第三章两自由度系统振动

第三章两自由度系统振动
第三章两自由度系统振动

1α,小车与斜面之间摩擦力

gk

P T π

2=,

??

? ??+=

α2sin 2k P h k P A

2

m 。

()2

2

34mr a r k n +=ω

3.确定图2-3系统的固有频率。

()

r R g n -=

32ω 图2-3

第三章 两自由度系统振动

§3-1 概述

单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。

两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。

所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a )、车床两顶尖间的工件系统(b )、磨床主轴及砂轮架系统(c )。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在

于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。

以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。

在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由度振动系统) [工程实例演示]

§3-2 两自由度系统的自由振动

一、系统的运动微分方程(①汽车动力学模型)

②以图3.2的双弹簧质量系统为例。设弹簧的刚度分别为k1和

k2,质量为m1、m2。质量的位移分别用x1和x2来表示,并以静平衡位

置为坐标原点,以向下为正方向。

(分析)在振动过程中的任一瞬间t ,m 1和m 2的位移分别为x 1及x 2。此时,在质量m 1上作用有弹性恢复力()12211x x k x k -及,在质量m 2上作用有弹性恢复力()122x x k -。这些力的作用方向如图所示。

应用牛顿运动定律,可建立该系统的振动微分方程式:

()()?

??=-+=--+00122221221111x x k x m x x k x k x

m (3.1)

2

2

12121,,m k c m k b m k k a =

=+=

则(3.1)式可改写成如下形式:

()()?

??=-+=--+00122221221111x x k x m x x k x k x

m

???=+-=-+00212211cx cx x

bx ax x

(3.2)

这是一个二阶常系数线性齐次联立微分方程组。

(分析)在第一个方程中包含2bx -项,第二个方程中则包含

1cx -项,称为“耦合项”(coupling term )。这表明,质量m 1

除受

到弹簧k 1的恢复力的作用外,还受到弹簧 k 2的恢复力的作用。m 2虽然只受一个弹簧k 2恢复力的作用,但这一恢复力也受到第一质点m 1位移的影响。我们把这种位移之间有耦合的情况称为弹性耦合。若加速度之间有耦合的情况,则称之为惯性耦合。 二、固有频率和主振型

[创造思维:]从单自由度系统振动理论得知,系统的无阻尼自由振动是简谐振动。我们也希望在两自由度系统无阻尼自由振动中找到简谐振动的解。因此可先假设方程组(3.2)式有简谐振动解,然后用待定系数法来寻找有简谐振动解的条件。

设在振动时,两个质量按同样的频率和相位角作简谐振动,故可设方程组(3.2)式的特解为:

()()?

??

+=+=?ω?ωt A x t A x n n sin sin 2211

(3.3)

其中振幅A 1与A 2、频率n ω、初相位角?都有待于确定。对(3.3)

式分别取一阶及二阶导数:

()()()()??

?

??+-=+=+-=+=?ωω?ωω?ωω?ωωt A x t A x t A x t A x n n n n n n n n sin ;cos sin ;cos 2

22222

1111

(3.4)

将(3.3)、(3.4)式代入(3.2)式,并加以整理后得:

()()??

?

??=-+-=--002

21

2

1

2

A c cA bA A a n

n

ωω

(3.5) 上式是A 1、A 2的线性齐次代数方程组。A 1、A 2=0显然不是我们所要的振动解,要使A 1、A 2有非空解,则(3.5)式的系数行列式必须等于零,即:

22

n

n

c c

b

a ωω---- = 0 将上式展开得:

()()024=-++-b a c c a n n ωω (3.6)

解上列方程,可得如下的两个根:

()bc

c a c a b a c c a c a n +??

? ??-+=--??? ??++=2

2

22

,12222 ω

(3.7)

由此可见,(3.6)式是决定系统频率的方程,故称为系统的频

率方程(frequency equation )或特征方程(characteristic equation )。特征方程的特征值(characteristic value )即频率n ω只与参数a ,b ,c 有关。而这些参数又只决定于系统的质量m 1,m 2和刚度k 1,k 2,即频率n ω只决定于系统本身的物理性质,故称

n

ω为系统的固有频率。两自由度系统的固有频率有两个,即

12121n n n n n ωωωωω,把,且和<称为第一阶固有频率(first

order natural circular frequency )。[基频]2n ω称为第二阶固有频率(second order natural circular frequency )。[(推广)理

论证明,n 个自由度系统的频率方程是2

n ω的n 次代数方程,在无阻

尼的情况下,它的n 个根必定都是正实根,故主频率的个数与系统的自由度数目相等。]

将所求得的1n ω和2n ω代入(3.5)式中得:

()

()()

()???

