正态分布、常用统计分布和极限定理

计数原理、概率、随机变量及其分布、统计、统计案例

计数原理、概率、随机变量及其分布、统计、统计案例 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=,则P (ξ≤-2)=( ) A . B . C . D . 2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( ) A .2,6 B .2,7 C .3,6 D .3,7 3.将4个颜色互不相同的球全部收入编号为1和2的两个盒 子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种 4.已知f (x )、g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )-f (x )g ′(x )<0,fx gx =a x ,f 1g 1+ f -1 g -1=52,则关于x 的方程abx 2+2x +5 2=0(b ∈(0,1))有两个不同实根的概率为( ) 5.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 6.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y 与x 负相关且y ^ =-; ② y 与x 负相关且y ^ =-+; ③y 与x 正相关且y ^ =+; ④y 与x 正相关且y ^ =--. 其中一定不正确的结论的序号是( ) A .①② B .②③

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

(项目管理)正态分布原理PMP项目管理分享资料

正态分布 (一)正态分布 正态分布的概率密度 如果连续型随机变量的概率密度为 ,(4.29) 其中,,则称随机变量服从参数为,的正态分布,记作。 正态分布的数学期望和方差 正态分布的图形有如下性质: 1.它是一条以直线为对称轴的钟形曲线; 2.它以横轴为渐近线,并且在处有拐点; 3.它在处取得最大值,最大值为: 由此可见,标准差越大,的图形就越平缓,标准差越小,的图形就越陡峭。 正态分布的分布函数 ,(4.30)(二)标准正态分布

标准正态分布的概率密度 参数,的正态分布,称为标准正态分布,记为。标准正态分布的概率密度通常用表示, ,(4.31)的图形如图4.12所示,它是一条以纵轴为对称轴的钟形曲线。 图4.12 标准正态分布概率密度函数 标准正态分布的分布函数 标准正态分布的分布函数通常用表示, ,(4.32)

图4.13 标准正态分布函数 标准正态分布函数表 对于非负的实数,可由标准正态分布函数表,直接查出的数值。对于负的实数,根据标准正态分布的对称性,可由下式 (4.33) 计算出数值。 标准正态分布分位数 设随机变量服从标准正态分布,对于给定的概率水平,满足等式 (4.34)的正数,称为标准正态分布的水平的双侧分位数;满足等式 (4.35) 的正数,称为标准正态分布的水平的上侧分位数。

图4.14 正态分布双侧分位数例4.21假设,求下列概率: 1.; 2.; 3.; 4.。 解 1. 2. 3. 4. (三)正态分布与标准正态分布的关系 如果,则

于是,在正态分布与标准正态分布的概率密度和、分布函数和之间存在下列关系式: 1. (4.36) 2. (4.37) 3.( 4.38) 这就是说,计算任一正态分布随机变量的概率都能通过标准正态分布来实现。 例4.22设,求下列概率: 1. 2. 解因为,所以。 1. 2.

高考数学压轴专题人教版备战高考《计数原理与概率统计》基础测试题含解析

数学高考《计数原理与概率统计》复习资料 一、选择题 1.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378 B .0.3 C .0.58 D .0.958 【答案】D 【解析】 分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可. 详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =?=, 恰在第三次落地打破的概率为30.70.60.90.378P =??=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D . 点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要. 2.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种 【答案】C 【解析】 【分析】 给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】 甲可有3种安排方法, 若甲先安排第1社区, 则第2社区可安排1个、第3社区安排3个,共1 3 43C C ?; 第2社区2个、第3社区安排2个,共22 42C C ?; 第2社区3个,第3社区安排1个,共11 41C C ?; 故所有安排总数为132211 4342413()42C C C C C C ??+?+?=. 故选:C.

统计学三大分布与正态分布的关系

统计学三大分布与正态分布的关系[1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质, 然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之. 1. 三大分布函数[2] 1.12χ分布 2()n χ分布是一种连续型随机变量的概率分布。这个分布是由别奈梅 (Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,) ,则称统计量2222 12n =+X X χ++…X 为 服从自由度为n 的2χ分布,记为22~()n χχ. 2χ分布的概率密度函数为 122210(;),2()200n x n x e x n f x n x --?≥??=Γ???? ,2χ分布的密度函数图形是一个只取非负值 的偏态分布,如下图.

