博弈论

博弈论
博弈论

博弈论

1 引言

博弈论包括局中人,策略和支付函数三个要素。有n个局中人参入的博弈称为n人博弈, n≥ 2。每个局中人有个支付函数,其收益或损失由所有局中人的策略按照该支付函数计算。每个局中人采用的策略可以是其多个策略中的某一个,或者是策略的某种概率分布。前者称为纯策略博弈,后者称为混合策略博弈。纯策略可以看作是混合策略的特殊情形。根据局中人之间的关系,博弈分为合作博弈和非合作博弈。每个局中人都希望使自己的利益最大化。但是在非合作博弈中,由于局中人的利益是互相冲突的,只能寻求一组策略使每个局中人较为满意。一组策略是指由每个局中人的一种策略构成的策略组合。如果存在一个策略组合,无论那个局中人单方面地改变其策略,不会使其收益增加,只可能使其收益减少,这个策略组合就叫做納什均衡(或納什均衡解、納什均衡点)。以下是关于納什均衡的正式定义及其存在性定理(见[1])。

Formal definition

Let (S,f) be a game with n players, where S i is the strategy set for player i, S = S1?S2?…?S n is the set of strategy profiles and f = (f1(x), f2(x), … , f n(x)) is the payoff function for x∈S. Let x i be a strategy profile of player i and x-i be a strategy profile of all players except for player i. When each player i∈ {1, 2, … , n} chooses strategy x i resulting in strategy profile x = (x1, x2, … , x n) then player i obtains payoff f i(x). Note that the payoff depends on the strategy profile chosen, i.e., on the strategy chosen by play i as well as the strategies chosen by all the other players. A strategy profile x*∈S is a Nash Equilibrium (NE) if no unilateral deviation in strategy by any single player is profitable for the player, that is

?i, x i∈S i: f i(x i*, x-i*) ≥f i(x i, x-i*).

Nash’s Existence Theorem

If we allow mixed strategies, then every game with a finite many pure strategies has at least one Nash Equilibrium.(有限策略的非合作n人博弈至少有一个納什均衡)

2 二人博弈

2.1 纯策略博弈

局中人I有m个策略A1, A2, … , A m,局中人II有n个策略B1, B2, … ,B n,不同策略下双方的收益如表2.1所示([2]p72)。

表2.1 二人博弈的收益表

由每个单元格中前一个数字构成的矩阵A = (a ij)m?n是局中人I的收益矩阵,由后一个数

字构成的矩阵B = (b ij )m ?n 是局中人II 的收益矩阵。

当局中人II 采用某策略B j 时,如果局中人I 采用其m 个策略中的策略A i 可以获得最大收益,称A i 是对B j 的最优反应。同样,当局中人I 采用某策略A i 时,如果局中人II 采用其n 个策略中的策略B j 可以获得最大收益,称B j 是对A i 的最优反应。当A i 和B j 互为最优反应时,称(A i , B j )为该博弈的纯策略納什均衡点。纯策略博弈问题可能有一个,多个或没有納什均衡点。

下面介绍计算纯策略納什均衡点的一种方法。

在局中人I 收益矩阵A = (a ij )m ?n 每一列的最大数字上标上*号,在局中人II 收益矩阵B = (b ij )m ?n 每一行的最大数字上标上*号。如果同一位置有两个*号,那么其相应的两个策略是納什均衡点。

例2.1 某博弈问题的博弈表为表2.2。求其纯策略納什均衡点。

表2.2 某博弈问题的收益表

解 在甲方收益矩阵每一列的最大数字上标上*号,在乙方收益矩阵每一行的最大数字上标上*号。单元格(3, 3)有两个*号,所以策略(A 3, B 3)是此博弈问题的納什均衡点。

2.2混合策略博弈

如果没有纯策略納什均衡,可考虑求混合策略納什均衡解。设局中人I 策略的分布为(x 1, x 2, … ,x m ), 局中人II 策略的分布为(y 1, y 2, … ,y n )。那么

x 1 + x 2 +… + x m = 1, x 1, x 2, … ,x m ≥ 0,

y 1 + y 2 + … + y n = 1, y 1, y 2, … ,y n ≥ 0. 局中人I 的期望收益为

E 1(X , Y ) =

∑∑==m i n

j j i ij y x a 11

= X T AY .

局中人II 的期望收益为

E 2(X , Y ) =

∑∑==m i n

j j i ij y x b 11

= X T BY .

其中X = (x 1, x 2, … ,x m )T , Y = (y 1, y 2, … ,y n )T 。

例2.2 (现价折扣促销博弈[2]p73) 考虑销售商与消费者之间的博弈。销售商有“明天打折销售”和“今天打折销售”两个策略,消费者有“明天购买”和“今天购买”两个策略。双方的收益见表2.3,求混合納什均衡解。

表2.3 销售商与消费者博弈的收益

解 由表2.3可以看出此博弈问题没有纯策略納什均衡点。销售商和消费者的收益矩阵分别为

A = ???? ??4793,

B =

???

?

??9347. 现求其混合策略納什均衡解。为此,设销售商采用两个策略的概率分别为x 和1 - x ,

消费者采用两个策略的概率分别为y 和1 - y 。记X = (x , 1 - x )T , Y = (y , 1 - y )T , 那么

(消费者明天购买的期望收益, 消费者今天购买的期望收益)

= X T B = (x , 1 - x )???

?

??9347= (3 + 4x , 9 - 5x ).

一个合理的假设是:销售商确定的x 最好使得消费者无论哪一天购买商品都无所谓,即

使得3 + 4x = 9 - 5x 。由此得x = 2/3, 1 - x = 1/3。另外

???? ??收益销售商今天打折的期望收益销售商明天打折的期望

= AY = ???? ??4793???? ??-y y 1=???

?

??+-y y 3469. 基于同样的考虑,令9 - 6y = 4 + 3y ,得y = 5/9, 1 - y = 4/9。

所以销售商的混合策略X = (2/3, 1/3)T , 消费者的混合策略Y = (5/9, 4/9)T 。 下面求销售商和消费者的期望收益。由于AY 的两个分量(AY )1和(AY )2相等,X 的两个分量和为1,销售商的期望收益

E 1(X , Y ) = X T AY = (AY )1 = 9 - 6 ? 5/9 = 17/3.

由于X T B 的两个分量(X T B )1和(X T B )2相等,Y 的两个分量和为1,消费者的期望收益

E 2(X , Y ) = X T BY = (X T B )1 = 3 + 4 ? 2/3 = 17/3.

