分层优化技术 中图分类号 T B114.3 T B115 Abstract The mathematical m odel of topology optimization design of the continuum structure for multiple loading conditions with stress constraints are presented in the paper,and the s olving method is als o given.The problem is s olved by m odified fully stress method combined with a bundle method to deal with plentiful stress constraints,both the method are sim ple and practical.The multilevel opti2 mization technique is proposed in this paper to make clearer optimal topology of structures.The main idea of the multilevel optimization method is to partition the load cases into several levels according to their magnitude.In every level,we mainly consider the in fluence of the loads belonged to this level.In this way,we av oid the blending of various loads and the dim topological structure.T o s olve the prob2 lem that the single structure stiffness matrix caused by the too big dispersion of element thickness between different levels,it proposed the adjustive method of relevant parameters.Numeral com putations show that the method is effective and efficient. K ey w ords Structure topology optimization;Stress constraints;Continuum structure;Fully stress method;Multilevel optimization technique Correspondent:WANG Jian,E2mail:wangjian0721@https://www.360docs.net/doc/2f4025127.html,,Fax:+86253322313164 The project supported by the Natural Science F oundation of Shandong Province,China(N o.Y96F03085). Manuscript received20010920,in revised form20011225. 1 引言 在多工况、多约束情况下,结构的最优拓扑往往是超静定的,必须考虑变形协调条件,其数学模型是一个非线性规划问题。文献[1~4]是离散结构拓扑优化方面成功采用非线性规划方法求解的范例。连续体结构拓扑优化方面也有考虑多工况情况的文章发表[5,6],但这方面的工作不多,且没有研究应力约束问题。实际工程结构多半在多种工况下工作,应力约束是最基本的约束条件,所以研究多工况应力约束下连续体结构的拓扑优化问题是非常必要的。 多工况下受到应力约束的结构拓扑优化问题的数学模型可以描述为式(1),用数学规划法求解时自然将其作为一个多约束问题来处理;连续体结构拓扑优化的设计变量很多,采用文献[1~4]中的数学规划方法求解意味着将有浩大的计算工作量,因此一般采用准则法———满应力法解决。用满应力法求解多工况问题时往往使用包络法处理大量的应力约束[7]。包络法的基本思想是把每一个应力约束先单独地考虑,求出在这个应力约束下改进后的新设计变量,然后对每一个设计变量,在所有的值中挑出最大的作为新的设计。这种方法可以保证应力约束条件满足,并且也易于将 机械强度 Journal of Mechanical Strength2003,25(1):055~057 Ξ ΞΞ王 健,男,1962年7月生,山东省济南市长清县人,汉族。山东理工大学交通与车辆工程学院院长,教授,博士,长期从事结构优化研究,发表相关论文20余篇。 20010920收到初稿,20011225收到修改稿。山东省自然科学基金资助项目(Y96F03085)。