卡方分布具有如下基本性质: 性质1:22(()),(())2E n n D n n χχ==; 性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++; 性质3:2 n χ→∞→时,( n )正态分布; 性质4:设)(~2 2n αχχ,对给定的实数 ),10(<<αα称满足条件: αχχαχα==>? +∞ ) (222 )()}({n dx x f n P 的点)(2 n α χ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查用. 2()n χ分布的上α分位数 1.2t 分布 t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student”的笔名首次发表的,这个分布在数理统计中也占有重要的位置. 定义:设2 ~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量 T = 服从自由度为n 的t 分布,记为~()T t n . t 分布的密度函数为

2017年高考概率与统计、计数原理专题分析

概率与统计、计数原理专题分析 高中数学课程中的“统计与概率”部分被安排在必修3和选修2-3,历来被老师认为易教、被学生认为易学,一线教师大多走马观花一带而过,以便腾出时间深挖其他章节内容.2017年全国高考概率与我们如约而至,常规内容紧密结合社会实际,以现实生活为背景设置试题,体现数学在解决实际问题中的巨大作用和应用价值,体现高考改革中加强应用性、实贱性的特点.研宄近几年高考试卷中“统计与概率试题,被认为“送分题”分数送不出去的尴尬,引发深思,促使我们重新审视“统计与概率”内容,深感“简单”的内容不简单! 一、专题考点分析 1.考点分析 2017年高考数学试题,概率与统计、计数原理部分考查的知识点覆盖面广,各卷考查知识点如下. (1)全国Ⅰ卷. 文科:样本的数字特征、几何概型、相关系数、方差均值计算; 理科:几何概型、二项式定理、正态分布、随机变量的期望和方差 (2)全国Ⅱ卷 文科:古典概型、频率分布直方图的应用; 理科:排列与组合、随机变量的期望、独立事件概率公式、独立性检验、频率分布直方图估计中位数. (3)全国Ⅲ卷. 文科:折线图、古典概型; 理科:折线图、离散型随机变量的分布列、数学期望 (4)北京卷. 文科:频率分布直方图的应用;理科:散点图的应用、古典概型、超几何分布、方差 (5)天津卷 文科:古典概型;理科:排列与组合、离散型随机变量的概率分布列及数学期望 (6)江苏卷 几何概型、分层抽样古典概型排列组合、随机变量及其分布、数学期望 (7)浙江卷 随机变量的期望和方差、二项式定理 (8)山东卷 文科:茎叶图、样本的数字特征、古典概型; 理科:回归直线方程、古典概型、随机变量的分布列与数学期望、超几何分布 2. 题量与分值分析 每年全国各地区的高考中都会有各种类型的概率题出现,分值占整套试卷总分的 8%~14%. 2017年各卷考查的题型及分值情况如下 (1)全国Ⅰ卷文、理科分别考查两道选择题和一道解答题,总分值均为22分 (2)全国Ⅱ卷文科考查一道选择题和一道解答题,总分值为17分;理科考查两道选择题和一道解答题,总分值为22分. (3)全国Ⅲ卷文、理科分别考查一道选择题和一道解答题,总分值均为17分. (4)北京卷文科考查一道解答题,分值为13分;理科考查一道填空题和一道解答题,总分值为18分. (5)天津卷文、理科分别考查一道选择题和一道解答题,总分值均为18分. (6)江苏卷考查两道填空题和一道解答题,总分值为20分.

爆炸极限的计算方法

爆炸极限的计算方法 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中 0.55——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定 c0=20.9/(0.209+n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4+2O2→CO2+2H2O 此时n0=2 则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 2.1 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 2.2 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。 Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算: c×Q=k

高斯分布背景模型原理

高斯分布背景模型原理 背景差分法的关键是背景图像的描述模型即背景模型,它是背景差分法分割运动前景的基础。背景模型主要有单模态和多模态两种,前者在每个背景像素点上的颜色分布比较集中,可以用单分布概率模型来描述,后者的分布则比较分散,需要用多分布概率模型来共同描述。在许多应用场景,如水面的波纹、摇摆的树枝,飘扬的红旗、监视器屏幕等,像素点的值都呈现出多模态特性。最常用的描述场景背景点颜色分布的概率密度模型(概率密度分布)是高斯分布(正态分布)。 1 单高斯分布背景模型 单高斯分布背景模型适用于单模态背景情形, 它为每个图象点的颜色建立了用单个高斯分布表示的模型) ,(,t t x N σμ其中下标t 表示时间。设图象点的当前颜色度量为t X ,若(,,)ttt p N X T μσ ≤ (这里p T 为概率阈值) , 则该点被判定为前景点, 否则为背景点(这时又称t X 与) ,(,t t x N σμ相匹配)。 在常见的一维情形中, 以t σ表示均方差, 则常根据/t t d σ的取值 设置前景检测阈值:若/t t d T σ>,则该点被判定为前景点, 否则为背 景点。 单高斯分布背景模型的更新即指各图象点高斯分布参数的更新。引入表示更新快慢的常数——更新率α, 则该点高斯分布参数的更新可表示为 1(1)t t t d μαμα+=-?+? (1)

