专题_分子动理论分子热运动Word版

专题_分子动理论分子热运动Word版
专题_分子动理论分子热运动Word版

第二模块热学篇(高中物理)

九、分子热运动能量守恒气体

内容要求说明年份试题涉及内容

2010

2009

2008全国理综I·19

全国理综II·14

北京理综·15

天津理综·14

四川理综·14

江苏物理·12

重庆理综·16

宁夏理综·31

上海物理·1B

上海物理·13

气体压强

气体的状态参量

阿伏加德罗常数

热学综合

热力学定律

气体、热力学定律

气体、热力学定律

单分子油膜法

气体压强

第九章分子热运动·能量守恒·气体

物质是由大量分子

组成的、分子的热

运动、布朗运动、

分子间的相互作用

力、分子热运动的

动能、温度是物体

的热运动平均动能

的标志、物体分子

间的相互作用势

能、物体的内能

Ⅰ1、去掉说明。

2、由原来的八、九

两个板块合为一

个。

3、“热力学第一定

律”、“热力学第二

定律”、“永动机不

可能”、“气体分子

运动的特点”、“气

体压强的微观意

义”是增加的。

4、原“理想气体、

状态方程、三种变

化、气态图象”等

删掉。

5、原“能量的开发

和利用”改为“能

源的开发和利用、

能源的利用与环境

保护”。

2007

全国理综I·16

全国理综Ⅱ·14

北京理综·16

四川理综·14

上海物理·11

上海物理·20

天津理综·20

广东物理·9

广东物理·10

江苏物理·1

江苏物理·10

重庆理综·21

海南理综·六

气体密度、冲量、内能

做功、气体的内能

控制变量法

做功、气体的内能

气体压强

气体状态变化

内能、能量守恒

气体状态方程

内能、功能区别

分子动理论

内能、热传递

内能

热学综合

做功和热传递是改

变物体内能的两种

方式、热量、能量

守恒定律

2006全国卷I·18

全国卷II·21

江苏物理·1

广东物理·4、8

重庆理综·16

北京理综·15

四川理综·19

天津理综·14

压强的微观解释、分子力

做功

气体状态变化的微观意

阿伏加德罗常数的应用

热力学定律

热力学第一定律

热力学定律

分子热运动及压强的微

观意义

内能、热力学第二定律

热力学第一定律、

热力学第二定律、

永动机不可能、绝

对零度不可达到

Ⅰ2005全国理综I·21

北京理综·14

天津理综·14

江苏物理·4

江苏物理·17

气体状态变化与内能的

微观解释

热力学定律

气体压强的微观解释

阿伏加德罗常数

分子与分子势能

高考对本章的命题热点多集中在分子动理论【物质由大量分子组成、分子在不停地做无规则运动(布朗运动)、分子间有相互作用力(分子动能和势能)】、估算分子大小和数目(分子个数、体积、质量等的计算)、单分子油膜法、内能、改变内能的两种方式、温度、能量的转化和守恒等,题型多为选择题,命题特点多为本章内容的单独命题,由于去掉了理想气体的等温、等容、等压变化,气体图象问题等,少数题目可能与力学、电学等简单组合。由于受卷面长度的控制,如果要考,热学也可能只有一个题(6分)。

结合2003年考纲修改后的情况,在复习中应重点把握以下几方面:

①注重从实验和模型来建立物理图景

②注重运用科学的估算和模型化的思维方略

③新能源的开发和利用是近年命题的热点,值得特别关注。

④注重联系生活实际,运用微观的方法分析生活中的实际问题。

⑤关于气体压强、体积、温度间的关系是Ⅰ级要求,有可能计算气体的压强。

专题一分子动理论●考点聚焦●

●网络知识结构●

分子动理论热和功

物体的内能

物质是由大量分子组成的

分子在做永不停息的无规则运动

分子间存在有相互作用的引力和斥力物体的内能:所有分子动能和分子势能的总和

改变内能的两种方式

做功

热传递

热力学定律

热力学第一定律

热力学第二定律

气体的压强

气体的压强、温度、体积的关系

●基础知识落实●

1.分子运动论基本内容是:

(1)物质是由分子组成的;

(2)组成物质的分子在不停地做无规则的运动;

(3)分子间存在相互作用力。

2,阿伏伽德罗常数N A= 6.0×1023 mol--1,分子直径的数量级d= 1.0×10-10m 。

3.布朗运动本身不是分子运动,却反映了液体内分子运动的无规则性。

4.分子之间既有引力又有斥力。当分子间的距离等于平衡距离时,引力等于斥力;当分子间距离小于平衡距离时,斥力起主要作用;当分子间距离大于平衡距离时,引力起主要作用。引力和斥力都随距离增大而减小,斥力减小的更快。当分子间距离大于分子直径的10倍时,分子间的作用力可以忽略不计。

5.油膜法测分子直径: d=V/S 。

知识点一、分子动理论的内容:

1、物质是由大量分子组成的;

2、分子永不停息地做无规则运动;

3、分子间存在相互的作用力;

知识点二、物质是由大量分子组成的:

1、分子概念:

(1)分子概念:是构成物质并保持化学性质的最小微粒。 (2)它可由单个原子组成,也可能由多个原子组成。

(3)在热学中由于原子(构成金属的微粒)、离子(组成化合物的微粒)、或分子(组成有机物的微粒)做热运动时遵从相同的规律,所以统称为分子。

2、分子体积:

(1)分子模型:分子的大小计算有两种模型:

① 一是球形模型,对于固体和液体,可以认为它们的分子是一个个紧挨着的球,可用30

V d =直

接估算出分子体积;

② 二是立方体模型,对于气体,由于分子间空隙很大,可用30V d =估算出的是一个分子所占据的体积(活动的空间).正方体的边长即为分子间的平均距离。

作为分子直径数量级的估算,利用两种模型均可,但我们一般取第一种模型. (2)单分子的油膜法:

① 分子直径的估测——单分子油膜法:

单分子油膜法粗测分子直径的原理,类似于取一定量的小米,测出它的体积V ,然后把它平摊在桌面上,上下不重叠,一粒紧挨一粒,量出这些米粒占据桌面的面积

S ,从而计算出米粒的直径S

V d =

. 这只是一个物理模型,事实上,分子的形状非常复杂,并不真是个小球,而且分子间存在空隙。所以仅是一种粗略的测定.

