典型植物的光谱曲线有什么样的特点

典型植物的光谱曲线有什么样的特点
典型植物的光谱曲线有什么样的特点

典型植物的光谱曲线有

什么样的特点

Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

典型植物的光谱曲线有什么样的特点举例说明影响植物光谱曲线特征的因素有哪些

特点:微米有一个蓝光的吸收带,微米处有一个绿光的反射波峰,微米处有一个红光的吸收带。在微米、微米和微米处是水的吸收带,形成波谷。

原因:微米有一个蓝光的吸收带,微米处有一个绿光的反射波峰,微米处有一个红光的吸收带。这表明,叶绿素对蓝光和红光的吸收作用强,而对绿色的反射作用强。

在近红外波段的到微米之间有一个反射的陡坡,微米附近有一个峰值,形成植被的独有特征。这是由于植被叶子的细胞结构的影响,除了吸收和透射的部分以外而形成的高反射率。

在近红外波段到微米,是因为受绿色植物含水量的影响,吸收率增大,反射率下降。特别是在微米、微米和微米处,形成水的吸收带。

植物波谱特征的因素:除了以上述及的含水量以外,还与植物种类、季节、病虫害等密切相关。

影像因素季节病虫害植物种类右图为桷树、松树、桦树及草的波谱特

性曲线。可看出草在0.7微米后的波段

反射率较其他树种高。不同植物在不同

波段表现出来的特征不同。植物种类不同,其形状、叶片的形态及

叶片数量、叶片的氮磷钾含量、叶表反

射率也是不尽相同的,相应的,其波谱

特征也就不尽相同

右图为冬小麦在不同生长阶段的波谱特性曲线。由图看出,冬小麦的不同生长阶段的波谱特征是不同的。

这是因为在植物生长的不同阶段,其氮

磷钾含量、颜色的不同,导致了对不同

波段的反射率有所差异。

从图可知,植物所受灾害的程度不同,其波谱特征也是不同的。这是因为受灾的程度不同,植物的氮磷

钾比例、叶片面积、叶表的颜色及其反

射率会有所变化。

特点图像

实验1——地物光谱的测试

实验1 可见光与近红外波谱测试 1.1实习概述 按照国家光谱数据库数据测试参考标准选择典型进行地物反射、发射光谱测试。根据所测的光谱曲线特征选择最佳遥感波段和最佳遥感时间。 1.2实习目的 ①掌握地物反射、发射光谱特性的基本概念,特点; ②掌握典型地物光谱的测试方法和实验数据分析处理的基本流程和方法; ③分析影响地物波谱特性测定的因素;了解地物表面不同几何状况、含水状况、 风化状况、粗糙程度对反射、发射光谱的影响;了解多种地物光谱随时间变化的特征与规律;了解入射和观测角度变化对地物光谱的影响。 ④培养学生理论联系实际及知识的综合运用能力,为后续专业课程学习创造条 件。 1.3实习任务 测量试验区的植被、水、土壤、道路的光谱特性。要求测定不同植被、水、土壤、道路的波谱特性曲线,即每类地物至少选择5个小类(或样本)。 ①清水、营养化水、污染水反射光谱、发射光谱测试与特征分析; ②不同覆盖度、不同长势植被覆盖反射光谱、发射光谱测试与特征分析; ③城乡非自然目标反射光谱、发射光谱测试与特征分析; ④土壤反射光谱、发射光谱测试与特征分析; ⑤岩石反射光谱、发射光谱测试与特征分析。 要求:上述5个实验根据具体情况必作2个,选作1个。

1.4设备(软件)及资料准备 1.4.1 实习设备及软件 测定地物反射光谱特性的仪器是可见光、近红外光谱仪。仪器由收集器、分光器、探测器和显示或记录器组成。测定地物发射光谱特性的仪器是热红外波谱仪、热红外辐射计。 1.4.2 实习前准备工作 1.4. 2.1 光谱测试仪器的标定 测量仪器在采集数据前必须通过指定的定标实验室的定标检测,检验仪器的工作性能。仪器的定标在室定标和实验场地现场定标,并在提交数据时附上相应测量仪器的定标报告。若对同一种典型地物(农作物、岩矿、水体等)的相同观测项目采用不同型号的测量仪器,则必须在观测实验前到指定的实验室或实验场进行统一校准和比对:即在相同的条件下,同时测量同一目标,进行归一化处理,分析各仪器的误差,以精度高的仪器为准,进行误差订正,并在提交数据时应附上相应测量仪器的比对报告。其中波谱仪与辐射计的性能要求为: ⑴可见光、近红外波段波谱仪 ①波谱仪读数时间漂移最大值,在0.38-1.1μm 围平均不得超过3%; ②波谱仪的读数的线性度误差不得超过1%; ③波谱仪在0.38-1.1μm 围波长绝对误差平均不得超过0.8nm。 ⑵短波红外波段波谱仪 ①在1.1-2.5μm 围波谱仪读数时间漂移最大值,平均不得超过5%; ②波谱仪读数的线性度误差不得超过3%;