北航拓扑优化程序学习报告

拓扑优化的 99行程序学习报告4月19日2011 《结构优化设计》课程学习报告 任课教师:李书

一、前言: 在最近的结构优化设计课程上学习了O.Sigmund的《A 99 line topology optimization code written in Matlab》一文,对拓扑优化的理论原理与实际的计算机程序实现都有了一定的理解,文章主要是通过拓扑优化的原理来实现对简单结构的静力学问题的优化求解,而编写的代码仅有99行,包括36行的主程序,12行的OC优化准则代码,16行的网格过滤代码和35行的有限元分析代码。 自1988 年丹麦学者Bendsoe与美国学者Kikuchi提出基于均匀化方法的结构拓扑优化设计基本理论以来,均匀化方法应用到具有周期性结构的材料分析中,近几年该方法已经成为分析夹杂、纤维增强复合材料、混凝土材料等效模量,以及材料的细观结构拓扑优化常用的手段之一。其基本思想是在组成拓扑结构的材料中引入微结构,优化过程中以微结构的几何尺寸作为设计变量,以微结构的消长实现其增删,并产生介于由中间尺寸微结构组成的复合材料,从而实现了结构拓扑优化模型与尺寸优化模型的统一。文章就是通过均匀化的基础,结合拓扑结构优化的工程实际,以计算机模拟的方法将拓扑优化的一般过程呈现出来,有助于初涉拓扑优化的读者对拓扑优化有个基础的认识。 二、拓扑优化问题描述 为了简化问题的描述,文中假设设计域是简单的矩形形式,且在进行有限元离散的时候采用正方形单元对其进行离散。这样不仅便于进行单元离散和单元编号,也利于对结构进行几何外形的描述。 一般说来,基于指数逼近法的拓扑优化最小化的问题可作如下描述: 文中采用的对结构材料属性的描述是所谓的“指数逼近法”或者称为SIMP 逼近法,即(Solid Isotropic Material with Penalization带惩罚因子的各项同性材料模型法),该方法是拓扑优化中常用的变密度材料插值模型中最具代表性的一种。

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

拓扑优化经典99行程序解读

3188-1-1.html Sigmund教授所编写的top优化经典99行程序,可以说是我们拓扑优化研究的基础; 每一个新手入门都会要读懂这个程序,才能去扩展,去创新; 99行程序也有好多个版本,用于求解各种问题,如刚度设计、柔顺机构、热耦合问题,但基本思路大同小异; 本文拟对其中的一个版本进行解读,愿能对新手有点小小的帮助。 不详之处,还请论坛内高手多指点 读懂了该程序,只能说是略懂拓扑优化理论了, 我手里就有一些水平集源程序是成千上万行,虽然在99行的基础上成熟了很多,但依然还有很多的发展空间。 源程序如下: %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE SIGMUND, JANUARY 2000 %%% %%%% CODE MODIFIED FOR INCREASED SPEED, September 2002, BY OLE SIGMUND %%% function top(nelx,nely,volfrac,penal,rmin); nelx=80; nely=20; volfrac=0.4; penal=3; rmin=2; % INITIALIZE x(1:nely,1:nelx) = volfrac; loop = 0; change = 1.; % START ITERATION while change > 0.01 loop = loop + 1; xold = x; % FE-ANAL YSIS [U]=FE(nelx,nely,x,penal); % OBJECTIVE FUNCTION AND SENSITIVITY ANAL YSIS [KE] = lk; c = 0.; for ely = 1:nely for elx = 1:nelx n1 = (nely+1)*(elx-1)+ely; n2 = (nely+1)* elx +ely; Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1); c = c + x(ely,elx)^penal*Ue'*KE*Ue; dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*Ue'*KE*Ue; end end

如何利用ANSYS进行拓扑优化

如何利用ANSYS进行拓扑优化 前言 就目前而言,利用有限元进行优化主要分成两个阶段: (1)进行拓扑优化,明确零件最佳的外形、刚度、体积,或者合理的固有频率,主要目的是确定优化的方向; (2)进行尺寸优化,主要目的是确定优化后的的零件具体尺寸值,通常是在完成拓扑优化之后,再执行尺寸优化。 在ANSYS中,利用拓扑优化,可以完成以下两个目的: (1)在特定载荷和约束的条件下,确定零件的最佳外形,或者最小的体积(或者质量); (2)利用拓扑优化,使零件达到需要的固有频率,避免在使用过程中产生共振等不利影响。 本文主要就在ANSYS环境中如何执行拓扑优化进行说明。

1、利用ANSYS进行拓扑优化的过程 在ANSYS中,执行优化,通常分为以下6个步骤: 、定义需要求解的结构问题 对于结构进行优化分析,定义结构的物理特性必不可少,例如,需要定义结构的杨氏模量、泊松比(其值在~之间)、密度等相关的结构特性方面的信息,以供结构计算能够正常执行下去。