② 用单分子油膜法测得分子直径的数量级为10-10

m 。

物理学中测定分子大小的方法有许多种,用不同的方法测出的分子大小并不完全相同,但数量级是一样的,均为10-10

m 。

③ 注意:除一些有机物质的大分子外,一般分子的直径数量级为10-10

m ,以后无特别说明,我们就以10-10

m 作为分子直径的数量级.

3、分子质量:

分子质量很小,一般分子质量数量级为:10-27

~10-26

kg 。

4、阿伏加德罗常数:

(1)阿伏加德罗常数N A :1摩尔(mol )任何物质所含的微粒数叫做阿伏加德罗常数。

N A = 6.02×1023mol -1.

(2)阿伏加德罗常数是联系微观世界和宏观世界的桥梁. ① 已知物质的摩尔质量M A ,可求出分子质量A

A

A A N V N M m ρ=

=0.(V A 为摩尔体积ρ为物质的密度)分子质量数量级为10-27

~10-26

kg 。

② 已知物质的量(摩尔数)n ,可求出物体所含分子数N ,N = n ×N A .

③ 已知物质的摩尔体积V A ,可求出分子的体积V 0,V 0 = V A /N A .分子体积的数量级为10-30

m .

④ 在利用上述关系式进行计算时,有些数据的数字太大(如阿伏加德罗常数),有些数据的数字又太小(如分子的直径和质量等),为了书写方便,习惯上用科学计数法写作10的乘方,如3.0×10-10

m 、6.02×1023

mol -1

等,我们称10的乘方(10-10

、1023

等)为“数量级”.对于分子的大小和质量,只要粗略地了解它的数量级就可以了.

【释例1】只要知道下列哪组物理量,就可估算气体中分子间的平均距离?〖 B 〗

A .阿伏加德罗常数,该气体的摩尔质量和质量

B .阿伏加德罗常数,该气体的摩尔质量和密度

C .阿伏加德罗常数,该气体的质量和体积

D .该气体的密度,体积和摩尔质量 【解析】 【点评】

【变式】把冰分子看成球体,不计冰分子间空隙,则由冰的密度ρ= 9×102kg/m3可估算冰分子直径的数量级是〖 B 〗

A.10-8m B.10-10m

C.10-12m D.10-14m

【解析】

【点评】

知识点三、分子的热运动:

1、理论基础:各种物质的分子都永不停息地做无规则运动。

2、扩散现象:

(1)扩散:不同物质相互接触时彼此进入对方的现象叫做扩散;

(2)扩散是物质分子的彼此迁移和物质分子运动的结果;

(3)扩散的结果是使物质分布趋于均匀,分子的运动就是要打破一切不均衡性;

(4)从浓度处向浓度小处扩散;

(5)扩散快慢的决定因素:

①扩散现象随温度的升高而日趋明显;

②扩散快慢与物质本身结构性质有关:分子结构紧密、相互作用力大,扩散就慢;

(6)扩散现象在气体、液体、固体中都能发生;

(7)扩散现象直接说明了组成物体的分子总是不停地做无规则运动;

(8)扩散现象说明分子间由间隙;

(9)扩散现象具有不可逆性;

(10)扩散现象的应用:在真空、高温条件下在半导体材料中掺入一些其他元素来制造各种元件等;

【释例1】扩散现象说明了〖 C 〗

A.气体没有固定的形状和体积

B.分子间相互排斥

C.分子在不停地运动着

D.不同分子间可相互转换

【解析】

【点评】

气体动理论汇总

有关概念: 热运动:分子做不停的无规则运动 热现象:物质中大量分子的热运动的宏观表现(如:热传导、扩散、液化、凝固、溶解、汽化等都是热现象)。 分子物理学与热力学的研究对象:热现象 微观量:描述单个分子运动的物理量。(如:分子质量、速度、能量等) 宏观量:描述大量分子热运动集体特征的物理量。(如:气体体积、压力、温度等)统计方法: 对个别分子运动用力学规律,然后对大量分子求微观两的统计平均值。 分子物理学研究方法: 建立宏观量与微观量统计平均值的关系从微观角度来说明 宏观现象的本质。分子物理学是一种微观理论。 热力学研究方法: 实验定律为基础,从能量观点出发,研究热现象的宏观规律。它是 一种宏观理论。 一、热学的基本概念 热学是物理学的一个重要分支学科,它研究的是热现象的宏观特征及其微观本质。热学研究的对象是大量粒子(如原子、分子)组成的物质体系,称为热力学系统或简称系统。 二、分子运动的基本概念 从微观上看,热现象是组成系统的大量粒子热运动的集体表现,热运动也称为分子运动、分子热运动。它是不同于机械运动的一种更加复杂的物质运动形式。因此,对于大量粒子的无规则热运动,不可能像力学中那样,对每个粒子的运动进行逐个的描述,而只能探索它的群体运动规律。就单个粒子而言,由于受到其它粒子的复杂作用,其具体的运动过程可以变化万千,具有极大的偶然性;但在总体上,运动却在一定条件下遵循确定的规律,如分子的速率分布,平均碰撞频率等,正是这种特点,使得统计方法在研究热运动时得到广泛应用,从而形成了统计物理学。统计物理学是从物质的微观结构出发,依据每个粒子所遵循的力学规律,用统计的方法来推求宏观量与微观量统计平均值之间的关系,解释与揭示系统宏观热现象及其有关规律的微观本质。 三、相关的一些概念 通常我们把描述单个粒子运动状态的物理量称为微观量,如粒子的质量、位置、动量、能量等,相应的用系统中各粒子的微观量描述的系统状态,称为微观态;描述系统整体特性的可观测物理量称为宏观量,如温度、压强、热容等,相应的用一组宏观量描述的系统状态,称为宏观态。 四、热学相关内容的分类 按研究角度和研究方法的不同,热学可分成热力学和气体动理论两个组成部分。热力学不涉及物质的微观结构,只是根据由观察和实验所总结得到的热力学规律,用严密的逻辑推理方法,着重分析研究系统在物态变化过程中有关热功转换等关系和实