2.3二人有限零和博弈

在二人零和博弈中,一个局中人的收益等于另一个局中人的损失,即b ij = -a ij 。这时仅用一个局中人的收益矩阵,如A = (a ij )m ?n 即可。

寻找纯策略納什均衡点的方法是:在A = (a ij )m ?n 每一行的最大数字上标上*号,再每一列的最大数字上标上*号。如果有一个数字上有两个*号,那么其相应的两个策略是纯策略納什均衡点。

如果没有纯策略納什均衡点,再考虑求混合策略納什均衡解。设局中人I 策略的分布为(x 1, x 2, … ,x m ), 局中人II 策略的分布为(y 1, y 2, … ,y n )。

局中人II 采用策略B j 时,局中人I 的期望收益为∑=m

i i ij x a 1,j = 1, 2, … ,n 。为了使这些

期望收益最大化,可使用以下线性规划模型求局中人I 的最优策略([4]p400)。

Max w

s.t.

∑=m

i i ij x a 1

≥ w , j = 1, 2, … ,n ,

x 1 + x 2 + … + x m = 1,

x 1, x 2, … ,x m ≥ 0. (2.1)

从另一方讲,局中人I 采用策略A i 时,局中人II 的期望损失为∑=n

j i ij y a 1

,i = 1, 2, … ,m 。

为了使这些期望损失最小化,可使用以下线性规划模型求局中人II 的最优策略。

Min v

s.t.

∑=n

j j ij y a 1

≤ v , i = 1, 2, … ,m ,

y 1 + y 2 + … + y n = 1,

y 1, y 2, … ,y n ≥ 0. (2.2)

按照线性规划对偶的定义,模型(2.1)和(2.2)互为对偶。由于它们有可行解,所以都有最优解,并且最优目标函数值相等。

2.4 连续策略博弈

在以上几节介绍的博弈问题中,每个局中人仅有几个策略,称为有限策略的博弈问题。策略可以是连续变量,这时的博弈称为连续策略博弈。古诺模型是连续策略博弈的一个有名例子([2]p44)。

例2.3 假设寡头市场上只有两个厂商生产完全相同的产品,他们各自决定自己的产量。假设市场出清价格P 是商品总供给量Q 的线性函数:P = P (Q ) = 8 - Q ;产量为q 时的收益为u = qP (Q ) - 2q 。问两厂商各生产多少产品供给市场双方收益较为满意。

解 设两厂商的产量分别为q 1和q 2,那么收益函数分别为

u 1(q 1, q 2) = q 1P (Q ) - 2q 1 = q 1[8 -( q 1 + q 2)] - 2q 1 = 6q 1 - q 1q 2 - q 12, u 2(q 1, q 2) = q 2P (Q ) - 2q 2 = q 2[8 -( q 1 + q 2)] - 2q 2 = 6q 2 - q 1q 2 - q 22. 此问题需要求解以下极大值:

?????--=--=2

2212221

21116max 6max 2

1

q q q q u q q q q u q q 令

1

1q u ??= 6 - q 2 - 2q 1 = 0, 22

q u ??= 6 - q 1 - 2q 2 = 0.

两式联立解得q 1 = q 2 = 2。所以商品总量Q = 2 + 2 = 4,价格P = 8 - Q = 8 - 4 = 4。双方收

益均为2 ? 4 - 2 ? 2 = 4,两厂商的收益之和为8。

如果厂商II 保持产量q 2 = 2不变,厂商I 单方面将其产量由q 1 = 2变为q 1 = 2 + δ,δ是个绝对值很小的数。那么,产品价格将为P = 8- (4 + δ) = 4 - δ, 厂商I 的收益变为

u 1’ = (2 + δ)(4 - δ) - 2(2 + δ) = 4 - δ2 < 4,

即厂商I 的收益会减少。反过来也一样。所以(q 1, q 2) = (2, 2)确实是此博弈问题的納什均衡。

以上是两厂商竞争的结果。如果两厂商合并为一个公司共同生产Q 数量的产品供给市

场,其收益函数为

U = QP (Q ) - 2Q = Q (8 - Q ) - 2Q = 6Q - Q 2.

Q

U

??= 6 - 2Q = 0, 得Q = 3,收益U = 6 ?3 - 32 = 9。可见两厂商合并后,生产的产品更少,但收益更多。

3 三人非合作博弈

仅考虑纯策略博弈。

例3.1 (三人选数博弈, ([2]p81)A, B, C 三人玩选数游戏,每人有3种选择,他们的收益见表3.1,每个单元格的三个数字分别是局中人A, B, C 的收益。求此博弈的纯策略納什均衡点。

表3.1 三人选数游戏的收益

解 表中三个3?3子矩阵分别是局中人C 分别采用策略1, 2, 3时, 局中人A 与B 的博弈收益。忽略每个单元格的第三个数字,对每个子矩阵用划线法求局中人A 与B 的博弈结果。然后考虑单元格的第三个数字,将局中人C 采用策略1的三列数字合成一个矩阵,在每行的最大数字下划线;将策略2的三列数字合成一个矩阵,在每行的最大数字下划线;将策略3的三列数字合成一个矩阵,在每行的最大数字下划线。三个数字都划了线的单元格对应的策略便是納什均衡点。它们是策略组合(1, 1, 1),(2, 2, 2)和(3, 3, 3)。

4 合作博弈的收益分配

4.1 基本概念及Shapley 值

“存在具有约束力的合作协议的博弈就是合作博弈,否则就是非合作博弈”([2]p92)。 用U 表示n 个参与人的集合, U 的任意一个子集S 称为一个联盟, U 称为大联盟。联盟S 的收益记为V (S ), 它满足以下公理:

(1) V (?) = 0, ?为空集;

(2) 对于任意S 1, S 2 ? U , 如果S 1 ? S 2 = ?, 那么V (S 1 ? S 2) ≥ V (S 1) + V (S 2) (称为超可加性)。

设S 1, S 2, … , S k 是U 的非空子集,如果它们的并集等于U ,任何两个的交集为空集,就称它们为一个联盟结构,记为[S 1, S 2, … , S k ]。按照超可加性,

V (S 1) + V (S 2) + … + V (S k ) ≤ V (U ),

即任何一个联盟结构的总收益不大于大联盟的收益。如果上式的等号成立,称该联盟为有效联盟(包括大联盟)。

用?i (V )表示参与人i 分得的数额,按以下公式计算的数值称为Shapley 值。

?i(V) = ∑

?

∈-

U S

i

i

S

V

S

V

S

W})]

{\

(

)

(

|)[

(|, i =1, 2, … ,n.

其中W(| S |) =

!