、选择合理的优化单元类型 在ANSYS中,不是所有的单元类型都可以执行优化的,必须满足如下的规定: (1)2D平面单元:PLANE82单元和PLANE183单元; (2)3D实体单元:SOLID92单元和SOLID95单元; (3)壳单元:SHELL93单元。 上述单元的特性在帮助文件中有详细的说明,同时对于2D单元,应使用平面应力或者轴对称的单元选项。 、指定优化和非优化的区域 在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:…… …… Et,1,solid92 Et,2,solid92 …… Type,1 Vsel,s,num,,1,2 Vmesh,all …… Type,2 Vsel,s,num,,3 Vmesh,all ……

连续体结构拓扑优化方法及存在问题分析

编号:SY-AQ-00556 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 连续体结构拓扑优化方法及存 在问题分析 Topology optimization method of continuum structure and analysis of existing problems

连续体结构拓扑优化方法及存在问 题分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结

机械结构拓扑优化设计研究现状及其发展趋势

机械结构拓扑优化设计研究现状及其发展趋势 发表时间:2018-12-27T16:17:28.400Z 来源:《河南电力》2018年13期作者:谢进芳 [导读] 机械产品应用范围相对较广,为确保机械产品在我国日常生活及企业从生产中得到有效应用,实施优化设计十分必要。 (广东科立工业技术股份有限公司广东省佛山市 528000) 摘要:随着现代科学技术的发展,市场产品竞争也越来越激烈,产品品种的换代速度加快,产品的复杂性在不断增加。所以产品生产正在以小批量、多品种的生产方式取代过去的单一品种大批量生产方式。而这种生产方式,肯定会缩短产品的生产周期,产品的成本也会降低,产品提高市场的占有率和竞争力也会提高。所以在机械结构设计中采用优化设计是满足市场竞争的需要。 关键词:机械结构拓扑;现状;发展趋势 引言 机械产品应用范围相对较广,为确保机械产品在我国日常生活及企业从生产中得到有效应用,实施优化设计十分必要。目前我国已经针对机械结构优化设计进行了研究,并取得一定成果,主要表现在船舶行业、焊工航天以及汽车行业等。机械结构的优化设计可有效提高其产品性能并增加其自身市场竞争力,对其市场发展起重要作用。 1.机械结构优化设计 随着科学技术的发展,机械产品更新换代的速度越来越快。过去,机械产品主要是大批量生产,产品相对单一。目前采用的是小批量加工方式,以保证产品的多样性。为了保证生产企业的利润,必须在保证质量的前提下,缩短生产周期,降低生产成本。优化设计能够达到上述目标,在一定程度上缩短了生产时间,降低了成本,有效地抢占了市场。机械结构优化设计已广泛应用于造船、运输、航空航天、冶金、纺织、建筑等领域。 机械结构优化设计流程主要包括:(1)针对所优化机械产品尽心目标函数优化设计,可确保机械产品相关技术指标符合优化要求。(2)设计机械产品优化函数变量,变量设计包括机械产品长度、厚度以及弧度等相关结构参数。(3)对机械产品优化设计约束条件进行设定,对计算过程中各项变量浮动范围进行限定。(4)通过以上步骤得出多种优化设计方案,分别对不同方案进行评价,根据机械结构优化设计需求选择最佳方案实施。 2.机械结构拓扑优化设计常用方法 (1)均匀化方法 常用的连续结构拓扑优化设计方法主要有均匀化方法、变密度方法、水平集方法以及进化结构优化方法等。 均匀化方法属于材料描述方式,基本思想是将微结构模型引入结构拓扑优化设计领域,以微结构的单胞尺寸参数为设计变量,根据单胞尺寸的变化实现微结构的增删,优化实体与孔的分布形成带孔洞的板,达到结构拓扑优化的目的。优化过程:①设计区域的划分;②确定设计变量;③进行拓扑优化设计;④以不同的微结构形式的分布显示连续结构的形状和拓扑状态。 图1 微结构单胞示意图 微结构的划分形式通常有空孔、实体和开孔 3种,空孔是指没有材料的微结构,其孔的尺寸为 1;实体是指具有各向同性材料的微结构,其孔的尺寸为 0;开孔是指具有正交各向异性材料的微结构,其孔的尺寸介于 0~1 且可变化。设计区域划分为空孔、实体和开孔的微结构形式。简单的二维微结构单胞示意图如图 1 所示。微结构上孔的尺寸和方位角是设计变量,其中孔的尺寸是微结构材料主方向,它可以由坐标转换矩阵体现在材料的有效弹性模量上,通过微结构的密度与有效弹性模量之间的关系曲线,把设计变量与结构各处的形态联结起来。在结构拓扑优化设计过程中,微结构中孔的尺寸和在 0~1 的变化区域就可使各微结构在空孔与实体之间变化,这样就可用连续变量对结构优化设计问题进行描述。 均匀化结构拓扑优化方法涉及的设计变量非常多,用的较多的优化算法是准则优化算法。 (2)变密度方法 变密度方法式是引入一种假想的密度在 0~1可变的材料,采用材料的密度作为优化设计变量,实现结构的拓扑变化;材料弹性模量等物理参数与材料密度间的关系也是人为假定的;这样不但将结构的拓扑优化问题转换为材料的最优分布问题,还可使优化结果尽可能具有非 0 即 1 的密度分布。变密度结构拓扑优化方法与采用尺寸变量相比,它更能反映拓扑优化的本质特征。因此,在实际工程的结构优化设计中大多采用变密度方法来解决结构优化问题。变密度结构拓扑优化方法常用的插值模型是固体各向同性惩罚微结构模型(SIMP)。由于变密度结构拓扑优化方法更能反映拓扑优化的本质特征,且概念简单、设计变量数目少,简化了计算求解过程,因此,变密度结构拓扑优化方法成为目前最常用的、也是用的最多的结构优化设计方法。 3.机械结构优化的应用趋势 随着优化方法的不断发展和完善,结构优化设计也逐渐发展起来。近年来,在结构优化算法方面,由于结构优化设计中变量较多,结构优化设计往往采用接近实际情况的复杂结构模型来模拟一些大型结构系统。因此,新的准则优化方法备受关注,但如何为一些特殊结构