分子动理论 知识点总结

高中物理选修3-3——分子动理论知 识点总结 一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)任何物质含有的微粒数相同 2、对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量: b.分子体积: c.分子数量: 二、分子的热运动 1、分子永不停息的做无规则的热运动(布朗运动扩散现象) 2、扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快

3、布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 4、热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 三、分子间的相互作用力 1、分子之间的引力和斥力都随 分子间距离增大而减小。但是分子间 斥力随分子间距离加大而减小得更 快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。 2、在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。 3、当两个分子间距在图象横坐标距离时,分子间的引力与斥力平衡,分子间作用力为零,的数量级为m,

人教版(2019)选择性必修三 3.1 分子动理论的基本内容 课后作业

3.1.1 分子动理论的基本内容课后作业 一、选择题 1.关于布朗运动,下列说法正确的是( ) A.布朗运动就是分子运动,布朗运动停止了,分子运动也会暂时停止 B.微粒做布朗运动,充分说明了微粒内部分子是不停地做无规则运动的 C.布朗运动是无规则的,因此它说明了液体分子的运动是无规则的 D.布朗运动的无规则性,是由于外界条件无规律的不断变化而引起的 2.甲、乙两杯水,水中均有颗粒在做布朗运动,经显微镜观察后,发现甲杯中的布朗运动比乙杯中的布朗运动激烈,则下列说法中正确的是( ) A.甲杯中的水温高于乙杯中的水温 B.甲杯中的水温等于乙杯中的水温 C.甲杯中的水温低于乙杯中的水温 D.条件不足,无法确定 3.如图所示,两个接触面平滑的铅柱压紧后悬挂起来,下面的铅柱不脱落,主要原因是( ) A.铅分子做无规则热运动 B.铅柱受到大气压力作用 C.铅柱间存在万有引力作用 D.铅柱间存在分子引力作用 4.固体和液体都很难被压缩的根本原因是( ) A.分子都做无规则运动 B.分子间的空隙小 C.分子本身不能被压缩 D.分子间斥力随距离减小而剧增 5.下列说法正确的是( ) A.水的体积很难被压缩,这是分子间存在斥力的宏观表现 B.气体总是很容易充满容器,这是分子间存在斥力的宏观表现 C.破碎的玻璃不能把它们拼接在一起是分子间存在斥力的宏观表现 D.给自行车打气过程中随着活塞下压越来越吃力是气体分子间斥力的宏观表现 6.(多选)下列关于布朗运动、扩散现象和对流的说法正确的是( )

A.三种现象在月球表面都能进行 B.三种现象在宇宙飞船里都能进行 C.布朗运动、扩散现象在月球表面能够进行,而对流则不能进行 D.布朗运动、扩散现象在宇宙飞船里能够进行而对流则不能进行 7.(多选)我国已开展空气中PM2.5浓度的监测工作,PM2.5是指空气中直径小于2.5微米的悬浮颗粒物,可在显微镜下观察到,它漂浮在空中做无规则运动,很难自然沉降到地面,吸入后会进入血液对人体形成危害,矿物燃料燃烧时废弃物的排放是形成PM2.5的主要原因,下列关于PM2.5的说法中正确的是( ) A. PM2.5在空气中的运动属于分子热运动 B.温度越高,PM2.5的无规则运动越剧烈 C.PM2.5的质量越小,其无规则运动越剧烈 D.由于周围大量空气分子对PM2.5碰撞的不平衡,使其在空中做无规则运动 8.已知在标准状况下,1 mol 氢气的体积为22.4 L,氢气分子直径的数量级为() A.10-9m B.10-10m C.10-11m D.10-8m 9.已知水银的摩尔质量为M,密度为ρ,阿伏加德罗常数为N A,则水银分子的直径是() A.()B.()C.D. 10.如所示是布朗运动的示意图,下列说法中正确的是() A.图中记录的是液体分子无规则运动的情况 B.图中记录的是小颗粒分子无规则运动的情况 C.图中记录的是小颗粒做布朗运动的轨迹 D.图中记录的是几个小颗粒各自在不同时刻的位置的连线 11.(多选)下列词语或陈述句中,描述分子热运动的是()

气体分子运动理论

学科:物理 教学内容:气体分子运动理论 【基础知识精讲】 1.气体分子运动的特点 (1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动. 气体能充满它们所能达到的空间,没有一定的体积和形状. (2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动. (3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性. ①气体分子沿各个方向运动的数目是相等的. ②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的. 在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多. 2.气体压强的产生 (1)气体压强的定义 气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S. (2)气体压强的形成原因 气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的. (3)气体压强的决定因素 ①分子的平均动能与密集程度 从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度. ②气体的温度与体积 从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的高低是分子平均动能的标志. (4)几个问题的说明 ①在一个不太高的容器中,我们可以认为各点气体的压强相等的. ②气体的压强经常通过液体的压强来反映. ③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是因为一般容器内气体质量很小,且容器高度有限,所以不同高度