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算 在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation i ndices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁 迫性相关的色素、植被冠层中水分含量等。 包括以下内容: ? ?●植被光谱特征 ? ?●植被指数 ? ?●HJ-1-HSI植被指数计算 1.植被光谱特征 植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。 研究植被的波长范围一般为400 nm t o 2500 nm,这也是传感器设计选择的波长范围。这个波长范围可范围以下四个部分: ??●可见光(Visible):400 nm to 700 nm ??●近红外(Near-infrared——NIR):700 nm to 1300 nm ??●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm ??●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm 其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。 SWIR-1 和SWIR-2的过渡区(1900nm附近)也是大气水的强吸收范围。 植被可分为三个部分组成: ??●植物叶片(Plant Foliage) ??●植被冠层(Plant Canopies) ??●非光合作用植被(Non-Photosynthetic Vegetation) 这三个部分是植被分析的基础,下面对他们详细介绍。 1.1植物叶片(Plant Foliage) 植物叶片包括叶、叶柄以及其他绿色物质,不同种类的叶片具有不同的形状和化学成份。对波谱特征产生重要影响

植物反射波谱特征

健康的绿色植被的光谱反射特征 地面植物具有明显的光谱反射特征,不同于土壤、水体与其她的典型地物,植被对电磁波的响应就是由其化学特征与形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素就是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总就是呈现“峰与谷”的图形,可见光谱内的谷就是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0、45um与0、67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区与红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素与叶黄素在0、45um(蓝色)附近有一个吸收带,但就是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区与红区吸收带减弱,常使红波段反射率增强,以至于我们可以瞧到植物变黄(绿色与红色合成)。 从可见光区到大约0、7um的近红外光谱区,可瞧到健康植被的反射率急剧上升。在0、7-1、3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0、7-1、3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的 40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0、76um附近,反射率急剧上升,形成“红边”现象,这就是植物曲线的最为明显的特征,就是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这就是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

绿色植物的反射波谱曲线作用

绿色植物的反射波谱曲线作用 2014015587—贺康康—环科 地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素和叶黄素在0.45um(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。(Philip et al. ,1978) 植物波谱反射特征的规律[1] 经过的对植物进行300多个目标点的波谱反射特性的测定。从结果来看,尽管它们种类、所在位置的自然条件不同,但在绿色状态下,其特征都具有共同的规律,这些规律是: 1、特征的相似性。 2、特征的可分性。 3、特征的周期性 4、特征随季节而变化的显著性。 作物旱情监测[2] 济南市小麦种植区TVDI 统计结果表明,对于TVDI 等级非常湿润和湿润,在六个统计时段内,面积最大都出现在六月份,面积最小都出现在一月和十二月,其次非常湿润等级还在三月的面积较大,湿润等级在十月份的面积较大;冬小麦种植区的正常TVDI等级,面积最大出现在十月,最小为一月,其他各月相差不大;出现干旱现象面积最大的月份为一月,与前文分析结果一致,统计结果同样符合。 利用多类别MODIS 植被指数和陆地表面温度产品数据,根据陆地表面温度与植被指数关系特点,建立多种干旱评价指标。结合气温、降水、土壤墒情数据,验证各干旱反演模型在济南市的适用性,研究2010年10月至2011年5月济南市干旱发生的时空演变格局。

地物光谱反射率分析

实习报告 实习题目:地物光谱测定 实习时间,地点:天山堂前面空地贺兰堂地信专业机房 实习目的:认识地物光谱反射率的规律,分析典型地物的光谱特征 使用仪器:地物光谱分析仪 测量目标的基本信息:草地,裸地,水泥路,红灌丛,绿灌丛 环境参数表:气温:18度 实习内容,实习步骤:1. 用ASD软件打开外业测量地物光谱数据,去除十条曲线中明显异常曲线 打开ASD软件→file→open→选中测得的十条曲线→打开→选择加载的十条数据→view→graph data→在空白处右击→customization dialog→axis→min/max(设置max为1),根据图形删除其中一条或多条异常曲线(在目录中直接删除) 2.对符合条件的地物光谱曲线进行处理(导出每种地物的JPG、tab和平均值.mn数据) ①加载符合条件的曲线(方法与步骤1相同)→export→分别