?

???-=-==-=-==2222212222121

11121n n n n c c b a A A c c b a A A ωωβωωβ (3.8)

式中:()()1211,A A ——对应于1n ω的质点m 1

,m 2

的振幅;

()()2221,A A ——对应于2n ω的质点m 1

,m 2

的振幅。

由此可见,对应于1n ω和2n ω,振幅A 1与A 2之间有两个确定的比值。称之为振幅比(amplitude ratio )。

将(3.8)式与(3.3)式联系起来可以看出,两个m 1与m 2任一

瞬间位移的比值12x x 。系统的其它点的位移都可以由x 1及x 2来决

定。这样,在振动过程中,系统各点位移的相对比值都可以由振幅比确定,也就是振幅比决定了整个系统的振动形态。因此,我们将振幅比称为系统的主振型(principal mode ),也可称为固有振型(natural mode )。其中:

1β——第一主振型,即对应于第一主频率1n ω的振幅比;

2β——第二主振型,即对应于第二主频率2n ω的振幅比。

当系统以某一阶固有频率按其相应的主振型作振动时,即称为系统的主振动(principal vibration )。所以,第一主振动为:

()()()

()

()()()

()??

?

??+=+=+=11111111212

111111sin sin sin ?ωβ?ω?ωt A t A x t A x n n n (3.9) 第二主振动为:

()()()

()()()()

()??

?

??+=+=+=22212222222222121sin sin sin ?ωβ?ω?ωt A t A x t A x n n n (3.10) 为了进一步研究主振型的性质,可以将(3.7)式改写成如下形式:

因为

bc c a c a n -??

? ??-+=2

2

2

,122 ω

bc

c a c a bc c a c a a a n +??

? ??-+-=???

?????+??? ??--+-=-2

22

12222ω所以

因为上式的等式右边恒大于零,所以02

1>-n a ω,由(3.8)

式知,01

bc

c a c a bc c a c a a a n +??

?

??---=??

?

?????+??? ??-++-=-2

22

22222ω又因为

因为上式的等式右边恒小于零,所以02

2

<-n a ω,由(3.8)

式知,02

<β。

(说明)由此可见,01

>β表示()()

1211A A 和的符号相同,即第一主

振动中两个质点的相位相同。因此,若系统按第一主振型进行振动的话,两个质点就同时向同方向运动,它们同时经过平衡位置,又同时达到最大偏离位置。而02

<β,则表示第二主振动中两个质点的相

位相反,永远相差180°。当质量m 1到达最低位置时,质量m 2恰好到达最高位置。它们一会相互分离,一会又相向运动,这样,在整个第二主振动的任一瞬间的位置都不改变。这样的点称为“节点”(nodal point )。

振动理论证明,多自由度系统的i阶主振型一般有i-1个节点。这就是说,高一阶的主振型就比前一阶主振型多一个节点。阶次越高的主振动,节点数就越多,故其相应的振幅就越难增大。相反,低阶的主振动由于节点数少,故振动就容易激起。所以,在多自由度系统中,低频主振动比高频主振动危险。

三、系统对初始条件的响应

[思维方式:]前面分析了两自由度系统的主振动,而这些主振动又都是简谐振动。但两自由度系统在受到干扰后出现的自由振动究竟是什么形式呢?这要取决于初始条件。

从微分方程的理论来说,两阶主振动只是微分方程组的两组特解。而它的通解则应由这两组特解相叠加组成。从振动的实践来看,两自由度系统受到任意的初干扰时,一般来说,系统的各阶主振动都要激发。因而出现的自由振动应是这些简谐振动的合成。

所以,在一般的初干扰下,系统的响应是:

()()()()

()()()

()??

?

??+++=+++=22212111112222111111sin sin sin sin ?ωβ?ωβ?ω?ωt A t A x t A t A x n n n n (3.11) 式中,()()

21

2111,??,,A A 四个未知数要由振动的四个初始条件来决定。

设初始条件为:t=0时,202101202101,,,x x x x

x x x x ====经过运算,可以求出:

()

()()()()()????

???

???

????

?

--=--=???? ??-+--=????

?