气体动理论

气体动理论 一、选择题 1.按照气体分子运动论,气体压强的形成是由于 ( ) (A )气体分子之间不断发生碰撞; (B )气体分子的扩散; (C )气体分子不断碰撞器壁; (D )理想气体的热胀冷缩现象. 2.理想气体中仅由温度决定其大小的物理量是( ) (A )气体的压强 (B )气体分子的平均速率 (C )气体的内能 (D )气体分子的平均平动动能 3. 在一个容积不变的封闭容器内理想气体分子平均速率若提高为原来的2倍,则( ) A .温度和压强都提高为原来的2倍 B .温度为原来的2倍,压强为原来的4倍 C .温度为原来的4倍,压强为原来的2倍 D .温度和压强都为原来的4倍 4.关于温度的意义,下列几种说法中错误的是:( ) A .气体的温度是分子平均平动动能的量度. B .气体的温度是大量气体分子热运动的集体表现,具有统计意义. C .温度的高低反映物质内部分子运动剧烈程度的不同. D .从微观上看,气体的温度表示每个气体分子的冷热程度. 5.容积为V 的容器中,贮有1N 个氧分子、2N 个氮分子和M kg 氩气的混合气体,则混合 气体在温度为T 时的压强为(其中A N 为阿佛伽德罗常数,μ为氩分子的摩尔质量)[ ] (A )kT V N 1 (B )kT V N 2 (C )kT V MN A μ (D )kT N M N N V A )(121μ ++ 6.一瓶氦气和一瓶氮气(均为理想气体)都处于平衡状态,质量密度相同,分子平均平动动 能相同,则它们( ) A 、温度相同、压强相同; B 、温度相同,但氦气的压强大于氮气的压强; C 、温度、压强都不相同; D 、温度相同,但氦气的压强小于氮气的压强 7.压强、温度相同的氩气和氮气,它们的分子平均平动动能k ε和平均动能ε的关系为 ( ) (A )和k ε都相等 (B )和k ε都不相等 (C )k ε相等,而 ε不相等 (D )ε相等,而k ε不相等 8.mol 2的刚性分子理想气体甲烷,温度为T ,其内能可表示为:( ) A 、kT 5; B 、kT 6; C 、RT 5; D 、RT 6.

第四章 气体动理论 总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式1: mol M PV =RT =νRT M 形式2: 2 2 2111T V p T V p =形式3: nkT P = n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 V N V N n ==d d 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 2213 212()323 p nmv p n mv n ω === v----摩尔数 R--普适气体恒量 描述气体状态三个物理量: P,V T 压 强 公 式

12 2 ω=mv 理想气体的压强公式揭示了宏观量与微观量统计平均值之间的关系,说明压强具 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1322 2 ω=mv =kT 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 = ?2 m ol 3kT 3R T v = =m M 在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 μRT m kT v v x = ==22 31 分子平均平动动能 温度的微观本质:理想气体的温度是分子平均平动动能的量度 摩尔质量

人教版初三物理全册分子热运动(二)

第1节分子热运动(二) 学习目标: 1 .知道一切物质的分子都在不停地做无规则运动。 2 ?能识别扩散现象,并能用分子热运动的观点进行解释。 3 .知道分子之间存在相互作用力。 学习重点:扩散现象 学习难点:分子之间存在相互作用力 学具准备:烧杯、热水、凉水、墨水、胶头滴管等 (三)分子间的作用力 阅读课本P125、P126有关分子间的作用力内容,思考并回答下面的问题。 1?扩散现象说明分子在不停地运动,那么固体和液体中的分子为什么不会飞散开,而总是聚合在一起保持一定的体积呢? 2. 图16.1-5能说明什么? 3?扩散现象说明分子间有间隙,为什么压缩固体和液体很困难呢? 练习5?将表面干净平整的铅压紧就在一起,把打碎了的两块玻璃用多大的力都不能将它 们拼合在一起,其原因是() A. 铅的分子间有引力,而无斥力 B. 玻璃分子间有斥力,而无引力 C. 分子之间的引力和斥力是同时存在的,只不过因两铅块分子之间的距离能靠近到引力 大于斥力的程度 D. 以上说法都不对 练习6.据下面的现象请做出合理的推测。 现象1:铁丝很难拉伸;推测:_______________________________________ ; 现象2:用手很难将铁块压缩;推测:_________________________________ ; 现象3:金属断裂可以通过高温的氧焊焊接;推测: ____________________________________ 练习7.水把邮票粘贴在信封上,等胶水干了以后就很难直接把邮票完整地从信封上摘下来,这是为什么?

三、总结反思 1. 考点归纳,完成网络:

人教版高中物理选修3-3第七章 分子动理论测试含答案和详细解析

绝密★启用前 2020年秋人教版高中物理选修3-3第七章分子动理论测试 本试卷共100分,考试时间120分钟。 一、单选题(共10小题,每小题4.0分,共40分) 1.一滴水的体积大约是6.0×10-6cm3,这滴水里含有的分子数约为() A. 3.6×1018个 B. 3.6×1017个 C. 2.0×1017个 D. 2.7×1013个 2.A、B两个分子的距离等于分子直径的10倍,若将B分子向A分子靠近,直到不能再靠近的过程中,关于分子力做功及分子势能的变化下列说法正确的是() A.分子力始终对B做正功,分子势能不断减小 B.B分子始终克服分子力做功,分子势能不断增大 C.分子力先对B做正功,而后B克服分子力做功,分子势能先减小后增大 D.B分子先克服分子力做功,而后分子力对B做正功,分子势能先增大后减小 3.某种油剂的密度为8×102kg/m3,若不慎将0.8 kg的这种油剂漏到湖水中并形成单分子油膜,则湖面受污染面积约为() A. 10-3m2 B. 107cm2 C. 10 km2 D. 10-10m2