21(1)t t t d σασα+=-?+? (2) 单高斯背景模型能处理有微小变化与慢慢变化的简单场景,当较复杂场景背景变化很大或发生突变,或者背景像素值为多峰分布(如微小重复运动)时,背景像素值的变化较快,并不是由一个相对稳定的单峰分布渐渐过度到另一个单峰分布,这时单高斯背景模型就无能为力,不能准确地描述背景了。]1[ 2 混合高斯分布背景模型 与单高斯背景模型不同,混合高斯背景模型对每个像素点用多个高斯模型混合表示。设用来描述每个像素的高斯分布共K 个(K 通常取 3—5个),象素uv Z 的概率函数: ,,,1()(,,)K u v j u v u v j u v j u v j P Z N Z ωμ ==∑∑ 其中,j uv ω是第j 个高斯分布的权值, 背景建模和更新过程(仅针对单个像素): 1.初始化:第一个高斯分布用第一帧图像该点的像素值作为均值或前N 帧图像该点的像素值的平均值作为均值,并对该高斯分布的权值取较大值(比其它几个高斯分布大)。其余的高斯分布的均值均为0,权重相等,所有高斯函数的方差取相等的较大值。 2.权值归一化 3.选取背景

正态分布定义 (2)

正态分布 科技名词定义 中文名称:正态分布 英文名称:normal distribution 定义1:概率论中最重要的一种分布,也是自然界最常见的一种分布。该分布由两个参数——平均值和方差决定。概率密度函数曲线以均值为对称中线,方差越小,分布越集中在均值附近。 所属学科:生态学(一级学科);数学生态学(二级学科) 定义2:一种最常见的连续性随机变量的概率分布。 所属学科:遗传学(一级学科);群体、数量遗传学(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片

编辑本段 正态分布的由来 normal distribution 正态分布 一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。 正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。 生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中

18计数原理、概率与统计(陈选明)

— 高三数学(理十五)第1页 共6页— 2017-2018学年度南昌市高三第一轮复习训练题 数学(理十五)计数原理、概率与统计 命题人:新建二中 陈选明 审题人:新建二中 朱优奇 一.选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能 手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛 的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的 学生中获得“诗词能手”称号的人数为( ) A. 2 B. 4 C. 5 D. 6 2.已知两组数12345671234567:,,,,,,,:,,,,,,A x x x x x x x B y y y y y y y ,其中 ()23,1,2,3,4,5,6,7i i y x i =+=,A 组数的平均数与方差分别记为2,,A x S B 组数的平均数与方差分别记为2,B y S ,则下面关系式正确的是( ) A. 2223,23B A y x s s =+=+ B. 2223,4B A y x s s =+= C. 222,4B A y x s s == D. 222,43B A y x s s ==+ 3.某高校调查了200名学生每周的自习时间(单位: 小时),制成了如图所示的频率分布直方图,其 中自习时间的范围是[]17.5,30,样本数据分组为 [)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5, []27.5,30. 根据直方图,若这200名学生中每周的 自习时间不超过m 小时的人数为164,则m 的值约为( ) A. 26.25 B. 26.5 C. 26.75 D. 27 4.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多 年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则511a a +的值为( ) A.528 B.1020 C.1038 D. 1040 5.如图,一只蚂蚁从点A 出发沿着水平面的线条爬行到点C ,再由点C 沿着置于水平面的长方体的棱爬行至顶点B ,则它可以爬行的不同的最短路径有( )条 A. 40 B. 60 C. 80 D. 120

爆炸极限计算资料

爆炸极限计算 爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用C αHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: C αHβOγ+nO2→生成气体 按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示: 可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示: 也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在 空气(或氧气)中的化学当量浓度。其中。 可燃气体(蒸气)在空气中和氧气中的化学当量浓度

(2)爆炸下限和爆炸上限。各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。 1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。 爆炸下限公式: (体积) 爆炸上限公式: (体积) 式中 L ——可燃性混合物爆炸下限; 下 L ——可燃性混合物爆炸上限; 上 n——1mol可燃气体完全燃烧所需的氧原子数。 某些有机物爆炸上限和下限估算值与实验值比较如表2: 表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》全集汇编附答案解析