)!1 |

(|

|)!

|

(

n S

S

n-

-

, | S |表示集合S中元素的个数。

例4.1 A, B, C三人或者单独经商或者联合经商,其收益由表4.1所示。求每个人分配的数额。([2]p99)

表4.1 A, B, C三人经商的收益

解按Shapley值公式,参与人A分配数额?A(V)的计算见表4.2。

表4.2参与人A分配数额的计算表

同理可算出参与人B的分配额?B(V) = 35,C的分配额?C(V) = 25。

4.2 合作博弈的核

假设联盟中的每个人均匀地分配该联盟的收益。在一个联盟结构中,如果有人从某联盟中退出可以获得更大的收益,该联盟结构是不稳定的,否则是稳定的。

前面已经介绍,总收益等于大联盟收益的联盟结构称为有效联盟结构。稳定的有效联盟结构称为合作博弈的核。

例4.2 地产合并博弈([3]p113)

A, B, C三人形成的各种联盟结构以及每个联盟结构中各联盟的收益见表4.2。问哪些联盟结构是有效的稳定的。

表4.2各种联盟结构的联盟收益

可以看出1号联盟结构(大联盟)和2号联盟结构[AB, C]都是有效联盟结构。在大联盟中C的收益为10/3,而在2号联盟结构中C的收益为4,所以C可能会从大联盟中退出而选择2号联盟结构。这说明大联盟是不稳定的。但2号联盟结构是稳定的,因为无论A 或B从联盟AB中退出,都只能得到联盟结构[A, B, C], 其收益为3,不超过在联盟AB中

的平均收益。所以2号联盟结构是合作博弈的核。

将表4.2的联盟收益改为表4.3。可见大联盟和2号联盟都是合作博弈的核。

表4.3各种联盟结构的另一种联盟收益

4.3 塔木德分配法([2]p162)

塔木德分配法是根据若干债权人所声明的债权分配总财产的一种方法。设总财产为E , n 个债权人所声明的债权分别为c [1], c [2], … , c [n ], 他们分得的财产分别为x [1], x [2], … , x [n ]。不妨设c [1] ≤ c [2] ≤ … ≤ c [n ]。塔木德法依次分配财产,得到的分配结果(x [1], x [2], … , x [n ])叫做核仁(nucleolus )。

(1) 二人争产问题的塔木德法([2]p165)

只需考虑债权人1的分配额x [1]即可, 债权人2的分配额x [2] = E - x [1]。

??

?

??

>-+≤<≤=].2[,2/])2[]1[(],2[]1[,2/]1[],1[,2/]1[c E c c E c E c c c E E x

(2) 三人争产问题的塔木德算法

此问题将总财产按大小分为三种情况考虑,第一个分界点E * = c [1] ? 3/2, 第二个分界点E ** = c [1, 2, 3] - c [1] ? 3/2, 其中c [1, 2, 3] = c [1] + c [2] + c [3]。

① E ≤ E *时,(x [1], x [2], x [3]) = (E /3, E /3, E /3)。

② E > E **时,(x [1], x [2], x [3]) = (E /3 + d /3, E /3 + d /3, E /3 + d /3), 其中d = E - E **。 ③ E * < E ≤ E **时,分两步用二人争产问题的塔木德法分配财产。

第1步将三人分为{1}和{2, 3}两组,他们声明的债权分别为c [1]和c [2, 3] = c [2] + c [3]。用二人争产问题的塔木德法在这两组之间分配总财产E 。由于

c [1] ? 3/2 < E ≤ c [1, 2, 3] - c [1] ? 3/2 = c [2, 3] - c [1]/2

所以

c [1] /2 < E < c [2, 3].

于是第1人分得的财产x [1] = c [1]/2, {2, 3}组分得的财产x [2, 3] = E - c [1]/2。

第2步在第2, 3两人之间用二人争产问题的塔木德法分配剩余的财产E - c [1]/2。

练习题

(1) 说明例2.2的策略X = (2/3, 1/3)T , Y = (5/9, 4/9)T 是销售商与消费者博弈的納什均衡。 (2) 将表2.3的最后一个数字9改为12,求納什均衡。

参考文献

[1] Wikipedia. Nash equilibrium, 2014.4

[2] 焦宝聪,陈兰平. 博弈论,首都师范大学出版社,2013.10

[3] 黄涛. 博弈论教程?理论·应用,首都经济贸易大学出版社,2004.5 [4]《运筹学》教材编写组. 运筹学,清华大学出版社,1998.3

生活中的博弈论论文

生活中的博弈论论文 摘要: 生活、博弈、无处不在、利益、老鹰、报价价位、得与失 正文: 博弈无时不在,无处不在,日常生活中的一切,均可从博弈得到解释,大到美日贸易战,小到今天早上你突然生病。可能读者会认为,贸易争端用博弈论来分析是可以的,但对自己生病也可以用博弈论来理解就有点不可思议,因为自己就一个人,和谁进行游戏? 实际上,并非只有一个人,还有一个叫做“自然”(Nature)的参与者。“自然”可以理解为无所不能的上帝,上帝现在有两种策略,让人生病或不生病。人一旦生病,就不得不根据生病的信息判断上帝的策略,然后采取对应的策略。上帝采取让人生病的策略,人就采取吃药的策略来对付;上帝采取不让人生病的策略,人就采取不予理睬的策略。这正是一场人和上帝进行博弈的游戏。 “自然”是研究单人博弈的重要假定。再比如一个农夫种庄稼也是同自然进行博弈的一个过程。自然的策略可以是:天旱、多雨、风调雨顺。农夫对应的策略分别是:防旱、防涝、放心地休息。当然,“自然”究竟采用哪种策略并不确定,于是农夫只有根据经验判断或气象预报来确定自己的行动。如果估计今年的旱情较重,就可早做防旱准备;如果估计水情严重,就早做防涝准备;如果估计是风调雨顺,农夫就可以悠哉游哉了。 生活中更多的游戏不是单人博弈,而是双人或多人的博弈。比如,某一天你觉得应该是你太太的生日,但又不能肯定:如果是太太的生日的话,你可以送一束花,太太会特别高兴;你不送花,太太会埋怨你忘了她的生日;如果不是太太的生日的话,你可以送太太一束花,太太感到意外的惊喜;你不送花,结果生活同往常一样。 在这个博弈里,我们看到,“自然”可以有两种策略:确定今天是太太的生日或确定今天不是太太的生日,但不论“自然”采取何种策略,你的最好行动都是买花。 夫妻吵架也是一场博弈。夫妻双方都有两种策略,强硬或软弱。博弈的可能结果有四种组合:夫强硬妻强硬、夫强硬妻软弱、夫软弱妻强硬、夫软弱妻软弱。 根据生活的实际观察,夫软弱妻软弱是婚姻最稳定的一种,因为互相都不愿让对方受到伤害或感到难过,常常情愿自己让步。动物学的研究有相同的结论,性格温顺的雄鸟和雌鸟更能和睦相处,寿命也更长。 夫强硬妻强硬是婚姻最不稳定的一种,大多数结局是负气离婚。夫强硬妻软弱和妻强硬夫软弱是最常见的一种,许多夫妻吵架都是这样,最后终归是一方让步,不是丈夫撤退到院子里点根烟,就是妻子避让到卧室里号啕大哭。 在竞争激烈的商业界,博弈更为常见。比如两个空调厂家之间的价格战,双方都要判断对方是否降价来决定自己是否降价,显而易见,厂家之间的博弈目标就是尽可能获得最大的市场份额,赚取最多的收益。 事实上,这种有利益(或效用)的争夺正是博弈的目的,也是形成博弈的基础。经济学的最基本的假设就是经济人或理性人的目的就是为了效用最大化,参与博弈的博弈者正是为了自身效用的最大化而互相争斗。参与博弈的各方形成相互竞争相互对抗的关系,以争得效用的多少决定胜负,一定的外部条件又决定了竞争和对抗的具体形式,这就形成了博弈。 如象棋对局的参与者是以将对方的军为目标,战争的目的是为了胜利,古罗马竞技场中角斗士在争夺两人中仅有的一个生存权,企业经营的目的是为了生存发展,而股市中人们所争的很实在,就是金钱。从经济学角度来看,有一种资源为人们所需要,而资源的总量具是