?-+--=

--2010120

1012122010220

102111222010122010121.2121201022

201021

21111x x x x tg x x x

x tg x x x x A x x x x A n n n n ββω?ββω?ωββββωββββ (3.12) 将(3.12)式代入(3.11)就得到系统在上述初始下响应。 四、振动特性的讨论 1.运动规律

从(3.11)式可以看出,两自由度系统无阻尼自由振动是由两个简谐振动合成的。但从(3.7)式来看,这两个分振动的频率21n n ωω与的比值却不一定是有理数,因此合成不一定呈周期性。所以系统的自由振动一般来说是一种非周期的复杂运动。

在这一振动中,各阶主振动所占的比例由初始条件决定。但由于

低阶振型易被激发,所以通常情况下总是低阶主振动占优势。只有在某种特殊的初始条件下,系统才按一种主振型进行振动。 2.频率和振型

两自由度系统有两个不同数值的固有频率,称为主频率,当系统按任一个固有频率作自由振动时,即称为主振动。系统作主振动时,任何瞬间的各点位移之间具有一相对比值,即整个系统具有确定的振动形态,称为主振型。 3.节点和节面

在两自由度系统的高阶主振型中存在着节点,而在第一阶主振型中却不存在节点。对多自由度系统来说也是如此,而且主振型的阶数越高,则节点数也就越多。一般来说,第i 阶主振型有i-1个节点。

对于弹性体来说,节点已经不再是一个点,而是联成线或面,称为节线(nodal line )和节面(nodal surface )。 4.阻尼

若系统存在阻尼,则阻尼对多自由度系统的影响和单自由度系统相似。由于在工程结构中一般阻尼较小,故可略去不计。

[例] 试求如图 3.4所示的系统的固有频率和主振型。已知

k k k k k m m m m 2,,2,32121=====。

又若已知初始条件为0,2.120102010====x x

x x ,试求系统的响应。

解:该系统的运动微分方程式为

()()???=++-=-++0023212222212111x k k x k x

m x k x k k x

m

令 23222

12121,,,m k k d m k c m k b m k k a +===+= 则

???=+-=-+00212

211dx cx x bx ax x 可解出:[类比前面形式:主行列式为零。]

b

a b a bc

d a d a n n n 2

2

221

12

22

,122ωβωβω

-=

-=

+??

? ??-+=

因为 m k d m k c m k b m k a 23,2,,2====

m

k m k

n ??????=??

?

?????+??? ??-??? ?

?+=434721232412322122

2

,1 ω

1

2,2

1

11=-

=-==

m

k

m k

m k b

a m k n n ωβω 21

252,581.12

2

22

-=-

=-=

=m

k m k m k b

a m k n n ωβω

根据给定的初始条件,代入(3.12)式得:

()

()()2

,

2

8.02.112111

4

.02.1211211212111π

?=

=

=???

? ??--=

=???

???---=A A 故系统的响应为:

???

???

?

-=+=t m

k t m k x t m k

t m k x 581.1cos 4.0cos 4.0581.1cos 8.0cos 4.021 五、主振型的正交性

如前所述,两自由度系统有二个固有频率和二个相应的主振型。现在我们来研究这二个主振型之间的关系。为了便于分析研究,我们先来讨论以下几个例子。

[例1]一个质量为m 的小球,固定在垂直安装的细长圆截面弹性杆的顶端,杆子下端固定在地面,如图3.6所示。杆子质量略去不计。现分析其振动情况。

设O 点是平衡位置,小球在水平面xoy 上的小范围内运动,其任一瞬时的位置可以用矢量r 来确定。小球的坐标则可通过方向余弦求得:

(

)()

?????==j

r r y i

r r x ,cos ,cos 式中:i ,j 分别表示x ,y 轴上的单位矢量。

当小球偏离平衡位置O 点后,就要受到圆杆的弹性恢复力F 的作用。由于圆杆在任何方向上的刚度k 都相等,故

r

k F -=

将F 力投影到x ,y 轴上得:

()()()()

?????-=-=-=-=ky

j r kr j r F kx i r kr i r F ,cos ,cos ,cos ,cos 因此,可建立系统的运动微分方程式:

???-=-=ky x m kx x m 2

1 这是两个彼此独立的单自由度系统的运动微分方程式,在x 方向和y 方向两个自由度上没有耦合,而且由于在这两个方向上k 相等,故两个方向的振动频率也相等。即

m k ny nx =

=ωω

所以两个方向的自由振动都是简谐振动,且频率相等。其合成结果一般情况下是个椭圆。

由此可见,在x ,y 方向,系统均按其固有频率作自由振动,故均为主振动。也就是说,在x 和y 方向,系统均具有确定的振动形态。所以系统的两个主振型也分别沿x 和y 方向,也就是说,系统的两个主振型是互相垂直的。

[例2]若将图3.6所示系统中的弹性杆的截面改成矩形,试分析其振动情况。

由于弹性杆截面为矩形,故杆件在两个互相垂直的方向上抗弯刚度就有所不同。现取杆截面的两个惯性主轴作为x 、y 坐标轴,则x 轴方向上的刚度为k x ,y 轴方向上的刚度为k y ,因而系统的运动微分方程式即成为:

???-=-=y k x m x k x m y x 2

1

两个方向上的频率不等,它们分别为:

m k m

k y

ny x

nx ==

ωω;。

这时,在x ,y 两个方向上是不同频率的简谐振动,其合成结果就是不同频率的李沙如图。[振动运动学知识]

在x 和y 方向,系统仍按固有频率ny nx ωω=作自由振动,故仍是主振动,因而主振型分别沿x 和y 方向,所以系统的两个主振型仍互相垂直。

系统的第一主振型和第二主振型互相垂直,主振型这种互相垂直的性质,叫做主振型的正交性(orthogonal properties of principal mades )主振型的正交性的几何意义就是两个主振型直线互相垂直。 (能量各个独立,不相干扰)

§3-3 两自由度系统的受迫振动

一、系统的运动微分方程

和单自由度系统一样,两自由度系统在受到持续的激振力作用时就会产生受迫振动,而且在一定条件下也会产生共振。

图3.8所示为两自由度无阻尼受迫振动系统的动力学模型。我们称简谐激振力作用的m 1-k 1质量弹簧系统称为主系统。

把不受激振力作用的m 2-k 2质量弹簧系统称为副系统。 这一振动系统的运动微分方程式为:

()()?

??=-+=--+0sin 1222201221111x x k x m t p x x k x k x

m ω

(3.13)

1

02212121,,,m p p m k

c m k b m k k a ===+=

则(3.13)式可改写成:

?

??=+-=-+0sin 2120211cx cx x t p bx ax x

ω (3.14)

这是一个二阶线性常系数非齐次微分方程组,其通解由两部分组成。一是对应于齐次方程组的解,即为上一节讨论过的自由振动。二

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角 2 a =h 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 F sin α 2 θ h mg

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2= == 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

两自由度系统有阻尼受迫振动

6□ 6-1 两自由度系统有阻尼受迫振动 图6-1 两自由度系统有阻尼受迫振动实验原理图

两自由度系统有阻尼受迫振动 □ 6-2 图6-2 两自由度系统有阻尼受迫振动实验操作界面 两自由度系统有阻尼受迫振动实验操作界面说明 主菜单 存 盘 :将测试数据存盘。按提示输入学号作为文件名。 实验指导 :激活本实验的实验指导文本。 退 出 :退出本操作界面,回到主界面(图2)

虚拟仪器 量程:指示灯为“绿色”表示信号达到半量程,为“黄色”表示信号 两自由度系统有阻尼受迫振动 □ 6-3过载。设置量程使信号超过半量程而不过载可以减小量化误差。 示波器 :选择“显示选择”中的某一选项(共7项),可使示波器显示相 应的内容。 电压表 :选择“1号点”,显示1号传感器的输出电压。选择“2号点”, 显示2号传感器的输出电压。 频率计 :显示加速度信号的频率。 李萨玉图 :观察1号加速度信号和激振信号的李萨玉图。 信号发生器 :输出一定电压和频率的简谐信号。用“On/Off”开启或关闭 信号发生器。 测试数据: 拾取数据 : 将频率计当前的读数和1号、2号传感器当前的输出电压 同时拾取到测试数据表格中。“幅值1”为1号传感器的输出电压,“幅 值2”为2号传感器的输出电压。若重复拾取某一频率的数据,则当 前拾取的数据将覆盖过去拾取的同频率的数据。 重新拾取 : 清除测试数据表格中的全部数据,重新拾取频率计当前的 读数和1#、2#传感器当前的输出电压。 数据检验 : 将测试数据表格中的加速度信号数据绘成幅频曲线(图6 -3)。