【高中数学】数学《计数原理与概率统计》高考知识点 一、选择题 1.已知()9 29012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92 B .94 C .93 D .1 【答案】B 【解析】 【分析】 求出二项式()9 13x -展开式的通项为()193r r r T C x +=?-,可知当r 为奇数时,0r a <,当 r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++?+的值. 【详解】 二项式()9 13x -展开式的通项()193r r r T C x +=?-,当r 为奇数时,0r a <,当r 为偶数 时,0r a >, 因此,()9 90191314a a a ??++?+=-?-=??. 故选:B. 【点睛】 本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题. 2.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种 【答案】C 【解析】 【分析】 给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】 甲可有3种安排方法, 若甲先安排第1社区, 则第2社区可安排1个、第3社区安排3个,共1 3 43C C ?; 第2社区2个、第3社区安排2个,共22 42C C ?; 第2社区3个,第3社区安排1个,共11 41C C ?; 故所有安排总数为132211 4342413()42C C C C C C ??+?+?=. 故选:C. 【点睛】

爆炸极限理论与计算 (1)

第五节爆炸极限理论与计算 一、爆炸极限理论 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会着火或爆炸。 爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量(kg·m—3)表示。混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。若浓度在爆炸上限以上,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。但此时若补充空气,仍有火灾和爆炸的危险。所以浓度在爆炸上限以上的混合气体不能认为是安全的。 燃烧和爆炸从化学反应的角度看并无本质区别。当混合气体燃烧时,燃烧波面上的化学反应可表示为 A+B→C+D+Q(4—1) 式中A、B为反应物;C、D为产物;Q为燃烧热。A、B、C、D不一定是稳定分子,也可以是原子或自由基。化学反应前后的能量变化可用图4—4表示。初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。 图4-4 反应过程能量变化 假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。如果燃烧波连续不断,放出的能量将成为新反应的活化能。设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E,放出的能量为。αnW2/E。后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,为

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

高考数学压轴专题长沙备战高考《计数原理与概率统计》知识点训练及答案

【高中数学】数学高考《计数原理与概率统计》复习资料 一、选择题 1.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,甲不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A . 13 B . 14 C . 15 D . 12 【答案】A 【解析】 【分析】 根据条件概率的公式与排列组合的方法求解即可. 【详解】 由题意得学生甲和乙都不是第一个出场,甲不是最后一个出场的概率11333315 5C C A 9A 20P ==,其中学生丙第一个出场的概率13 3325 5C A 3A 20P ==,所以所求概率为21 13P P P ==. 故选:A 【点睛】 本题主要考查了根据排列组合的方法求解条件概率的问题,属于中等题型. 2.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v 共线的概率为( ) A . 1 3 B . 14 C . 16 D . 112 【答案】D 【解析】 【分析】 由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r 共线的基本事件的个数,利用 古典概型及其概率的计算公式,即可求解。 【详解】 由题意,将一枚骰子抛掷两次,共有6636?=种结果, 又由向量(,),(3,6)p m n q ==u r r 共线,即630m n -=,即2n m =, 满足这种条件的基本事件有:(1,2),(2,4),(3,6),共有3种结果, 所以向量p u r 与q r 共线的概率为31 3612 P = =,故选D 。 【点睛】 本题主要考查了向量共线的条件,以及古典概型及其概率的计算,其中解答中根据向量的共线条件,得出基本事件的个数是解答的关键,着重考查了推理与运算能力,属于基础

混合气体的爆炸极限怎么计算

爆炸极限的计算 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按%计,c0可用下式确定 c0=( n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4 2O2→CO2 2H2O 此时n0=2 则L下=×( 2)=由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏表示一种可燃气在混合物中的Pn特尔定律,可以算出与空气相混合的气体的爆炸极限。用. 体积分数,则: LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%) 此定律一直被证明是有效的。

理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1 V2/L2 …… Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。 Lm=100/(80/5 15/ 4/ 1/)= 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算: c×Q=k 式中c——爆炸下限浓度; Q——该物质每靡尔的燃烧热或每克的燃烧热; k——常数 第五节爆炸极限理论与计算 一、爆炸极限理论 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的

2018年北京市高考数学理10专题十计数原理、统计、概率

第十篇:计数原理、统计、概率 一、选择题 1.【2018全国一卷3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻 番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2.【2018全国一卷10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个 半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则 A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3 3.【2018全国二卷8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥 德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. 1 12 B. 1 14 C. 1 15 D. 1 18 4.【2018全国三卷5】 5 2 2 x x ?? + ? ?? 的展开式中4x的系数为

A .10 B .20 C .40 D .80 5.【2018全国三卷8】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =, ()()46P X P X =<=,则p = A . B . C . D . 6.【2018浙江卷7】设0

统计学三大分布及正态分布的关系

统计学三大分布与正态分布的关系 [1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质, 然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之. 1.三大分布函数[2] 1.12χ分布 2()n χ分布是一种连续型随机变量的概率分布。这个分布是由别奈梅(Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,) ,则称统计量222 212n =+X X χ++…X 为服从自由度为n 的2χ分布, 记为22~()n χχ. 2χ分布的概率密度函数为 122210(;),2()200n x n x e x n f x n x --?≥??=Γ???? ,2χ分布的密度函数图形是一个只取非负值的偏态分布,如下图.