选择jpg,设置输出路径和文件名,点击export即可 ②求每种地物的平均值曲线 Process→statistics→选择mean→设置输出路径和文件名即可 对于上述导出的平均值曲线,点击export→分别选择text格式,设置输出路径和文件名,点击export即可导出.dat文件 3.处理数据 ①对每种地物的jpg文件,只需要分析其曲线特征(联系地物实际特性来分析其在可见光(380-760nm)和近红外(760-1500nm)之间的光谱特征) ②将上述的dat文件(五个)分别用excel打开,并且计算红、绿、蓝波段的平均值,蓝光101-171,绿光171-251,红光281-341,将计算好的五组数据放入新的excel表中,并绘制折线图 ③将步骤2中的各种地物平均值数据在ASD中打开,方法如步骤1所示,并将其按照jpg格式导出,并对其进行分析。 反射率曲线及分析:

典型植物的光谱曲线有什么样的特点

典型植物的光谱曲线有 什么样的特点 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

典型植物的光谱曲线有什么样的特点举例说明影响植物光谱曲线特征的因素有哪些 特点:微米有一个蓝光的吸收带,微米处有一个绿光的反射波峰,微米处有一个红光的吸收带。在微米、微米和微米处是水的吸收带,形成波谷。 原因:微米有一个蓝光的吸收带,微米处有一个绿光的反射波峰,微米处有一个红光的吸收带。这表明,叶绿素对蓝光和红光的吸收作用强,而对绿色的反射作用强。 在近红外波段的到微米之间有一个反射的陡坡,微米附近有一个峰值,形成植被的独有特征。这是由于植被叶子的细胞结构的影响,除了吸收和透射的部分以外而形成的高反射率。 在近红外波段到微米,是因为受绿色植物含水量的影响,吸收率增大,反射率下降。特别是在微米、微米和微米处,形成水的吸收带。 植物波谱特征的因素:除了以上述及的含水量以外,还与植物种类、季节、病虫害等密切相关。

影像因素季节病虫害植物种类右图为桷树、松树、桦树及草的波谱特 性曲线。可看出草在0.7微米后的波段 反射率较其他树种高。不同植物在不同 波段表现出来的特征不同。植物种类不同,其形状、叶片的形态及 叶片数量、叶片的氮磷钾含量、叶表反 射率也是不尽相同的,相应的,其波谱 特征也就不尽相同 右图为冬小麦在不同生长阶段的波谱特性曲线。由图看出,冬小麦的不同生长阶段的波谱特征是不同的。 这是因为在植物生长的不同阶段,其氮 磷钾含量、颜色的不同,导致了对不同 波段的反射率有所差异。 从图可知,植物所受灾害的程度不同,其波谱特征也是不同的。这是因为受灾的程度不同,植物的氮磷 钾比例、叶片面积、叶表的颜色及其反 射率会有所变化。 特点图像

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析 一、实验目的与要求 1.实验意义: (1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物, 光线探头在毫秒内得到地物的单一光谱。FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。 (2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标, 反射率为纵坐标所得到的曲线即为反射波谱特性曲线。影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。不同的地理位置,海拔高度不同。时间、季节的变化。地物本身差异、土壤含水量、植被病虫害。 2.实验目的: (1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。 (2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。认识并掌握典型地物反射光谱特征。

二、实验内容与方法 1.实验内容 (1)典型地物反射波谱测量 选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外波段(0.4-2.5微米)的反射光谱曲线。 地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。 (2)地物波谱特征分析 a)标准波谱库浏览 b)波谱库创建 c)高光谱地物识别 ●从标准波谱库选择端元进行地物识别 ●自定义端元进行地物识别 2.实验方法 (1)ASD光谱仪简介 FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm的512像元NMOS硅光电二极管阵列, 以及两个用于1000-2500nm的单独的热电制冷的铟-镓-砷光电探测器。便携式光谱仪是“我国典型地物标准波谱数据库”获取光谱数据的主要设备。

植被光谱特性

在光谱的中红外阶段,绿色植物的光谱响应主要被1.4μm、1.9μm和2.7μm附近的水的强烈吸收带所支配。 地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。在中心波长分别为0.45μm(蓝色)和0.65μm(红色)的两个谱带内,叶绿素吸收大部分的摄入能量,在这两个叶绿素吸收带间,由于吸收作用较小,在0.54μm(绿色)附近行程一个反射峰,因此许多植物看起来是绿色的。除此之外,叶红素和叶黄素在0.45μm (蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。健康绿色植物在近红外波段的光谱特征是反射率高(45%-50%),透过率高(45%-50%),吸收率低(<5%)。在可见光波段与近红外波段之间,即大约0.76μm附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。 在光谱的中红外阶段,绿色植物的光谱响应主要被1.4μm、1.9μm和2.7μm附近的水的强烈吸收带所支配。2.7μm处的水吸收带是一个主要的吸收带,它表示水分子的基本振动吸收带。1.9μm,1.1μm,0.96μm处的水吸收带均为倍频和合频带,故强度比谁的基本吸收带弱,而且是依次减弱的。1.4μm和1.9μm处的这两个吸收带是影响叶子的中红外波段光谱响应的主要谱带。1.1μm和0.96μm处的水吸收带对叶子的反射率影响也很大,特别是在多层叶片的情况下。研究表明,植物对入射阳光中的红外波段能量的吸收程度是叶子中总水分含量的函数,即是叶子水分百分含量和叶子厚度的函数。随着叶子水分减少,植物中红外波段的反射率明显增大(Philip et al.,1978)