图6-3

两自由度系统有阻尼受迫振动 □ 6-4一、实验目的 ? 了解和掌握两自由度系统在简谐激振力作用下受迫振动的一般规律及现 象。 ? 理解两自由度系统固有振型的物理概念。 ? 巩固基本振动测试设备的操作与使用。 二、实验仪器 ? 两自由度系统试件 1件 ? 激振器及功率放大器 1套 ? 加速度传感器(ICP式) 1只 ? ICP电源(即ICP信号调节器)4通道 1台 ? 信号发生器 1台 ? 电压表 1台 ? 频率计 1台 ? 示波器 1台 其中:信号发生器、电压表、频率计和示波器由计算机虚拟提供。 三、实验方法及步骤 1、装配实验系统 ? 按图6-1将综合实验台装配成两自由度系统。 ? 按1节所述的方法和要求安装激振器和加速度传感器。 ? 按图6-1连接各测试设备。 2、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”!打开 各设备电源。 3、从“综合振动综合实验系统”对话框(图2),进入“两自由度系统有阻 尼受迫振动”实验操作界面(图6-2)。 4、使信号发生器的输出频率约为30Hz,输出电压约为1V。调节功率放大 器的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(用

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

第三章两自由度系统振动

1α,小车与斜面之间摩擦力 gk P T π 2=, ?? ? ??+= α2sin 2k P h k P A 2 m 。 ()2 2 34mr a r k n +=ω 3.确定图2-3系统的固有频率。

() r R g n -= 32ω 图2-3 第三章 两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a )、车床两顶尖间的工件系统(b )、磨床主轴及砂轮架系统(c )。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在

于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。

[整理]matlab二自由度系统振动.

利用Adams 和Matlab 对二自由度系统振动进行仿真与分析 一、实验思想 Adams 是一种可以对一些典型运动进行高效仿真的软件,本实验是利用Adams 对二自由度系统振动进行仿真及分析,再和理论公式对比,并用另外一种常见的仿真软件Matlab 的仿真结果进行对比,观察两者的差异,分析软件仿真产生差异的原因,加深对二自由度系统振动的理解。 二、二自由度系统振动分析 固有频率取决于系统本身物理性质,而与初始条件无关。对于二 自由度的振动系统是有两种频率的简谐波组成的复合运动,这两个频率都是系统的固有频率。 主振型是当系统按固有频率作自由振动时,称为主振动。系统作 主振动时,任何瞬时各个运动坐标之间具有一定的相对比值,即整个系统具有确定的振动形态,称为主振型。 强迫振动是振动系统在周期性的外力作用下,其所发生的振动称 为强迫振动,这个周期性的外力称为驱动力。 三、二自由度系统自由振动 1.建立二自由度系统振动模型 1)创建底座:先生成一个尺寸合适的长方体基体,再使用add to part 指令创建底座的侧壁。 2)使用new part 指令分别创建两个滑块,创建滑块时应注意滑

块与滑块、滑块与侧壁之间的尺寸适当。 3)弹簧连接:分别用弹簧链接滑块、侧壁的中心点。弹簧生成后,依次选中弹簧,在modify 选项中的stiffness and damping 下拉菜单中将damping coefficient 设置成no damping,即弹簧无阻尼。 添加约束:底座和地面固定,滑块和底座用滑动副连接。 弹簧刚度分别改为1、1、2(newton/mm) 滑块质量分别为1.0 2.0 滑块与机体滑动副的阻尼改为1.0E-007 2.模型展示 3.运动仿真结果 设置x10=12 经过Adams 运算后,滑块1、2 运动状态如图所示:

第5章--两自由度系统的振动

第5章 两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以由质心C 偏离其平衡位置的铅直位移z 及平板的转角 来确定。这样,车辆在铅直面内的振动问题就被简化为一个两自由度的系统。 5.1 双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩擦力及其它阻尼,以它们各自的静平衡位置为坐标x 1、x 2的原点,物体离开其平衡位置的位移用x 1、x 2表示。两物体在水平方向的受力图如图5-2(b)所示,由牛顿第二定律得 ? ? ?=+-=-++00)(2212222212111x k x k x m x k x k k x m &&&& (5-1) 这就是两自由度系统的自由振动微分方程。习惯上写成下列形式 ??? =+-=-+00212211dx cx x bx ax x &&&& (5-2) 显然此时 2 2 1 2 1 2 1,,m k d c m k b m k k a = == += 但对不同的系统, 式(5-2)中各系数的意义并不相同。 图5-1车辆模型 图5-2两自由度的弹簧质量系统