博弈论经典例子

博弈论经典例子 篇一:《博弈论三大经典案例》 经典的囚徒困境 1950年,由就职于兰德公司的梅里尔弗拉德(MerrillFlood)和梅尔文德雷希尔(MelvinDresher)拟定出相关困境的理论,后来由顾问阿尔伯特塔克(AlbertTucker)以囚徒方式阐述,并命名为"囚徒困境"。经典的囚徒困境如下: 警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择: 若一人认罪并作证检举对方(相关术语称"背叛"对方),而对方保持沉默,此人将即时获释,沉默者将判监xx年。若二人都保持沉默(相关术语称互相"合作"),则二人同样判监半年。若二人都互相检举(互相"背叛"),则二人同样判监2年。 用表格概述如下: 甲沉默(合作) 乙沉默(合作)二人同服刑半年甲认罪(背叛)甲即时获释;乙服刑xx 年乙认罪(背叛)甲服刑xx年;乙即时获释二人同服刑2年 如同博弈论的其他例证,囚徒困境假定每个参与者(即"囚徒")都是利己的,即都寻求最大自身利益,而不关心另一参与者的利益。参与者某一策略所得利益,如果在任何情况下都比其他策略要低的话,此策略称为"严格劣势",理性的参与者绝不会选择。另外,没有任何

其他力量干预个人决策,参与者可完全按照自己意愿选择策略。 囚徒到底应该选择哪一项策略,才能将自己个人的刑期缩至最短?两名囚徒由于隔绝监禁,并不知道对方选择;而即使他们能交谈,还是未必能够尽信对方不会反口。就个人的理性选择而言,检举背叛对方所得刑期,总比沉默要来得低。试设想困境中两名理性囚徒会如何作出选择: 若对方沉默、背叛会让我获释,所以会选择背叛。若对方背叛指控我,我也要指控对方才能得到较低的刑期,所以也是会选择背叛。 二人面对的情况一样,所以二人的理性思考都会得出相同的结论选择背叛。背叛是两种策略之中的支配性策略。因此,这场博弈中唯一可能达到的纳什均衡,就是双方参与者都背叛对方,结果二人同样服刑2年。 这场博弈的纳什均衡,显然不是顾及团体利益的帕累托最优解决方案。以全体利益而言,如果两个参与者都合作保持沉默,两人都只会被判刑半年,总体利益更高,结果也比两人背叛对方、判刑2年的情况较佳。但根据以上假设,二人均为理性的个人,且只追求自己个人利益。均衡状况会是两个囚徒都选择背叛,结果二人判决均比合作为高,总体利益较合作为低。这就是"困境"所在。例子漂亮地证明了:非零和博弈中,帕累托最优和纳什均衡是相冲突的。由囚徒困境可以写出类似的员工困境: 一名经理,数名员工;前提,经理比较苛刻; 如果所有员工都听从经理吩咐,则奖金等待遇一样,不过所有人

博弈论经典案例分析

博弈论经典案例分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

(完整版)博弈论知识点总结

博弈论知识总结 博弈论概述: 1、博弈论概念: 博弈论:就是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡问题。 博弈论研究的假设: 1、决策主体是理性的,最大化自己的收益。 2、完全理性是共同知识 3、每个参与人被假定为可以对所处环境以及其他参与者的行为形成正确的信念 与预期 2、和博弈有关的变量: 博弈参与人:博弈中选择行动以最大化自己受益的决策主体。 行动:参与人的决策选择 战略:参与人的行动规则,即事件与决策主体行动之间的映射,也是参与人行动的规则。 信息:参与人在博弈中的知识,尤其是其他决策主体的战略、收益、类型(不完全信息)等的信息。 完全信息:每个参与人对其他参与人的支付函数有准确的了解;完美信息:在博 弈过程的任何时点每个参与人都能观察并记忆之前各局中人所选择的行动,否则 为不完美信息。 不完全信息:参与人没有完全掌握其他参与人的特征、战略空间及支付函数等信 息,即存在着有关其他参与人的不确定性因素。 支付:决策主体在博弈中的收益。在博弈中支付是所有决策主题所选择的行动的函数。 从经济学的角度讲,博弈是决策主体之间的相互作用,因此和传统个人决策存在着区别: 3、博弈论与传统决策的区别: 1、传统微观经济学的个人决策就是在给定市场价格、消费者收入条件下,最大化自己 效用,研究工具是无差异曲线。可表示为:maxU(P,I),其中P为市场价格,I为消

费者可支配收入。 2、 其他消费者对个人的综合影响表示为一个参数——市场价格,所以在市场价格既定 下,消费者效用只依赖于自己的收入和偏好,不用考虑其他消费者的影响。但是在博弈论理个人效用函数还依赖于其他决策者的选择和效用函数。 4、博弈的表示形式:战略式博弈和扩展式博弈 战略式博弈:是博弈问题的一种规范性描述,有时亦称标准式博弈。 战略式博弈是一种假设每个参与人仅选择一次行动或战略,并且参与人同时进行选择的决策模型,因此,从本质上来讲战略式博弈是一种静态模型,一般适用于描述不需要考虑博弈进程的完全信息静态博弈问题。 1、参与人集合 : 2、每位参与人非空的战略集 S i 3、每位参与人定义在战略组合 上的效用函数Ui(s1,s2,…,sn). 扩展式博弈:是博弈问题的一种规范性描述。 与战略式博弈侧重博弈结果的描述相比,扩展式博弈更注重对参与人在博弈过程中遇到决策问题时序列结构的分析。 包含要素: 1、 参与人集合 2、 参与人的行动顺序,即每个参与 人在何时行动; 3、 序列结构:每个参与人行动时面 临的决策问题,包括参与人行动时可供选择的行动方案、所了解的信息; 4、 参与人的支付函数。 比较: 1、战略式博弈从本质上来讲是一种静态模型。 2、扩展式博弈从本质上来讲是一种动态模型。 {1,2,...,} n Γ={1,2,...,}n Γ=11 (,...,,...,) n i i n i s s s s ==∏

《博弈论原理模型与教程》第06章扩展式博弈第01节.