遥感导论-习题及参考答案第二章 电磁辐射与地物光谱特征答案

第二章电磁辐射与地物光谱特征 ·名词解释 辐射亮度:由辐射表面一点处的单位面积在给定方向上的辐射强度称为辐射亮度。 普朗克热辐射定律:在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1 灰度波谱:用该类型在该波段上的灰度值反应的波谱曲线 黑体辐射:任何物体都具有不断辐射、吸收、发射电磁波的本领,为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 电磁波谱:将电磁波按大小排列制成图表。 太阳辐射:太阳射出的辐射射线 瑞利散射:大气中粒子的直径比波长小得多时发生的散射 米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射 地球辐射:地面吸收太阳辐射能后,向外辐射的射线。 地物波谱特性:各种地物因种类和环境条件不同,都有不同的电磁波辐射或反射特性 反射率:地物反射能量与入射总能量之比。 比辐射率:某一物体在一特定波长和温度下的发射辐射强度与理想黑体在相同波长和温度下所发射的辐射强度之比。 后向散射 ·问答题 地球辐射的分段特性是什么? 当太阳辐射到达地表后,就短波而言,地表反射的太阳辐射成为地表的主要辐射来源,而来自地球本身的辐射,几乎可以忽略不计。地球自身的辐射主要集中在长波,即6um以上的热红外区段,该区段太阳辐射的影响几乎可以忽略不计,因此只考虑地表物体自身的热辐射。两峰交叉之处是两种辐射共同其作用的部分,在2.5~6um,即中红外波段,地球对太阳辐照的反射和地表物体自身的热辐射均不能忽略。 什么是大气窗口?试写出对地遥感的主要大气窗口 答:大气窗口的定义:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高 的波段成为大气窗口。 包括:部分紫外波段,0.30 m μ~0.40m μ,70%透过。 全部可见光波段,0.40 m μ~0.76m μ,95%透过。 部分近红外波段,0.76 m μ~1.3m μ,80%透过。 近红外窗口:1.5 m μ~2.4m μ,90%透过,可区分蚀变岩石。 包括两个小窗口:1.5 m μ~1.75m μ 2.1 m μ~2.4m μ。 中红外窗口:3.5 m μ~5.5m μ,反射和发射并存。 包括两个小窗口(反射和发射混合光谱):3.5 m μ~4.2m μ 4.6 m μ~5m μ 远红外窗口:8 m μ~14m μ,发射电磁波,热辐射。 微波窗口:0.5cm~300cm

典型地物反射波谱测量与特征分析复习进程

典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析 一、实验目的与要求 1.实验意义: (1)对光谱测量仪器的认识: ASD野外光谱分析仪 FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。 FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。 (2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。不同的地理位置,海拔高度不同。时间、季节的变化。地物本身差异、土壤含水量、植被病虫害。 2.实验目的: (1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。 (2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。认识并掌握典型地物反射光谱特征。

二、实验内容与方法 1.实验内容 (1)典型地物反射波谱测量 选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外波段(0.4-2.5微米)的反射光谱曲线。 地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。 (2)地物波谱特征分析 a)标准波谱库浏览 b)波谱库创建 c)高光谱地物识别 ●从标准波谱库选择端元进行地物识别 ●自定义端元进行地物识别 2.实验方法 (1)ASD光谱仪简介 FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm

典型光谱矿物识别

【ENVI入门系列】16.基本光谱分析 (2014-09-30 17:38:25) 转载▼ 分类:ENVI 标签: 杂谈 版权声明:本教程涉及到的数据仅供练习使用,禁止用于商业用途。 目录 基本光谱分析 1.概述 2.详细操作步骤 2.1标准波谱库与浏览 2.2波谱库创建 2.3高光谱地物识别 2.3.1从标准波谱库选择端元进行地物识别 2.3.2自定义端元进行地物识别 1. 概述 光学遥感技术的发展经历了:全色(黑白)—>彩色摄影—>多光谱扫描成像—>高光谱遥感四个历程。 高光谱分辨率遥感(HyperspectralRemote Sensing)用很窄(小于10nm)而连续的光谱通道对地物持续遥感成像的技术。在可见光到短波红外波段其光谱分辨率高达纳米