拓扑优化

结构拓扑优化设计现状及前景 目前, 最优化设计理论和方法在机械结构设计中得到了深入的研究和广泛的应用。所谓优化设计就是根据具体的实际问题建立其优化设计的数学模型, 并采用一定的最优化方法寻找既满足约束条件又使目标函数最优的设计方案。根据优化问题的初始设计条件, 目前结构优化技术有四大领域: 1) 尺寸优化; 2) 形状优化; 3) 拓扑与布局优化; 4) 结构类型优化。结构尺寸优化是在结构的拓扑确定的前提下, 首先用少量尺寸对结构的某些变动进行表达, 如桁架各单元的横截面尺寸、某些节点位置的变动等, 然后在此基础上建立基于这些尺寸参数的数学模型并采用优化方法对该模型进行求解得到最优的尺寸参数。在尺寸优化设计中, 不改变结构的拓扑形态和边界形状, 只是对特定的尺寸进行调整, 相当于在设计初始条件中就增加了拓扑形态的约束。而结构最初始的拓扑形态和边界形状必须由设计者根据经验或实验确定, 而不能保证这些最初的设计是最优的, 所以最后得到的并不是全局最优的结果。结构形状优化是指在给定的结构拓扑前提下, 通过调整结构内外边界形状来改善结构的性能。以轴对称零件的圆角过渡形状设计的例子。形状设计对边界形状的改变没有约束,和尺寸优化相比其初始的条件得到了一定的放宽,应用的范围也得到了进一步的扩展。拓扑优化设计是在给定材料品质和设计域内,通过优化设计方法可得到满足约束条件又使目标函数最优的结构布局形式及构件尺寸。拓扑设计的初始约束条件更少, 设计者只需要提出设计域而不需要知道具体的结构拓扑形态。拓扑设计方法是一种创新性