《博弈论:原理、模型与教程》 第二部分完全信息动态博弈 第6章扩展式博弈 (已精细订正!) 对博弈问题的规范性描述是科学、系统地分析博弈问题的基础。 前面介绍了一种常用的博弈问题描述方式—战略式博弈,虽然这种博弈模型结构简单,只要给出博弈问题的三个基本构成要素(即参与人、参与人的战略集及参与人的支付),就可完成对博弈问题的建模。 但是,由于战略式博弈假设每个参与人仅选择一次行动或行动计划(战略),并且参与人同时进行选择,因此从本质上来讲战略式博弈是一种静态模型,一般适用于描述不需要考虑博弈进程的完全信息静态博弈问题。 虽然战略式博弈也可以对动态博弈问题进行建模,但是从所得到的模型中只能看到博弈的结果,而无法直观地了解到博弈问题的动态特性。 本章将介绍一种新的博弈问题描述方式—扩展式博弈。从扩展式博弈模型中,不仅可以看到博弈的结果,而且还能直观地看到博弈的进程。在介绍扩展式博弈构成的基础上,还将对扩展式博弈的战略和解进行讨论。 6.1 扩展式博弈(文字描述、博弈树描述) 所谓扩展式博弈(extensive form game),是博弈问题的一种规范性描述。与战略式博弈侧重博弈结果的描述相比,扩展式博弈更注重对参与人在博弈过程中所遇到决策问题的序列结构的详细分析。 一般而言,要了解一个博弈问题的具体进程,就必须弄清楚以下两个问题: (1)每个参与人在什么时候行动(决策、选择); (2)每个参与人行动时,他所面临决策问题的结构,包括参与人行动时可供他选择的行动方案及所了解的信息(集)。 [注: 行文中频繁出现的“行动”一词,有两义: 其一,动词的“行动”,指选择、决策。 其二,名词的“行动”,指策略、战略、谋略、行动方案、方案。] 上述两个问题构成了参与人在博弈过程中所遇到决策问题的序列结构。对于一个博弈问题,如果能够说清楚博弈过程中参与人的决策问题的序列结构,那么就意味着知道了博弈问题的具体进程。

博弈论在生活中的体现

博弈论在生活中的体现 当我们面临纷杂的社会生活,面临着诸多的选择,我们都不可避免的要卷入到一场场“博弈之战”中去,无论你愿不愿意,都无法逃避。在学习了选修课的“博弈论”基础的知识后,竟然会很容易的发现,博弈如同空气般,围绕在我们身边,无处不在。用一句俗话说:人在江湖,身不由己。 或许你很难想象,自己一天24 小时,甚至包括睡觉的时间在内,你都无法逃避博弈这个问题。生活中的大小事怎么个博弈法,下面的内容将娓娓道来。而说到睡觉,难道也有博弈在作祟?当然!一定程度上,你大脑有意识无意识地选择做不做梦,这可能就是一个混沌的博弈问题了。 大到美日贸易战,小到今天早上你突然生病,都有博弈在其中。可能有人会疑问,贸易争端用博弈论来分析是可以的,但对自己生病也可以用博弈论来理解就有点不可思议,因为自己就一个人,和谁进行游戏?实际上,并非只有一个人,还有一个叫做“自然”(Nature )的参与者。“自然”可以理解为无所不能的上帝,上帝现在有两种策略,让人生病或不生病。人一旦生病,就不得不根据生病的信息判断上帝的策略,然后采取对应的策略。上帝采取让人生病的策略,人就采取吃药的策略来对付;上帝采取不让人生病的策略,人就采取不予理睬的策略。这正是一场人和上帝进行博弈的游戏。 博弈论是研究理性的经济个体在相互交往中战略选择问题的理论。博弈分析的关键步骤是找出再别人选择既定的情况下自己的最优反应战略。依据新古典经济学,我们把一个参与的最优反应定义为,在其他参与者已经选定战略,或者可以预计到他们将选何种战略时,能够给该参与者带来最大的收益的战略。博弈论说法是科学的比喻,很多不被看作是博弈的行为,如竞争,战争和竞选等,都可以作为博弈来处理和分析。通过老师的介绍我了解了很多新的概念,如博弈论中的纳什均衡理论。为了更好的了解和理解均衡论。我看也由纪实改编成剧本的纳什本人的电影《美丽的心灵》。在短短的两个多小时的影片中我看到人类心灵真正的美丽,以 为伟大的科学家对事业的执着和热忱。结合老师课堂上的介绍我对博弈论有了更好的了解,我们生活在

纳什博弈论的原理与应用的论文

纳什博弈论的原理与应用的论文 1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已 站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。 纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。 1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903—1957)创所立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且发明了计算机。早在20世纪初,塞梅鲁(zermelo)、鲍罗(borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(oskar morgenstern),并与其合作才使博弈论进入经济学的广阔领域。 1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔

生活中的博弈论感悟

生活中的博弈论感悟集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

《生活中的博弈论》学习感悟 第一讲初试博弈论 生活中的资源是有限和稀缺的,于是就产生了竞争,这种竞争就需要一种形式把大家聚在一起,这种形式就是博弈。博弈论是在力图在最简单的假设下得到最大范围的推广和应用,其伟大在于对后世的引导和激发作用。博弈论不仅从古代就散发着智慧,还体现在我们生活中的种种小事中,如双方互拨打电话,放弃球赛陪女友逛街等。博弈论是建立在博弈双方或者多方都属于理性人的基础上,通过对自己以及博弈对手状况的了解、博弈环境的要求及变化等诸多因素,博弈者做出对自己最有利最保险的决策和行动,从而使得自己能达到获利或者获胜的目的。每个人都可以成为博弈高手,但人的决策又具有有限理性,因此博弈论也不是万能的。 第二讲纳什均衡 在某一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”。但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。也就是中国人说的“己所不欲勿施于人”。但前提是人所不欲,勿施于我。 第三讲囚徒困境 囚徒困境博弈反映个人最佳选择并非团体最佳选择。用囚徒困境博弈对两个势均力敌的竞争对手进行分析,可以发现合作是可以实现双赢的。如:两个公司互相竞争,二公司的广告互相影响,即一公司的广告较被顾客接受则会夺取对方的部分收入。但若二者同时期发出质量类似的广告,收入增加很少但成本增加。但若不提高广告质量,生意又会被对方夺走。此二公司可以有二选择:互相达成协议,减少广告的开支。(合作)增加