(nm)数量级,通常具有波段多的特点,光谱通道数多达数十甚至数百个以上,而且各光谱通道间往往是连续的,因此高光谱遥感又通常被称为成像光谱(Imaging Spectrometry)遥感。相比多光谱传感器,如Landsat8 OLI包括9个波段,光谱分辨率为106nm。 如下图为从多光谱和高光谱数据上获取的波谱曲线,更高波谱分辨率的图像可以用于识别物质,而相比多光谱图像,如TM只能用于区分物质。 图:从多光谱和高光谱数据上获取的波谱曲线对比 本课程学习ENVI的高光谱基本分析功能,包括波谱库的浏览与创建、基本的高光谱物质识别流程。 2. 详细操作步骤 2.1 标准波谱库与浏览

ENVI自带多种标准波谱库,包括建立在JPL波谱库基础上的,从0.4~2.5μm三种不同粒径160种"纯"矿物的波谱。美国USGS从0.4~2.5μm包括近500种典型的矿物和一些植被波谱。来自Johns Hopkins University(JHU)的波谱包含0.4~14μm。IGCP246波谱库有5部分组成,通过对26个优质样品用5个不同的波谱仪测量获得。植被波谱库由Chris Elvidge 提供,范围是0.4~2.5μm。ENVI 5.1波谱库中新增了2443种Aster的波谱文件,同时对应的波谱工具也有了很大的该进,用户可直观地看到每一种波谱库中的文件个数,以及更为方便的查看每一种波谱文件的波谱曲线。 ENVI的波谱库文件存放在HOME\ Program Files\Exelis\ENVI51\classic\spec_lib。 启动ENVI 5.1,主菜单> Display > Spectral Library View,在对话框中显示的就是ENVI自带的波谱库文件; 图:ENVI自带波谱库文件 (1)选择打开Veg_lib(99)中的几个植被波谱文件; 在vegetation波谱库中选择6种不同植被的波谱曲线,在下图可以看到起对应的波谱曲线,以及波谱文件的属性信息,包括常规信息和曲线信息。

电磁辐射与地物光谱特征

第二章电磁辐射与地物光谱特征 一、名词解释: 1、遥感 2、后向散射 3、电磁波 4、电磁波谱 5、绝对黑体 6、瑞利散射 7、灰体 8、绝对温度 9、辐射温度 10、光谱辐射通量密度 11、大气窗口 12、发射率 13、米氏散射 14、地球辐射 15、反射率 16、光谱反射特性曲线 17、普朗克热辐射定律 18、太阳辐射 19、地物波谱特征 二、填空题: 1、电磁波谱按频率由高到低排列主要由、、、、、 、等组成。 2、绝对黑体辐射通量密度是和的函数。 3、一般物体的总辐射通量密度与和成正比关系。 4、维恩位移定律表明绝对黑体的乘是常数2897.8。当绝对黑体的温度增高时,它的辐射峰值波长向方向移动。 5、大气层顶上太阳的辐射峰值波长为μm 三、选择题:(单项或多项选择) 1.绝对黑体的①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。 2.物体的总辐射功率与以下那几项成正比关系①反射率②发射率③物体温度一次方④物体温度二次方⑤物体温度三次方⑥物体温度四次方。 3.大气窗口是指①没有云的天空区域②电磁波能穿过大气层的局部天空区域 ③电磁波能穿过大气的电磁波谱段④没有障碍物阻挡的天空区域。 4.大气瑞利散射①与波长的一次方成正比关系②与波长的一次方成反比关系③与波长的二次方成正比关系④与波长的二次方成反比关系⑤与波长的四次方成正比关系⑥与波长的四次方成反比关系⑦与波长无关。 5.大气米氏散射①与波长的一次方成正比关系②与波长的一次方成反比关系 ③与波长无关。 四、问答题:

1.电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点,又有哪些共性? 2.物体辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少? 3.叙述沙土、植物和水的光谱反射率随波长变化的一般规律。 4.地物光谱反射率受哪些主要的因素影响? 5.何为大气窗口?分析形成大气窗口的原因,并列出用于从空间对地面遥感的大气窗口的波长范围。 6.传感器从大气层外探测地面物体时,接收到哪些电磁波能量? 7.地球辐射的分段特性是什么? 8.简介地物波谱的特征。