的设计方法, 能为我们提供一些新颖的结构拓扑。目前, 拓扑设计理论在柔性受力结构、MEMS 器件及其它柔性微操作机构的设计中得到了广泛的研究。 结构拓扑优化的发展概况 结构拓扑优化包括离散结构的拓扑优化和连续变量结构的拓扑优化。近10 年来, 结构拓扑优化设计虽然取得了一些进展, 但大部分是针对连续变量的, 关于离散变量的研究为数甚少。由于离散变量优化的目标函数和约束函数是不连续、不可微的, 可行域退化为不连通的可行集, 所以难度远大于连续变量优化问题。在离散结构中, 桁架在工程中的应用较为广泛, 由于其重要性, 也由于其分析比较简单, 桁架结构的拓扑优化在文献中研究得最多. 结构拓扑优化的历史可以追溯到1904 年Michell提出的桁架理论, 但这一理论只能用于单工况并依赖于选择适当的应变场, 不能应用于工程实际。1964 年Dorn、Gomory、Greenberg 等人提出基结构法( ground structure approach) , 将数值方法引入该领域, 此后拓扑优化的研究重新活跃起来, 陆续有一些解析和数值方面的理论被 提出来。所谓基结构就是一个由结构节点、荷载作用点和支承点组成的节点集合, 集合中所有节点之间用杆件相连的结构。该方法的基本思路是: 从基结构的模型出发, 应用优化算法( 数学规划法或准则法) , 按照某种规划或约束, 将一些不必要的杆件从基结构中删除, 例如截面积达到零或下限的杆件将被删掉, 并认为最终剩下的杆件 决定了结构的最优拓扑。因此应用基结构, 可以将桁架拓扑优化当作

具有多种约束的连续体结构拓扑优化

文章编号:1004Ο8820(2003)02Ο0138206 具有多种约束的连续体结构拓扑优化 江允正,王子辉,初明进 (烟台大学土木工程系,山东烟台264005) 摘要:对于具有多种约束条件的连续体结构的拓扑优化设计,本文提出一种通用优化方 法:首先用优化方法确定微孔或称为基点的位置,然后再扩大微孔并确定其边界.文中对 于具有应力和位移约束的几个平面问题进行拓扑优化,计算结果十分令人满意. 关键词:结构拓扑优化;结构优化;连续体; 中图分类号:TP391.72 文献标识码:A 近年来,Bendsoe 和K ikuchi [1]等广泛采用连续体拓扑优化的均匀方法.首先从连续介质中人为地引进某一形式的微结构,例如周期性分布的微孔洞;然后用以数学中扰动理论为基础的均匀化方法这一数学工具建立材料的宏观弹性性质和微结构尺寸的关系,连续介质的拓扑优化就转化为决定微结构尺寸最优分布的尺寸优化问题,可以采用成熟的尺寸优化算法.迄今为止的均匀化方法还不能给出带有微观结构的材料的宏观许用应力和微结构尺寸的关系,因此到目前为止均匀优化方法可以求解的拓扑优化问题还很有限.均匀化方法的另一缺点是求得的最终设计可能具有很不清晰的拓扑,即结构中有的区域是相对密度介于0和1之间的多孔介质;文献[2]提出修改的满应力法来求解受应力约束的平面弹性体的拓扑优化问题,也仅能考虑应力约束问题;文献[3]提出统一骨架与连续体的结构拓扑优化的ICM 理论与方法.这些方法,基本上都采用有限元法进行结构分析,为了使边界光滑,不得不划分很细的单元,对于一般平面问题,单元数目都在数千个之上,计算效率低.总之,拓扑优化是最具挑战性而又困难的问题,优化方法仍然处在发展初期.这一领域迫切需要取得进展,开发通用的算法仍是挑战. 如上所述,采用均匀方法时,首先从连续介质中人为地引进某一形式的微结构,例如周期性分布的微孔洞.我们认为微孔洞的数量和位置应该用优化方法确定.并称这种微孔的中心叫做删除区的基点.然后扩大微孔,用优化方法确定孔的边界.于是,连续体结构的拓扑优化,可以归结为确定删除区的基点位置及其边界的问题. 1 方 法 对于一个二维连续体,当给定外载和支承位置时,满足应力、位移等各种约束条件下的结构最优拓扑问题,都可以按如下步骤来求解: 收稿日期:2002-12-17 作者简介:江允正(1942-),男,湖南衡阳人,教授,主要从事结构优化方向教学与研究工作. 第16卷第2期 烟台大学学报(自然科学与工程版)Vol.16No.22003年4月Journal of Y antai University (Natural Science and Engineering Edition ) Apr.2003