博弈论与社会科学方法论(潘天群)

通识课 课程中文名称:博弈论与社会科学方法论 课程英文名称:Game Theory and Methodology of Social Sciences 课程代号:开课学期:第一学期(秋学期) 主讲教师:潘天群职称:教授、博导 研究专长:博弈论、逻辑学、科学方法论 所在院系:哲学联系电邮:tqpan@https://www.360docs.net/doc/3010106122.html, 授课对象:全校二、三年级本科生(不限专业) 一、主讲教师简介: 潘天群,哲学博士,现为南京大学哲学系、南京大学现代逻辑与逻辑应用研究所教授、博士生导师。兼任中国逻辑学会常务理事、中国逻辑学会经济逻辑专业委员会副主任委员。教育部新世纪人才(2006)。曾于2001年9月-2002年2月在美国纽约大学政治学系从事“博弈论中的方法论问题”的访问研究。 主要研究领域为:逻辑学、哲学、博弈论。在《哲学研究》等国内外学术杂志发表学术论文约70余篇。独立出版著作5部:《行动科学方法论》,《博弈生存——社会现象的博弈论解读》、《博弈思维——逻辑使你决策制胜》、《社会决策的逻辑结构》与《合作之道——博弈中共赢方法论》。其中《博弈生存——社会现象的博弈论解读》,自2002年出版以来深受读者欢迎,为畅销书与长销书,已出版第三版。 主持国家社会科学基金项目“博弈论的哲学基础与应用功能研究”(2009)。 二、课程简介 由于“他人”与“我”是既合作又竞争的关系,研究冲突与合作的博弈论自上一世纪由冯?诺依曼等人创立与发展以来,对社会现象表现出强大的解释力,已经成为社会科学的一个通用工具。迄今至少有五位博弈论专家获得诺贝尔经济学奖,许多诺贝尔经济学奖获得者其研究与博弈论相关。博弈论也也渐渐渗透到自然科学(如生物学、人工智能)之中。 本课程突破数理博弈论的框架,结合主讲教师十年来的研究工作,构建适合

博弈论的基础知识与应用

博弈论的基础知识与应用(转) 1 基础知识 博弈论是一种独特的处于各学科之间的研究人类行为的方法。与博弈论有关的学科包括数学、经济学以及其他社会科学和行为科学。博弈论(如同计算科学理论和许多其他的贡献一样)是由约翰.冯.诺伊曼(John von Neumann)创立的。博弈论领域第一本重要著作是诺伊曼与另一个伟大的数理经济学家奥斯卡.摩根斯坦(Oskar Morgenstern)共同写成的《博弈论与经济行为》(The Theory of Games and Economic Behavior)。当然,摩根斯坦把新古典经济学的思想带入了合作中,但是诺伊曼也同样意识到那些思想并对新古典经济学做出了其他的贡献。 ■一个科学的隐喻 由于诺伊曼的工作,在更广阔的人类行为互动的范围内,“博弈”成为了一个科学的隐喻。在人类的互动行为中,结局依赖于两个或更多的人们所采取的交互式的战略,这些人们具有相反的动机或者最好的组合动机(mixed motives)。在博弈论中常常讨论的问题包括:1)当结局依赖于其他人所选择的战略以及信息是完全的时候,“理性地”选择战略意味着什么? 2)在允许共同得益或者共同损失的“博弈”中,寻求合作以实现共同得益(或避免共同损失)是否“理性”?或者,采取侵略性的行动以寻求私人利益而不顾共同得益或共同损失,这是否是“理性”的? 3)如果对2)的回答是“有时候是”,那么在什么样的环境下侵略是理性的,在什么样的情况下合作是理性的? 4)在特定情况下,正在持续的关系与单方退出这种关系是不同的吗? 5)在理性的自我主义者的行为互动中,合作的道德规则可以自然而然地出现吗? 6)在这些情况下,真正的人类行为与“理性”行为是否相符? 7)如果不符,在那些方面不符?相对于“理性”,人们更倾向于合作?或者更倾向于侵略?抑或二者皆是? 因而,博弈论研究的“博弈”包括: 破产 门口的野蛮人(Barbarians at the Gate) 网络战(Battle of the Networks) 货物出门,概不退换(Caveat Emptor) 征召(Conscription) 协调(Coordination) 逃避(Escape and Evasion) 青蛙呼叫配偶(Frogs Call for Mates) 鹰鸽博弈(Hawk versus Dove) Mutually Assured Destruction 多数决定原则(Majority Rule) Market Niche 共同防卫(Mutual Defense) 囚徒困境(Prisoner’s Dilemma) 补贴小商业Subsidized Small Business 公共地悲剧Tragedy of the Commons 最后通牒Ultimatum

博弈论案例分析

(1)失火了,你往哪个门跑 失火了,你往哪个门跑——这就是博弈论 一天晚上,你参加一个派对,屋里有很多人,你玩得很开心。这时候,屋里突然失火,火势很大,无法扑灭。此时你想逃生。你的面前有两个门,左门和右门,你必须在它们之间选择。但问题是,其他人也要争抢这两个门出逃。如果你选择的门是很多人选择的,那么你将因人多拥挤、冲不出去而烧死;相反,如果你选择的是较少人选择的,那么你将逃生。这里我们不考虑道德因素,你将如何选择?这就是博弈论! 你的选择必须考虑其他人的选择,而其他人的选择也考虑你的选择。你的结果——博弈论称之为支付,不仅取决于你的行动选择——博弈论称之为策略选择,同时取决于他人的策略选择。你和这群人构成一个博弈(game)。 上述博弈是一个叫张翼成的中国人在1997年提出的一个博弈论模型,被称之为少数者博弈或少数派博弈(Minority Game)。当然,原来的博弈形式不是这么简单,这里我把它简化了,我们在第三部分论述归纳推理时还要谈这个博弈模型。现在很多学者在研究这个问题。 生活中博弈的案例很多,你会见到很多例子。只要涉及到人群的互动,就有博弈。 什么叫博弈?博弈的英文为game,我们一般将它翻译成“游戏”。而在西方,game的意义不同于汉语中的游戏。在英语中,game即是