4.关于分别以摄氏温度及热力学温度为横、纵坐标所表示的t与T的关系图线说法错误的是() A.为直线 B.通过第二象限 C.纵轴之截距小于横轴之截距 D.斜率为1 5.关于扩散现象和布朗运动,下列说法中正确的是() A.扩散现象和布朗运动是由外部原因引起的液体分子的运动 B.扩散现象和布朗运动虽然不是分子的运动,但它能反映出分子的运动规律 C.布朗运动的剧烈程度与悬浮颗粒的大小有关,这说明分子的运动与悬浮颗粒的大小有关 D.扩散现象和布朗运动的剧烈程度都与温度有关,所以扩散现象和布朗运动也叫做热运动 6.严冬,湖面上结了厚厚的冰,但冰下面鱼儿仍在游动,为了测出冰下水的温度,徐强同学在冰上打了一个洞,拿来一支实验温度计,用下列四种方法测水温,正确的做法是() A.用线将温度计拴牢从洞中放入水中,待较长时间后从水中提出,读出示数 B.将一塑料饮水瓶拴住,从洞中放入水里,水灌满瓶后取出,再用温度计测瓶中水的温度 C.取一塑料瓶,将温度计悬吊在瓶中,再将瓶拴住从洞中放入水里,水灌满瓶后待较长时间,然后将瓶提出,立即从瓶外观察温度计示数 D.手拿温度计,从洞中将温度计插入水中,待较长时间取出立即读出示数 7.关于内能,下列说法中正确的是() A. 0 ℃的冰块的内能为零 B.温度高的物体比温度低的物体的内能多 C.物体的温度降低,则物体的内能减少 D.体积大的物体的内能一定比体积小的物体内能多

气体动理论知识点总结

气体动理论知识点总结 注意:本章所有用到的温度指热力学温度,国际单位开尔文。 T=273.15+t 物态方程 A N PV NkT P kT nkT V m PV NkT PV vN kT vRT RT M =→= =' =→===(常用) 一、 压强公式 11()33 P mn mn = =ρρ=22v v 二、 自由度 *单原子分子: 平均能量=平均平动动能=(3/2)kT *刚性双原子分子: 平均能量=平均平动动能+平均平动动能=325222 kT kT kT += *刚性多原子分子: 平均能量=平均平动动能+平均平动动能=3 332 2 kT kT kT +=

能量均分定理:能量按自由度均等分布,每个自由度的能量为(1/2)kT 所以,每个气体分子的平均能量为2 k i kT ε= 气体的内能为k E N =ε 1 mol 气体的内能22 k A i i E N N kT RT =ε== 四、三种速率 p = ≈v = ≈v = ≈ 三、 平均自由程和平均碰撞次数 平均碰撞次数:2Z d n =v 平均自由程: z λ= =v 根据物态方程:p p nkT n kT =?= 平均自由程: z λ==v

练习一 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子热运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。(错) 解:温度是个统计量,对个别分子说它有多少温度是没有意义的。 3.若室内升起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了: 解:PV NkT = 211227315 0.9627327N T N T +===+ 1210.04N N N N ?=-= 则此时室内的分子数减少了4%. 4. 两容器内分别盛有氢气和氦气,若他们的温度和质量分别相等,则:(A ) (A )两种气体分子的平均平动动能相等。 (B )两种气体分子的平均动能相等。 (C )两种气体分子的平均速率相等。 (D )两种气体的内能相等。 任何气体分子的平均平动动能都是(3/2)kT ,刚性双原子分子: 平均能量=平均平动动能+平均平动动能=3 252 2 2 kT kT kT +=

9 气体动理论习题详解

习题九 一、选择题 1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ] (A )0 ()Nf v dv ∞ ? ; (B ) 20 1 ()2 mv f v dv ∞? ; (C )20 1 ()2 mv Nf v dv ∞? ; (D )0 1 ()2 mvf v dv ∞? 。 答案:B 解:根据速率分布函数()f v 的统计意义即可得出。()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。 2.下列对最概然速率p v 的表述中,不正确的是 [ ] (A )p v 是气体分子可能具有的最大速率; (B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ; (D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。 答案:A 解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。 3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ] (A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。 答案:A rms v =222222221 ,16 H O H H H O O O T T T M M M T M ===,所以答案A 正确。 4.如下图所示,若在某个过程中,一定量的理想气体的 热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ] (A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。 答案:C

高中物理-分子动理论知识点汇总

分子动理论,热和功,气体 1.分子动理论 (1)物质是由大量分子组成的分子直径的数量级一般是10-10m。 (2)分子永不停息地做无规则热运动。 ①扩散现象:不同的物质互相接触时,可以彼此进入对方中去。温度越高,扩散越快。 ②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规则运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规则运动的宏观反映。颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 (3)分子间存在着相互作用力 分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的变化比引力的变化快,实际表现出来的是引力和斥力的合力。 2.物体的内能 (1)分子动能:做热运动的分子具有动能,在热现象的研究中,单个分子的动能是无研究意义的,重要的是分子热运动的平均动能。温度是物体分子热运动的平均动能的标志。 (2)分子势能:分子间具有由它们的相对位置决定的势能,叫做分子势能。分子势能随着物体的体积变化而变化。分子间的作用表现为引力时,分子势能随

着分子间的距离增大而增大。分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。 (3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。任何物体都有内能,物体的内能跟物体的温度和体积有关。 (4)物体的内能和机械能有着本质的区别。物体具有内能的同时可以具有机械能,也可以不具有机械能。 3.改变内能的两种方式 (1)做功:其本质是其他形式的能和内能之间的相互转化。(2)热传递:其本质是物体间内能的转移。 (3)做功和热传递在改变物体的内能上是等效的,但有本质的区别。 4.★能量转化和守恒定律 5★.热力学第一定律 (1)内容:物体内能的增量(ΔU)等于外界对物体做的功(W)和物体吸收的热量(Q)的总和。 (2)表达式:W+Q=ΔU (3)符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。 6.热力学第二定律