连续体结构拓扑优化方法及存在问题分析(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 连续体结构拓扑优化方法及存在问题分析(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

连续体结构拓扑优化方法及存在问题分析 (最新版) 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结构

拓扑优化

一种新的优化方法——拓扑优化。是一种以多种使用条件为目标优化参数的优化方式,可以提高零件的真正使用效益,更加准确的反映了设计的优化过程。 优化设计可以在很大程度上改善和提高铸造件、锻造件和冲压件的性能,并减轻产品重量。然而,优化设计特别是拓扑优化很少应用在实际工程中。一方面是因为工程问题的复杂性和高度非线性,拓扑优化技术目前还无法实现这些系统优化问题,但更重要的是一门新的技术和方法很难取代人们已经习惯多年的思维模式和工作方式。 工程设计人员需要有更系统、更科学的设计思想和方法,以达到提高产品开发效率、节约原材料、降低成本及提高产品质量的目的,结构优化设计则是实现这些目的较佳手段[1]。由于设计变量类型的不同,结构优化设计可以分为由易到难的四个不同层次:尺寸优化、形状优化、形貌优化和拓扑布局优化。由于拓扑优化设计的难度较大,被公认为是当前结构优化领域内最具有挑战性的课题之一。但是在工程应用中,拓扑优化可以提供概念性设计方案,取得的经济效益比尺寸优化、形状优化更大,因此,拓扑优化技术对工程设计人员更具吸引力,已经成为当今结构优化设计研究的一个热点。 发动机运转期间,主轴承座承受多种载荷,这些载荷包括:螺栓预紧载荷、轴瓦过盈载荷及曲轴动载荷等。目前,主轴承座的主要评价指标是结构的强度、刚度是否满足设计需求。在明确主轴承座承载情况和设计要求的前提下,作者对某大马力发动机原有主轴承座进行了最大爆发压力工况下的有限元分析。分析模型及主轴承座轴瓦径向变形量见图1(a)、图1 (b)和图1(c)。通过主轴承座的强度分析和动态疲劳安全系数分析可以得知:主轴承座的动态疲劳安全系数为1.843,远远大于安全系数阀值1,所以主轴承座的强度足以满足设计需求。而从图1(b)可以得知轴瓦在变形后水平方向径向减小0.0739mm ,已经接近曲轴、轴瓦径向间隙最小值0.079mm,这容易导致曲轴与轴瓦间缺少油膜润滑,形成干摩擦,最终导致曲轴磨损加剧,发动机动载荷增加,甚至机毁人亡的悲剧;另外从图1(c)可以得知轴瓦在变形后上下方向径向增加0.0971mm ,小于轴瓦径向变形许可值0.147mm 。所以,根据有限元分析结果可以判断:主轴承座在水平方向的刚度不足够,应该改进现有结构,提高其刚度性能。