人们遵循一定规则下的活动,进行活动的人的目的是使自己“赢”。奥林匹克运动会叫Olympic Games。在英文中,game有竞赛的意思,进行game的人是很认真的,不同于汉语中游戏的概念。在汉语中,游戏有儿戏的味道。因此将关于game的理论,即game theory翻译成博弈论或者对策论,是恰当的。本书下面统称game theory为博弈论。 博弈论的出现只有50多年的历史。博弈论的开创者为诺意曼与摩根斯坦,他们1944年出版了《博弈论与经济行为》。诺意曼是着名的数学家,他同时对计算机的发明作出了巨大贡献,他去世时博弈论还未对经济学产生广泛影响,否则经济学的诺贝尔奖肯定有他的名字,因为诺贝尔奖有规定,只颁发给在世的学者。谈到博弈论,不能忽略博弈论天才纳什(John Nash)。纳什的开创性论文《n人博弈的均衡点》(1950)、《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。今天博弈论已发展成一个较完善的学科。 博弈论对于社会科学有着重要的意义,它正成为社会科学研究范式中的一种核心工具,以至于我们可称博弈论是“社会科学的数学”,或者说是关于社会的数学。从理论上讲,博弈论是研究理性的行动者(agents)相互作用的形式理论,而实际上它正深入到经济学、政治学、社会学等等,被各门社会科学所应用。甚至有学者声称要用博弈论重新改写经济学。1994年经济学诺贝尔奖颁发给三位博弈论专家:纳什、塞尔屯、哈桑尼(),而像1985年获得诺贝尔奖的公共选择学派的领导者布坎南,1995年获得诺贝尔奖的理性主义学派的领袖卢

生活中的博弈论感悟(优.选)

《生活中的博弈论》学习感悟 第一讲初试博弈论 生活中的资源是有限和稀缺的,于是就产生了竞争,这种竞争就需要一种形式把大家聚在一起,这种形式就是博弈。博弈论是在力图在最简单的假设下得到最大范围的推广和应用,其伟大在于对后世的引导和激发作用。博弈论不仅从古代就散发着智慧,还体现在我们生活中的种种小事中,如双方互拨打电话,放弃球赛陪女友逛街等。博弈论是建立在博弈双方或者多方都属于理性人的基础上,通过对自己以及博弈对手状况的了解、博弈环境的要求及变化等诸多因素,博弈者做出对自己最有利最保险的决策和行动,从而使得自己能达到获利或者获胜的目的。每个人都可以成为博弈高手,但人的决策又具有有限理性,因此博弈论也不是万能的。 第二讲纳什均衡 在某一策略组合中,所有的参与者面临这样一种情况,当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”。但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。也就是中国人说的“己所不欲勿施于人”。但前提是人所不欲,勿施于我。

囚徒困境博弈反映个人最佳选择并非团体最佳选择。用囚徒困境博弈对两个势均力敌的竞争对手进行分析,可以发现合作是可以实现双赢的。如:两个公司互相竞争,二公司的广告互相影响,即一公司的广告较被顾客接受则会夺取对方的部分收入。但若二者同时期发出质量类似的广告,收入增加很少但成本增加。但若不提高广告质量,生意又会被对方夺走。此二公司可以有二选择:互相达成协议,减少广告的开支。(合作)增加广告开支,设法提升广告的质量,压倒对方。(背叛)若二公司不信任对方,无法合作,背叛成为支配性策略时,二公司将陷入广告战,而广告成本的增加损害了二公司的收益,这就是陷入囚徒困境。在现实中,要二互相竞争的公司达成合作协议是较为困难的,多数都会陷入囚徒困境中。 第四讲斗鸡博弈 所谓“斗鸡博弈”就是两只公鸡面对面斗争,继续斗下去,两败俱伤;一方退却便意味着认输。在这样的博弈中,要想取胜,就要在气势上压倒对方,至少要显示出破釜沉舟、被谁一站的决心来,以迫使对方退却。但到最后的关键时刻,必有一方要退下来,除非真正抱定鱼死网破的决心。学习了知识,就要善于联想,善于联系生活。在很多的时候我们都可能是在不知不觉中就使用了或者是接触到了博弈论,就像是平常我们和其他人之间的争执问题,每次都可能弄得脸红脖子粗的,双方都不服气,最终的结果是有一个人妥协,然后彼此达成一致;冷战期间的美苏两大军事集团的争斗也是一种“斗鸡博弈”。

博弈论经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A来说,囚徒B有坦白和不坦白两种可能的选择,假设囚徒B的选择是不坦白,则对囚徒A来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B选择的是坦白,则囚徒A不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B采取何种策略囚徒A的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 嫌疑犯乙

案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 价格战 案例:假设市场中仅有A 、B 两家企业,每家企业可采取的定价策略都是10元或15元,我们可以得出得益矩阵如下: 分析:无论对企业A 还是企业B 来说,低价都是他们的占优战略。从表可见,企业A 的占优战略是10元,因为无论B 采取什么战略,企业A 都能获取比定价15元更多的利润。 如果企业B 定价10元,企业A 定价10元能够获利80万元,而定价15元只能获得30万元;如果企业B 定价15元,企业A 定价10元可获利170万元,而定价15元却只能获利120万元。同样地,企业B 的占优战略也是定价10元的策略。 企业B 男

博弈论的经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

1.3.7 博弈论分析方法的主要特征

博弈论分析方法的主要特征 博弈论已形成一套完整的思想体系和方法论体系。其分析方法具有下列特征: 1. 研究对象的普遍性和应用范围的广泛性 人们的行为之间存在相互作用与相互依赖,不同的行为主体及其不同的行为方式所形成的利益冲突与合作,已成为一种普遍现象,这使博弈论的研究对象具有普遍性。一切涉及到人们之间利益冲突与一致的问题、一切关于竞争或对抗的问题都是博弈论的研究对象。 现实社会中广泛存在的合作与非合作博弈、完全信息与不完全信息博弈的事实,使博弈论的研究内容和应用范围十分广泛,涉及到政治学、社会学、伦理学、经济学、生物学、军事学等诸多领域,在经济学中的应用尤为突出。 2. 研究方法的模型化、抽象化以及涉及学科的综合性 一是运用数学模型来描述所研究的问题,使博弈论的分析更为精确。 二是研究方法具有抽象化的特征,由于博弈论分析大量使用了现代数学,使它所描述和分析的过程及所揭示的结论都带 有抽象、一般化的特点。 三是博弈论分析方法所体现的模式化特征,博弈论为人们提供了一个统一的分析框架或基本范式,从而使博弈论能够分 析和处理其它数学工具难以处理的复杂行为,成为对行为主 体间复杂过程进行建模的最适合的工具。