卡方分布具有如下基本性质: 性质1:22(()),(())2E n n D n n χχ==; 性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++; 性质3:2 n χ→∞→时,( n )正态分布; 性质4:设)(~2 2n α χχ,对给定的实数),10(<<αα称满足条 件:αχχα χα ==>?+∞ ) (2 22)()}({n dx x f n P 的点)(2 n α χ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查 用. 2()n χ分布的上α分位数 1.2t 分布 t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student ”的笔名 首次发表的,这个分布在数理统计中也占有重要的位置. 定义:设2 ~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/T Y n = 服从自由度为n 的t 分布,记为~()T t n .

可燃性混合气体爆炸特性计算

可燃性混合气体爆炸特性计算 1 绪论 可燃性混合气体的爆炸是生产生活,特别是化工生产中极为普遍的爆炸现象。气体混合物有两种:一种是单一的可燃性气体与空气混合;另一种是多种可燃性气体与空气混合。这两种气体混合物并非在任何情况下都能发生爆炸,只有在一定的爆炸浓度范围,并需要一定的能量点燃,才可能发生爆炸。由此可知,对气体混合物爆炸的爆炸极限和最小点火能的测定相当重要,对生产生活特别是化工生产也有着积极的指导意义。 可燃气体的燃烧、爆炸是最严重的灾害性事故。最近几年,我国城市天然气及煤矿瓦斯爆炸重特大事故频频发生,给国家和人民财产造成了巨大损失,直接影响着我国经济、社会的可持续发展。为了掌握防火防爆技术,了解可燃性混合气体的爆炸特性,掌握可燃性混合气体爆炸极限、最小发火能量的计算方法,以及进一步了解并掌握其危险特性,特做此课程设计。通过对爆炸极限的研究可以了解爆炸与燃烧与可燃物浓度的关系,以及最小发火能对其危险性的影响。燃烧与爆炸是非常激烈的化学反应,特别是爆炸,其反应速度非常快,反应的过程很难控制,如果不是按照人的意愿进行,只要其一发生,就会造成严重的后果。故只有认识其本质,才能从根本上解决它们产生的危害。 2 爆炸极限 2.1 爆炸极限理论 可燃物质(可燃气体、蒸气、粉尘或纤维)与空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火或一定的引爆能量便立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度

论正态分布的重要地位和应用

论正态分布的重要地位 和应用 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

本科毕业论文(设Array计) 题目:论正态分布的重要地位和应用 学部:工学部 学生姓名:王梅影 年级:2011级 专业班级:信息与计算科学 指导教师:赵姣珍职称:讲师 完成时间:2015/5/15 中国·贵州·贵阳

成果声明 本人的毕业论文是在贵州民族大学人文科技学院赵姣珍老师的指导下独立撰写并完成的。毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本声明的法律结果由本人承担。 论文作者签名: 日期年月日

目录

摘要:正态分布是一种最常见的连续型随机变量的分布,是概率论中最重要的一中分布.在理论上和实际生活中正态分布具有重要地位,数理统计中的正态分布是很多重要问题的解决的基础,在理论研究中占有举足轻重的地位.本文首先针对正态分布这一理论研究与实际应用都占有重要地位的概率分布展开分析研究,从其基本概念出发,然后分析其特性以及各种应用价值,最后通过一系列研究给出正态分布具有重大作用的理论依据. 关键词:正态分布标准正态分布方差标准差

Abstract: The normal distributionis the most common distribution of acontinuous random variablewhether in theoretical research orpractical application. It occupiespride of placein that ithas awideapplication in the field . It cansolve many important problemsin the mathematical statisticswhich based on the normal distribution forthe normal distribution,soin theory to studythe normal paper analysis the normal probability distributionaccording to thetheoretical research and practical application which occupy an important position in many science fields from the basicconcept,analysis andapplication value of itscharacteristics.The theoretical basisis giventhrough a series ofstudies onthe normal distributionhas a significant role. Key words: The normal distribution Standard distribution Thecurve Standard deviation

相关文档
最新文档