典型植物的光谱曲线有什么样的特点

. 典型植物的光谱曲线有什么样的特点?举例说明 影响植物光谱曲线特征的因素有哪些? 特点:0.45微米有一个蓝光的吸收带,0.55微米处有一个绿光的反射波峰,0.67微米处有一个红光的吸收带。在1.45微米、1.95微米和2.7微米处是水的吸收带,形成波谷。 原因:0.45微米有一个蓝光的吸收带,0.55微米处有一个绿光的反射波峰,0.67微米处有一个红光的吸收带。这表明,叶绿素对蓝光和红光的吸收作用强,而对绿色的反射作用强。 在近红外波段的0.8到1.0微米之间有一个反射的陡坡,1.1微米附近有一个峰值,形成植被的独有特征。这是由于植被叶子的细胞结构的影响,除了吸收和透射的部分以外而形成的高反射率。 在近红外波段1.3到2.5微米,是因为受绿色植物含水量的影响,吸收率增大,反射率下降。特别是在1.45微米、1.95微米和2.7微米处,形成水的吸收带。 植物波谱特征的因素:除了以上述及的含水量以外,还与植物种类、季节、病虫害等密切相关。

影像因素季节病虫害植物种类右图为桷树、松树、桦树及草的波谱特 性曲线。可看出草在0.7微米后的波段 反射率较其他树种高。不同植物在不同 波段表现出来的特征不同。植物种类不同,其形状、叶片的形态及 叶片数量、叶片的氮磷钾含量、叶表反 射率也是不尽相同的,相应的,其波谱 特征也就不尽相同 右图为冬小麦在不同生长阶段的波谱特性曲线。由图看出,冬小麦的不同生长阶段的波谱特征是不同的。 这是因为在植物生长的不同阶段,其氮 磷钾含量、颜色的不同,导致了对不同 波段的反射率有所差异。 从图可知,植物所受灾害的程度不同,其波谱特征也是不同的。这是因为受灾的程度不同,植物的氮磷 钾比例、叶片面积、叶表的颜色及其反 射率会有所变化。 特点图像

pan地物光谱反射率的野外测定

实验一 地物光谱反射率的野外测定 一 实验目的 1、学习地物光谱的测定方法 2、认识地物光谱反射率的规律 3、掌握绘制地物反射光谱曲线的方法 二 原理及方法 地物光谱反射率的野外测定原理主要是利用电磁辐射和各地物光谱特征进行测定(参照课本)。 实验采用垂直测量方法,计算公式为: ()()()() λρλλλρs Vs V ?= 式中, ()λρ为被测物体的反射率,()λρs 为标准板的反射率,()λV ,()λVs 分别为测量 物体和标准板的仪器测量值。 三 实验仪器 1、可见光-近红外光谱辐射计,波长范围0.4—2.5μm(有0.4—1.1μm 或1.3—2.5μm 二种仪器),仪器性能稳定,携带方便,数据提取容易。表1.1列出了目前常用的光谱仪。 2、标准参考板(白板或灰板)。 表1.1常见的光谱辐射仪

四实验步骤 1、测量目标和条件的选择 环境:无严重大气污染,光照稳定,无卷云或浓积云,风力小于3级,避开阴影和强反射体的影响(测量者不穿白色服装)。 时间:地方时9:30—14:30。 测量时应尽量避开阴影和反射体,并要求测量者着深色服装,尽量远离测点。 ●野外测量时需要考虑的因素 ●选择无云或少云的天气 ●风带来的氧气浓度的差异 ●周围目标的光极化干扰 ●白板完全覆盖视场 ●几何布置 ●注意选择适当的时间 蒸气的吸收特性对入射到地球表面的太阳光的影响最大,水蒸气的这种影响是随着时间和地点的变化而变化的,例如极干燥的沙漠地区在无云的天气下人们可以观测到水吸收峰1400nm 附近区域真实的地物光谱,但1900nm 附近的信号依然很弱。 取样:选择物体自然状态的表面作为观测面,取样面积大于地物自然表面起伏和不均匀的尺度,被测目标面要充满视场。 标准板:标准板表面与被测地物的宏观表面相平行,与观测仪器等距,并充满仪器视场,保证板面清洁。 2、记录测量目标基本信息 主要内容如下: 土壤:土类、土属、土种;地貌类型、成土母质、侵蚀状况;干湿度、粗糙度等。 植被:植物名称、所属类别、覆盖率、生长状况、叶色、高度等。 水体:水体名称、水体状况、水色、水温、透明度、泥沙含量、叶绿素含量、污染状况等。 人工目标:目标名称、内容描述、估算面积、几何特征、表面颜色、坡度、坡面等。 岩矿:岩矿名称、所属类别、植被覆盖及名称、土壤覆盖及名称、岩矿露头面积、所属构造、地质年代、风化状况等。 3、记录环境参数