高中物理人教版选修精选气体分子动理论单元测试题

物理同步测试—分子运动理论能量守恒气体 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确的) 1.下列说法中正确的是() A. 物质是由大量分子组成的,分子直径的数量级是10-10m B. 物质分子在不停地做无规则运动,布朗运动就是分子的运动 C. 在任何情况下,分子间的引力和斥力是同时存在的 D. 1kg的任何物质含有的微粒数相同,都是×1023个,这个数叫阿伏加德罗常数 2.关于布朗运动,下列说法正确的是( ) A.布朗运动是在显微镜中看到的液体分子的无规则运动 B.布朗运动是液体分子无规则运动的反映 C.悬浮在液体中的微粒越小,液体温度越高,布朗运动越显着 D.布朗运动的无规则性反映了小颗粒内部分子运动的无规则性 3.以下说法中正确的是( ) A.分子的热运动是指物体的整体运动和物体内部分子的无规则运动的总和 B.分子的热运动是指物体内部分子的无规则运动 C.分子的热运动与温度有关:温度越高,分子的热运动越激烈 D.在同一温度下,不同质量的同种液体的每个分子运动的激烈程度可能是不相同的 4.在一杯清水中滴一滴墨汁,经过一段时间后墨汁均匀地分布在水中,只是由于() A.水分子和碳分子间引力与斥力的不平衡造成的 B.碳分子的无规则运动造成的 C.水分子的无规则运动造成的 D.水分子间空隙较大造成的 5.下列关于布朗运动的说法中正确的是() A.将碳素墨水滴入清水中,观察到的布朗运动是碳分子无规则运动的反映 B.布朗运动是否显着与悬浮在液体中的颗粒大小无关 C.布朗运动的激烈程度与温度有关 D.微粒的布朗运动的无规则性,反映了液体内部分子运动的无规则性 6.下面证明分子间存在引力和斥力的试验,错误的是() A.两块铅压紧以后能连成一块,说明存在引力 B.一般固体、液体很难被压缩,说明存在着相互排斥力 C.拉断一根绳子需要一定大小的力说明存在着相互吸引力 D.碎玻璃不能拼在一起,是由于分子间存在着斥力 7.下列叙述正确的是()A.悬浮在液体中的固体微粒越大,布朗运动就越明显 B.物体的温度越高,分子热运动的平均动能越大 C.当分子间的距离增大时,分子间的引力变大而斥力减小 D.物体的温度随着科学技术的发达可以降低到绝对零度

气体动理论(复习)

第六章气体动理论 §6-1 气体状态方程 【基本内容】 热力学系统:由大量分子组成的物质(气体、液体、固体)称为热力学系统,系统以外其它物体称为外界。 热力学:以观察和实验为基础,研究热现象的宏观规律,总结形成热力学三大定律,对热现象的本质不作解释。 统计物理学:从物质微观结构出发,按每个粒子遵循的力学规律,用统计的方法求出系统的宏观热力学规律。 分子物理学:是研究物质热现象和热运动规律的学科,它应用的基本方法是统计方法。 一、气体状态方程 1、宏观量与微观量 宏观量:表征大量分子集体性质的物理量(如P、V、T、C等)。 微观量:表征个别分子状况的物理量(如分子的大小、质量、速度等)。 2、热力学过程、平衡态与平衡过程 热力学过程:是系统状态经过一系列变化到另一状态的经历。 平衡态:是热力学系统在不受外界影响的条件下,宏观热力学性质(如P、V、T)不随时间变化的状态。它是一种热动平衡,起因于物质分子的热运动。 平衡过程:热力学过程中的每一中间状态都是平衡态的热力学过程。 3、理想气体的状态方程 (1)理想气体的状态方程 是理想气体在任一平衡态下,各状态参量之间的函数关系: (2)气体压强与温度的关系 P=nkT 玻尔兹曼常数k=R/N A=1.38×10-23J/K,啊伏加德罗常数N A =6.028×1023/mol。 ρ=nm 分子数密度n=N/V,ρ——气体质量密度,m——气体分子质量。 1/ 7

2 / 7 二、理想气体的压强 1、理想气体的微观假设 关于分子个体力学性质的假设:(a )分子本身的大小比起它们之间的距离可忽略不计。(b )除了分子碰撞瞬间外,分子之间的相互作用以忽略。(c )分子之间以及分子与器壁间的碰撞是完全弹性的。关于分子集体之间性质的假设——统计假设:(a )分子按位置的分布是均匀的,即分子沿空间各个方向运动的数目相等。(b )分子按速度方向的分布是均匀的,即分子沿空间各个方向运动的机会相等。2、理想气体的压强公式 分子的平均平动动能:22 1v m t =ε 3、压强的统计意义 P 是统计平均值,是对时间、对大量分子、对面积求平均的效果。 三、理想气体的温度 1、分子平均平动动能与温度的关系 温度的意义:气体的温度是分子平均平动动能的量度;温度标志物质内部分子无规则运动的剧烈程度。 2、方均根速率2v 方均根速率:是气体分子热运动时,速度的平均值。 四、分子间的碰撞 1、平均碰撞频率 是一个分子在单位时间内与其它分子碰撞的平均次数。 d :分子有效直径,v :分子平均速率,n :分子数密度。 2、平均自由程 是一个分子在连续两次碰撞之间,自由运动路程的平均值。 五、能量均分定律 1、自由度 决定物体在空间位置所需要独立坐标的数目,称为该物体的自由度。 i=t+r t :平动自由度,i :转动自由度。 单原子分子t=3、r=0、i=3;刚性双原子分子t=3、r=2、i=5;刚性多原子分子t=3、r=3、i=62、能量均分定律