连续体结构拓扑优化方法评述_夏天翔

第2卷第1期2011年2月航空工程进展 A DV A N CES IN A ERON A U T ICA L SCIEN CE A N D EN GIN EERIN G Vo l 12N o 11Feb 1 2011 收稿日期:2010-12-01; 修回日期:2011-01-20基金项目:教育部长江学者创新团队项目(Irt0906)通信作者:姚卫星,w xyao@https://www.360docs.net/doc/2f4025127.html, 文章编号:1674-8190(2011)01-001-12 连续体结构拓扑优化方法评述 夏天翔,姚卫星 (南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京 210016) 摘 要:连续体结构拓扑优化在优化中能产生新的构型,对实现自动化智能结构设计具有重要意义。目前,连续体结构拓扑优化方法主要有:均匀化方法、变厚度法、变密度法、渐进结构优化方法、水平集法、独立连续映射方法。本文首先系统回顾了以上方法的发展历程,介绍了它们的研究现状。其次,通过对比以上拓扑优化方法对若干典型算例的优化结果,表明以上方法都有较好的减重效果。最后,对以上方法进行了总结,列出了它们的优缺点和发展方向。 关键词:拓扑优化;均匀化方法;变厚度法;变密度法;渐进结构优化方法;水平集法;独立连续映射方法中图分类号:V 211.7 文献标识码:A A Survey of Topology Optimization of Continuum Stru cture Xia Tianx iang ,Yao Weix ing (K ey L abor ator y of F undamental Science fo r N atio nal Defense -adv anced Design T echno lo gy of F lig ht V ehicle,Nanjing U niver sity o f A eronautics and A st ronautics,N anjing 210016,China) Abstract:A s the to po log y optim izat ion o f continuum structure can pr oduce new config ur atio ns during the optim-i zatio n,it is significant for automatic str ucture design.A t present,the most commo nly used t opolo gy o ptimiza -t ion methods of continuum st ructur e ar e:the ho mog enization method,var iable t hickness method,v ariable dens-i t y metho d,evo lutio nar y str uctur al o pt imizatio n met ho d,lev el set metho d,independent co ntinuous mapping method.Firstly,the develo pment pro cesses of above metho ds ar e sy stematically review ed,their cur rent r e -sear ch is br iefly intro duced in this paper.T hen,these methods ar e com par ed and discussed t hr ough a number of typical ex amples.T he typical ex amples show that all of above methods have gr eat abilities to r educe w eig ht.F-i nally ,the adv ant ag es,disadv ant ag es and dev elo pment directio ns of abov e metho ds ar e discussed. Key words:to po lo gy o ptimization;homog enizat ion metho d;va riable thickness method;var iable density method;evolutionar y structure optimization metho d;lev el set method;independent continuo us mapping method 0 引言 按照设计变量的不同,结构优化可分为以下三个层次:尺寸优化、形状优化和拓扑优化。结构拓 扑优化能在给定的外载荷和边界条件下,通过改变结构拓扑使结构在满足约束的前提下性能达到最优。与尺寸优化、形状优化相比,结构拓扑优化的经济效果更为明显,在优化中能产生新的构型,是 结构实现自动化智能设计所必不可少的。 按照优化对象的性质,拓扑优化可分为离散体拓扑优化和连续体拓扑优化两种。连续体拓扑优化与离散体拓扑优化相比,在应用范围更广的同 时,模型描述困难,设计变量多,计算量大。在过去很长一段时间里,连续体拓扑优化发展得十分缓慢,直到1988年Bendso e 等人[1] 提出均匀化方法之后,它才得到了迅速发展。目前,国内外学者对结构拓扑优化问题已经进行了大量研究[2-9]。目前最常用的连续体拓扑优化方法有均匀化方法、变厚 度法、变密度法、渐进结构优化方法(ESO)、水平集法(Level set)、独立连续映射方法(ICM)等。从拓

结构拓扑优化的发展现状及未来说课讲解

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化

原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓扑优化的本质特征。通常,单元密度与弹性模量之间的关系采用人为给出的

相关文档
最新文档