中国典型地物波谱知识库

本书汇集了课题的主要研究成果。其中,第一章总结自课题建议立项以来波谱知识库建设的基本思路;第二章论述波谱数据、模型、知识、影像四库合一的知识库系统结构和设计实现;第三章以课题数据质量控制过程为线索,汇总课题组在地物波谱和配套参数测量、数据汇总等标准规范的制定、数据审核等方面的成果和经验;第四章详细论述农作物波谱数据和知识构建的研究成果;第五章详细论述岩矿波谱数据和知识构建的研究成果;第六章详细论述水体波谱数据和知识构建的研究成果;第七章介绍波谱库数据和模型在农业、矿产资源调查和水环境监测方面的应用示范;第八章简单介绍波谱库运行系统的主要功能和用户使用方法。 内容简介 中国典型地物波谱知识库建设旨在建立集地物波谱测量数据、遥感图像数据、遥感先验知识数据、遥感分析模型于一体的地物波谱知识库,成为遥感科学数据平台和联系遥感基础研究与遥感应用的桥梁。本书主要介绍中国典型地物波谱知识库建设的科学思路、典型地物波谱和配套参数数据、遥感模型和背景知识、地物波谱库系统设计与技术实现、地物波谱数据测量标准规范、地物波谱数据的应用示范等研究成果。 本书可作为从事定量遥感基础研究、遥感技术与遥感应用研究的科研人员和相关专业研究生的参考书,并为中国典型地物波谱知识库系统提供使用指导。 目录 序 前言 第一章构建地物波谱知识库的科学思路 第一节定量遥感与地物波谱数据库 第二节地物波谱数据的多尺度特征、遥感模型与知识构建 一、材料波谱、端元波谱和遥感像元波谱

二、遥感模型与波谱模拟 三、波谱数据库中的知识构建 第三节地物波谱知识库与地表参数的遥感反演 第四节典型地物标准波谱知识库一期建设的主要成果第五节地物波谱知识库应用中的科学问题 参考文献 第二章地物波谱知识库系统 第一节地物波谱知识库系统设计简介 一、地物波谱知识库系统设计的基本原则 二、地物波谱知识库系统组成与结构 第二节地物波谱知识库设计 一、地面观测波谱数据库 二、遥感影像数据库 三、遥感模型库 第三节地物波谱知识库系统功能模块 第四节地物波谱数据库的开发与运行环境 参考文献 第三章地物波谱库数据质量控制与标准规范 第一节地物波谱库数据的质量控制方案 一、数据测量标准规范 二、测量仪器 三、数据采集 四、数据处理、收集与汇总

植被光谱特征及常用卫星参数

植被光谱特征 400~700nm波段,植被强吸收波段,反射和透射都很低。由于植物色素吸收,特别是叶绿素a、b的强吸收,在可见光波段形成两个反射率很低的吸收谷(450nm蓝光和660nm红光附近)和一个反射峰(550nm的绿光处),呈现出其独特的光谱特征,即“蓝边”、“绿峰”、“黄边”、“红谷”等区别于土壤、岩石、水体的独特光谱特征。 700nm~780nm波段,是叶绿素在红波段的强吸收到近红外波段多次散射形成的高反射平台的过渡波段,又称为植被反射率红边。红边是植被营养、长势、水分、叶面积等的指示性特征,并得到了广泛应用与证实。当植被生物量大、色素含量高、生长力旺盛时,红边位置会向长波方向移动(红移);而当遇病虫害、污染、叶片老化等因素发生时,红边位置会向短波方向移动(蓝移)。 780nm~1350nm波段,叶片内部结构能够解释其光谱反射率特性。由于光线在叶片内部的多次散射形成,且色素和纤维素在该波段来说是近似是透明的(多次散射最多10%被吸收),即便是叶片含水量也只是在970nm、1200nm附近有两个微弱的吸收特征,所以多次散射的结果便是近50%的光线被反射,近50%被透射。该波段植被反射率较高且相对平稳,因此称反射率平台(又称为反射率红肩)的光谱反射率强度取决于叶片内部结构,特别是叶肉与细胞间空隙的相对厚度。但叶片内部结构影响叶片光谱反射率的机理比较复杂,已有研究表明,当细胞层越多,光谱反射率越高;细胞形状、成分的各向异性及差异越明显,光谱反射率也越高。当冠层叶片呈多层分布时,由于被透射光线可以多次反射,因此,在该波段随叶面积指数增大反射率也增高。 1350nm~2500nm波段,叶片水分吸收主导了该波段的光谱反射率特性。由于1450nm、1940nm、2700nm的强吸收特征,这些吸收光谱位置中间,形成2个主要反射峰,位于1650nm和2200nm附近。由于叶片水分的吸收波段受到大气中水汽的强烈干扰,而将大气水汽和植被水分对光谱反射率的贡献相分离的难度很大,虽取得了部分进展,但仍满足不了植被含水量的定量遥感需求。 NDVI——归一化植被指数:取值为0-1(通常为0.2-0.8) NDVI=(近红外反射率NIR-红光反射率R)/( 近红外反射率NIR+红光反射率R)。 NDVI能较好反映植被群体大小及生长状态:NDVI值大,则表明植被相对群体较大、生长状态好;NDVI值小,则表明植被相对群体较小、生长状态差。