高考物理力学知识点之分子动理论真题汇编附答案

高考物理力学知识点之分子动理论真题汇编附答案 一、选择题 1.关于分子间的作用力,下列说法错误的是() A.分子之间的斥力和引力同时存在 B.分子之间的斥力和引力大小都随分子间距离的增大而减小 C.分子之间的距离减小时,分子力一直做正功 D.当分子间的距离大于109 米时,分子力已微弱到可以忽略 2.(3-3)对于液体在器壁附近的液面发生弯曲的现象,如图所示,对此有下列几种解释,其中正确的是( ) ①Ⅰ图中表面层分子的分布比液体内部疏 ②Ⅰ图中附着层分子的分布比液体内部密 ③Ⅱ图中表面层分子的分布比液体内部密 ④Ⅱ图中附着层分子的分布比液体内部疏 A.只有①对 B.只有③④对 C.只有①②④对 D.全对 3.雾霾天气对大气中各种悬浮颗粒物含量超标的笼统表述,是特定气候条件与人类活动相互作用的结果。雾霾中,各种悬浮颗粒物形状不规则,但可视为密度相同、直径不同的球体,并用PM10、PM2.5分别表示直径小于或等于10μm、2.5μm的颗粒物(PM是颗粒物的英文缩写)。某科研机构对北京地区的检测结果表明,在静稳的雾霾天气中,近地面高度百米的范围内,PM10的浓度随高度的增加略有减小,大于PM10的大悬浮颗粒物的浓度随高度的增加明显减小,且两种浓度分布基本不随时间变化。 据此材料,以下叙述正确的是() A.PM10表示直径小于或等于1.0×10-6m的悬浮颗粒物 B.PM10受到的空气分子作用力的合力始终大于其受到的重力 C.PM10和大悬浮颗粒物都在做布朗运动 D.PM2. 5浓度随高度的增加逐渐增大 4.下列说法正确的是( ). A.液体表面层的分子分布比较稀疏,分子之间只存在引力,故液体表面具有收缩趋势B.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动 C.当液晶中电场强度不同时,液晶对不同颜色光的吸收强度不同,就显示不同颜色D.高原地区水的沸点较低,这是高原地区温度较低的缘故 5.甲、乙两个分子相距较远,它们之间的分子力弱到可忽略不计的程度.若使甲分子固定

人教版高中物理选修3-3第七章《分子动理论》单元测试题

高中物理学习材料 (马鸣风萧萧**整理制作) 第七章《分子动理论》单元测试题 一、选择题(本题共8小题,每小题7分,共56分) 1如图1描绘了一颗悬浮微粒受到周围液体分子撞击的情景,以下关于布朗运动的说法正确的是() A.布朗运动就是液体分子的无规则运动 B.液体温度越低,布朗运动越剧烈 C.悬浮微粒越大,液体分子撞击作用的不平衡性表现得越明显 D.悬浮微粒做布朗运动,是液体分子的无规则运动撞击造成的 2.关于热运动的说法中,下列正确的是() A.热运动是物体受热后所做的运动B.温度高的物体中的分子的无规则运动C.单个分子的永不停息的无规则运动D.大量分子的永不停息的无规则运动3.下列说法中正确的是() A.温度低的物体内能小 B.温度低的物体分子运动的平均速率小 C.物体做加速运动时速度越来越大,物体内分子的平均动能也越来越大 D.物体体积改变,内能可能不变 4.下列有关热现象和热规律的说法中正确的是() ①给自行车轮胎打气,越来越费力,证明分子间斥力在增大,引力在减小②用手捏面包,面包体积会缩小,这是分子间有间隙的缘故③“酒好不怕巷子深、花香扑鼻”与分子热运动有关④“月亮在白莲花般的云朵里穿行、影动疑是玉人来”与分子热运动无关⑤内能包括所有分子的动能、势能和宏观具有的机械能

A .③④ B .①②③ C .②④ ⑤ D .①③⑤ 5.铜的密度ρ=8.9×103kg/m 3,摩尔质量M=6.4×10-2kg/mol ,阿伏加德罗常数N A =6.0×1023mol -1。若将铜原子视为球体,则铜原子的直径约为( ) A .3.66×10-10 m B .3.00×10-10 m C .2.83×10-10 m D .2.16×10-10 m 6.(多选)对以下物质运动现象的分析正确的是 ( ) ①刮风时空气分子的运动;②上升的水蒸气的运动;③用显微镜观察悬浮在水中的小炭粒,小炭粒不停地做无规则运动;④向一杯清水中滴入几滴红墨水,红墨水向周围运动。 A .①②③属于布朗运动 B .④属于扩散现象 C .只有③属于布朗运动 D .①②④属于扩散现象 7.(多选)两分子间的距离为0r 时,其合力为零,图2中可能示意反映分子势能P E 与分子间的距离r 变化关系的有( ) 8.(多选)实际生活中,常用到一种双金属温度计。它是利用铜片与铁片铆合在一起的双金属片的弯曲程度随温度变化的原理制成的。如图3所示,已知图(甲)中双金属片被加热时,其弯曲程度会增大。则下列各种相关叙述中正确的有( ) A .该温度计的测温物质是铜、铁两种热膨胀系数不同的金属 B .双金属温度计是利用测温物质比热容的不同来工作的 C .由图(甲)可知,铜的热膨胀系数大于铁的热膨胀系数 D .由图(乙)可知,其双金属片的内层一定为铜,外层一定为铁 二、填空题 (8分) 0 P E r 0r A 0 P E r 0r ? B 0 P E r 0r C E 0 r 0r D

气体动理论

一、选择题 [ C ]1、(基础训练2)两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内气体的质量的关系为: (A) n 不同,(E K /V )不同,不同. (B) n 不同,(E K /V )不同,相同. (C) n 相同,(E K /V )相同,不同. (D) n 相同,(E K /V )相同,相同. 【提示】① ∵nkT p =,由题意,T ,p 相同,∴n 相同; ② ∵kT n V kT N V E k 2 3 23==,而n ,T 均相同,∴V E k 相同; ③ RT M M pV mol =→RT pM V M mol ==ρ,T ,p 相同,而mol M 不同,∴ρ不同。 [ B ]2、(基础训练7)设图示的两条曲线分别表示在相同温度下氧气和氢气分子 的速率分布曲线;令() 2 O p v 和() 2 H p v 分别表示氧气和氢气的 最概然速率,则 (A) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. (B) 图中a 表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (C) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v =1/4. (D) 图中b表示氧气分子的速率分布曲线; ()2 O p v /() 2 H p v = 4. 【提示】①最概然速率p v =p v 越小,故图中a 表示氧气分子的速率分布曲线; ②23 ,3210(/)mol O M kg mol -=?, 23 ,210(/)mol H M kg mol -=?, 得 ()() 2 2 O v v p p H 14 = [ C ]3、(基础训练8)设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2