四是博弈论方法所涉及的学科的综合性。在博弈论分析中,不仅要应用现代数学的大量知识,还涉及到经济学、管理学、 心理学和行为科学等学科。 3. 研究方法的实证性与研究结论的真实性 博弈论中的最佳策略是经济学意义上的最优化,它只回答是什么导致博弈均衡,均衡的结果是什么,所遵循的基本原则是科学结论的客观性和普遍性。从实践上看,博弈论突破了传统的完全竞争、完全信息假定,更加强调决策者的个人理性,强调不完全信息、不完全竞争条件下的经济分析,强调决策个体之间的相互影响和相互作用等外部性,强调通过规则、机制和制度的设计和优化在个人理性得到满足的基础上达到个人理性和集体理性的一致,等等。作为一门方法论科学,除了提供分析和解决博弈问题的独特和新颖的具有战略思维的思想方法以外,还提供了更加贴近现实的分析工具并填补了传统经济分析的许多空白。从这个意义上说,博弈论方法具有实证的特征,使研究结果更具有真实性。

生活中的博弈论论文

生活中的博弈论 这学期我在人文课的选择上,我选了“生活中的博弈论”这门课。本来以为会很枯燥乏味,现在课要结束了,回想起来觉得还是挺有趣的。其中含有很浓的智慧气息,趣味横生。下面就是我关于这门课的小论文。 我们首先就会问,什么是博弈论?其实就是研究个体如何在错综复杂的相互影响中得出最合理的策略。生活中每个人,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们“出棋”着数中理性化、逻辑化的部分,并将其系统化为一门科学。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性”的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法… 博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。

博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,博弈论经过了这么多年的发展已经完善成为一门十分重要的经济学分支学科,不管是在结构分析还是决策预测等方面都发挥着越来越重要的作用,尤其对于理性人来说懂得如何博弈就显得越发重要。 下面我说一下我个人的想法。博弈其实就是一种游戏,是如何做出对自己有利选择的游戏,但又区别于传统的如体育运动、下棋、打牌等游戏,同时又和这些有些有本质的共同特征,如都有一定的规则,都有一个结果,策略至关重要,同时策略和得益有相互依存性,游戏者不同的策略会带来不同的结果。这样看来博弈好像和我们身边普通的游戏是一样的,其实这并不奇怪,其实博弈本身的含义就是博弈参与者在一定的规则条件下选择相应的策略以期获得足够的利益的过程,这和传统的游戏是相通的,如最常见的斗地主,就是在一定的规则下(如连牌至少5张一连等等),选择如何出牌(出牌的组合以及出牌的顺序等等)而获胜(当然也可能输)的过程,这本身就是一个三方博弈的过程。 为了能够了解博弈的含义,那么下面我们来看一下经典的博弈模型。 需要提到的当然是任何与博弈有关的书籍中都会讲到的“囚徒困境”。

历史的制度分析:博弈论分析方法

历史的制度分析:博弈论分析方法 把博弈论作为研究方法和分析工具应用于经济体制与制度问题的研究,目前主要有两种方法。一种是“进化博弈论方法”(evolutionary game approach)。经济学中的进化博弈论是在生物学的进化博弈论的基础上产生、发展起来的。它将人类的经济活动和竞争性经济行为同生物的进化相类比,研究人类经济行为中的策略和行为方式的均衡,以及向均衡状态调整、收敛的过程与性质。采用这一方法的研究者认为,社会制度并不是由什么人有意设计出来的,而是在那些适应环境和社会变化的新的制度结构不断被发现、更为理想的制度结构不断被保存的过程中产生的。这就是所谓的“适应性进化”过程。进化博弈论的引入,就是为了分析和说明社会制度的这一适应性进化过程。进化博弈论之所以在制度变迁理论中受到重视,主要是因为它是在不严重依赖决策者计算能力的前提下来说明均衡选择过程,从而在纳什均衡的理性主义解释遇到理论困难时,显示出了通过进化机制实现纳什均衡的可能性。 应用博弈论研究制度变迁的另一种新方法是“重复博弈论方法”(repeated game approach),它运用更精细的均衡概念,如“子博弈精炼均衡”(subgame perfect equilibrium)来分析历史与现实中的制度选择与变迁过程。其中最具代表性的,就是格瑞夫进行的“历史的比较制度分析”。 所谓的重复博弈,实际上是指同样结构的博弈重复地进行多次。与一次性博弈不同,它是由若干个阶段博弈(stage game)构成的一个完整的和相对长期的博弈过程。因此,在重复博弈中,各博弈方的着眼点就不是其在某一阶段上的局部利益或短期利益,而是他们在整个博弈过程中的总体利益和长期利益。当各博弈方面对不同的策略选择时,他必须考察到其在当前阶段的博弈中所采取的策略,不致在随后阶段中引起其他博弈方的对抗、报复或恶性竞争。也就是说,他不能像在一次性博弈中那样,毫不顾及其他博弈方的利益。有时,一方若作出一种合作姿态,可能会使其他博弈方在随后的阶段中也采取合作态度,从而实现共同的长远利益。这样,在重复博弈中就存在着比一次性博弈更大的合作的可能性,也有可能实现比一次性博弈更有效率的均衡。重复博弈论的这一特征,为它说明人类之间的合作行为,特别是说明历史与现实社会中体制与制度的演变过程,提供了强有力的支持。 在历史的比较制度分析那里,制度被定义为本身是“自我实施的对行为的非技术决定的约束” ,即所谓的自我实施制度(self-enforcing institution )。自我实施制度的一个最基本的特征,就是它的自发产生和自我实施的性质。与那些由国家和法律强制实施的制度不同,自我实施制度必须是参与人各方经过协商、谈判、讨价还价后自愿达成一致的结果。因此,历史的比较制度分析将自我实施制度视为特定历史条件下制度博弈的一种均衡状态或均衡结果。自我实施制度产生的过程,也就是制度博弈各方在特定的战略局势中,根据自己不同的目标自主地选择各自的最优策略与对手进行博弈,最后求得制度均衡的过程。而所谓的“子博弈精炼均衡”,恰恰是指在构成动态博弈的所有子博弈阶段上都实现了纳什均衡。这就是说,一个子博弈精炼均衡,必须是各博弈方在整个博弈的每个阶段(子博弈)都选择了不愿单独改变的策略(纳什均衡)的最终结果。如果我们从博弈论的角度来观察自我实施制度,就会发现自我实施制度与子博弈精炼均衡之间的内在联系。简单地说,自我实施制度所具有的自发产生和自我实施的基本属性,说明了它必定是制度博弈各方在每个子博弈中都选择了不愿单独改变的最优策略的结果,也即实现子博弈精炼均衡的结果。更直接地说,自我实施制度的产生,必定是一个制度博弈实现了子博弈精炼均衡的结果。反过来说,如果一个制度博弈实现了子博弈精炼均衡的结果,那它也应该是自我实施的。

相关文档
最新文档