植物反射波谱特征

地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约和(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素和叶黄素在(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。 从可见光区到大约的近红外光谱区,可看到健康植被的反射率急剧上升。在区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。 在不同种类的植物之间,内部结构差别很大,所以,虽然在可见光波段它们看起来是一样的,但在这一光谱区可以通过测量反射率来鉴别不同种类的植物。同样,许多植物也会迫使改变在这一光谱区的反射率,所以,人们常用工作在该光谱区的传感器来探测植物状况。树冠有多层叶子将会提供多次透射和反射的机会。因此,近红外反射会随着树冠中叶子的层数的增加而增加,大约八层叶子时反射率达到最大。 在以上,入射到植被的能量主要被吸收和反射,很少甚至没有透射,在、、和处,反射率出现明显下降,这是因为在这些波长波段植物叶子内的水强烈吸收造成的。所以,我们称这些波谱区域内的波长为水的吸收波段。吸收波段之间的和处出现反射率高峰。在以上的波段内,植物叶子的反射率与叶子的总含水量大致成反比关系(总含水量是含水量和叶子厚度两者的函数)。 在光谱的中红外阶段,绿色植物的光谱响应主要被、和附近的水的强烈吸收带

植被的光谱特性

植被的光谱特性 色素吸收决定着可见光波段的光谱反射率,细胞结构决定近红外波段的光谱反射率,而水汽吸收决定了短波红外的光谱反射率特性。一般情况下,植被在350 - 2500nm范围内具有如下典型反射光谱特征: (1 )350一490nm谱段:由于400一450nm谱段为叶绿素的强吸收带,425一490nm 谱段为类胡罗卜素的强吸收带,380nm波长附近还有大气的弱吸收带,故350一490nm谱段的平均反射率很低,一般不超过10%,反射光谱曲线的形状也很平缓; (2) 490一600mn谱段:由于550nm波长附近是叶绿素的强反射峰区,故植被在此波段的反射光谱曲线具有波峰的形态和中等的反射率数值(约在8-28%之间); (3) 600一700nm谱段:650一700nm谱段是叶绿素的强吸收带,610、660nm谱段是藻胆素中藻蓝蛋白的主要吸收带,故植被在600一700nm的反射光谱曲线具有波谷的形态和很低的反射率数值(除处于落叶期的植物群落外,通常不超过10%) (4) 700一750nm谱段:植被的反射光谱曲线在此谱段急剧上升,具有陡而近于直线的形态。其斜率与植物单位面积叶绿素(a+b)的含量有关,但含量超过4一5mg.cm'2后则趋于稳定; (5) 750一1300nm谱段:植被在此波段具有强烈反射的特性(可理解为植物防灼伤的自卫本能),故具有高反射率的数值。此波段室内测定的平均反射率多在35一78%之间,而野外测试的则多在25一65%之间。由于760nm, 850nm, 910nm,960nm 和1120nm等波长点附近有水或氧的窄吸收带,因此,750.1300nm谱段的植被反射光谱曲线还具有波状起伏的特点; (6) 1300一1600nm谱段:与1360一1470nm谱段是水和二氧化碳的强吸收带有关,植被在此谱段的反射光谱曲线具有波谷的形态和较低的反射率数值(大多在12一18%之间): (7) 1600一1830nm谱段:与植物及其所含水分的波谱特性有关,植被在此波段的反射光谱曲线具有波峰的形态和较高的反射率数值(大多在20一39%之间); (8) 1830一2080mn 谱段:此谱段是植物所含水分和二氧化碳的强吸收带,故植被在此谱段的反射光谱曲线具有波谷的形态和很低的反射率数值(大多在6一10%之间); (9) 2080一2350nm谱段:与植物及其所含水分的波谱特性有关,植被在此波段的反射光谱曲线具有波峰的形态和中等的反射率数值(大多在10一23%之间): (10) 2350一2500mn谱段:此谱段是植物所含水分和二氧化碳的强吸收带,故植被在此谱段的反射光谱曲线具有波谷的形态和较低的反射率数值(大多在8一12%之间)。

相关文档
最新文档