高考物理专题力学知识点之分子动理论真题汇编含答案

高考物理专题力学知识点之分子动理论真题汇编含答案 一、选择题 1.下列说法中不正确的是() A.布朗运动并不是液体分子的运动,但它说明分子永不停息地做无规则运动 B.叶面上的小露珠呈球形是由于液体表面张力的作用 C.液晶显示器是利用了液晶对光具有各向异性的特点 D.当两分子间距离大于平衡位置的间距r0时,分子间的距离越大,分子势能越小 2.下列说法中正确的是() A.将香水瓶盖打开后香味扑面而来,这一现象说明分子在永不停息地运动 B.布朗运动指的是悬浮在液体或气体中的固体分子的运动 C.悬浮在液体中的颗粒越大布朗运动越明显 D.布朗运动的剧烈程度与温度无关 3.关于分子间的作用力,下列说法中正确的是 A.当两个分子间相互作用表现为引力时,分子间没有斥力 B.两个分子间距离减小,分子间的引力和斥力都增大 C.两个分子从相距很远处到逐渐靠近的过程中,分子间的相互作用力逐渐变大 D.将体积相同的水和酒精混在一起,发现总体积小于混合前水和酒精的体积之和,说明分子间存在引力 4.采用油膜法估测分子的直径,先将油酸分子看成球形分子,再把油膜看成单分子油膜,在实验时假设分子间没有间隙。实验操作时需要测量的物理量是 A.1滴油酸的质量和它的密度 B.1滴油酸的体积和它的密度 C.油酸散成油膜的面积和油酸的密度 D.1滴油酸的体积和它散成油膜的最大面积 5.在“用油膜法估测分子大小”的实验中,能将油膜的厚度近似认为等于油酸分子的直径,下列措施可行的是() A.把痱子粉均匀地撒在水面上,测出其面积 B.取油酸一滴,滴在撒有均匀痱子粉的水面上形成面积尽可能大的油膜 C.取油酸酒精溶液一滴,滴在撒有均匀痱子粉的水面上形成面积尽可能大的油膜 D.把油酸酒精溶液滴在撒有均匀痱子粉的水面上后,要立即描绘油酸在水面上的轮廓6.如图所示,甲分子固定在坐标原点O,乙分子位于x轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示,F>0为斥力,F<0为引力,a、b、c、d为x轴上四个特定的位置,现把乙分子从a处由静止释放,若规定无限远处分子势能为零,则 A.乙分子在b处势能最小,且势能为负值

第四章--气体动理论-总结

第四章 气体动理论 单个分子的运动具有无序性 布朗运动 大量分子的运动具有规律性 伽尔顿板 热平衡定律(热力学第零定律) 实验表明:若 A 与C 热平衡 B 与 C 热平衡 则 A 与B 热平衡 意义:互为热平衡的物体必然存在一个相同的 特征--- 它们的温度相同 定义温度:处于同一热平衡态下的热力学系统所具有的共同的宏观性质,称为温度。 一切处于同一热平衡态的系统有相同的温度。 理想气体状态方程: 形式形式 n ----分子数密度(单位体积中的分子数) k = R/NA = 1.38*10 –23 J/K----玻耳兹曼常数 在通常的压强与温度下,各种实际气体都服从理想气体状态方程。 §4-2 气体动理论的压强公式 1)分子按位置的分布是均匀的 2)分子各方向运动概率均等、速度各种平均值相等 k j i iz iy ix i v v v v ++=分子运动速度 单个分子碰撞器壁的作用力是不连续的、偶然的、不均匀的。从总的效果上来看,一个持续的平均作用力。 描述气体状态三个物理量: P,V T

12 2 ω=mv 有统计意义; 压强公式指出:有两个途径可以增加压强 1)增加分子数密度n 即增加碰壁的个数 2)增加分子运动的平均平动能 即增加每次碰壁的强度 思考题:对于一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大(玻意耳定律);当体积不变时,压强随温度的升高而增大(查理定律)。从宏观来看,这两种变化同样使压强增大,从微观(分子运动)来看,它们有什么区 别? 对一定量的气体,在温度不变时,体积减小使单位体积内的分子数增多,则单位时间内与器壁碰撞的分子数增多,器壁所受的平均冲力增大,因而压强增大。而当体积不变时,单位体积内的分子数也不变,由于温度升高,使分子热运动加剧,热运动速度增大,一方面单位时间内,每个分子与器壁的平均碰撞次数增多; 另一方面,每一次碰撞时,施于器壁的冲力加大,结果压强增大。 §4-3 理想气体的温度公式 nkT p =23 p =n ω 1. 反映了宏观量 T 与微观量w 之间 的关系 ① T ∝ w 与气体性质无关;② 温度具有统计意义,是大量分子集 体行为 ,少数分子的温度无意义。2. 温度的实质:分子热运动剧烈程度的宏观表现。3. 温度平衡过程就是能量平衡过程。 二.气体分子运动的方均根速率 kT v m 2 32 1 2 =在相同温度下,由两种不同分子组成的混合气体,它们的方均根速率与其质量的平方根成正比 当温度T=0时,气体的平均平动动能为零,这时气体分子的热运动将停止。然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是永不停息 的。 m k T v v x ===2231温度的微观本质:理想气体的温度是分子平均平动动能的量度

相关文档
最新文档