5.1.2 固有频率和主振型 根据微分方程的理论,设方程(5-2)的解,即两自由度无阻尼自由振动系统的解为 ?? ? ??+=+=)sin()sin(2211ααpt A x pt A x (5-3) 或写成以下的矩阵形式 )sin(2121α+?? ? ???????=??????????pt A A x x (5-4) 将式(5-4)代入式(5-2),可得代数齐次方程组 ? ?? ???=????????????----002122 A A p d c b p a (5-5) 保证式(5-5)具有非零解的充分必要条件是式(5-5)的系数行列式等于零,即 0)(2 2 2 =----= ?p d c b p a p 展开后为 0)(24=-++-bc ad p d a p (5-6) 式(5-6)唯一确定了频率p 满足的条件,通常称为频率分程或特征方程。它是2p 的二次代数方程,它的两个特征根为 )(222 22 ,1bc ad d a d a p --??? ??++=μ bc d a d a +?? ? ??-+=2 22μ (5-7) 由于式(5-7)确定的2p 的两个正实根仅取决于系统本身的物理性质,与运动的初始条件无关,因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率p 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的振幅比

第2章 单自由度系统的受迫振动题解

20 习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值1 2.41 =+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 36022 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.03604)1(02 2 2 2 == +-= λ ζλ 2 2 2 122tg λ ζλωωα-=-= n p n 由 d nT i i A A e 2.41 ===+η 489 .3π2797 .0ln 8 .1ln == == ==d d d d d T p T n T nT ηη 又 2 2 n p p n d -= 有 579.32 2 2 =+=n d n p n p p 45 .51255 .1298 .0374.0838 .01838.0223.02tg 103.1408 .045.0838 .0223.04)838.01(45 .0223.0579 .3797.0838 .0579.332 2 2 2=== -??= ==??+-= ===== = ααζωλB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

21 质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n = =1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 2 22()sin sin()sin() st Q W W k x w e w t x g g W Q x kx w e w t g g kg Q x x w e w t W W ππ-σ+- = +=++ = + 所以: 2n kg P W Q h w e W = = , 又因为st st W W k k =σ= σ即 22() st st B w e B W g w = σ-σ将结果代入: Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωc o s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

单自由度系统自由衰减振动及固有频率、阻尼比

:单自由度系统自由衰减振动及固有频率、阻尼比的测定实验指导书 陈安远 (武汉大学力学实验教学中心) 1.实验目的 1、了解单自由度系统模型的自由衰减振动的有关概念; 2、学习用频谱分析信号的频率; 3、学习测试单自由度系统模型阻尼比的方法。 2.实验仪器及安装示意图 实验仪器:INV1601B型振动教学实验仪、INV1601T型振动教学实验台、加速度传感器、MSC-1力锤(橡胶头)、重块。 软件:INV1601型DASP软件。 图1实验系统示意图 3实验原理 单自由度系统的阻尼计算,在结构和测振仪器的分析中是很重要的。阻尼的计算常常通过衰减振动的过程曲线(波形)振幅的衰减比例来进行计算。衰减振动波形示于图2。用衰减波形求阻尼可以通过半个周期的相邻两个振幅绝对值之比,或经过一个周期的两个同方向

振幅之比,这两种基本方式进行计算。通常以一个周期的相邻两个振幅值之比为基准来计算的较多。两个相邻振幅绝对值之比,称为波形衰减系数。 图2衰减振动波形 1、对经过一个周期为基准的阻尼计算 每经过一个周期的振幅的比值为一常量: η=d nT i i e A A =+1 这个比例系数η表示阻尼振动的振幅(最大位移)按几何级数递减。衰减系数η常用来表示振幅的减小速率。叫做振幅减缩率或减幅系数。 如果用减幅系数η的自然对数来表示振幅的衰减则更加方便。 δ=ln (η)=ln d i i nT A A =+1=21ξπξ- δ称为振动的对数衰减率或对数减幅系数。可以利用δ来求得阻尼比ξ。 2、在小阻尼时,由于η很小;这样读数和计算误差较大,所以一般地取相隔若干个波峰序号的振幅比来计算对数衰减率和阻尼比。 4.实验步骤 1、仪器安装 参照仪器安装示意图安装好配重质量块,加速度传感器。 2、开机进入INV1601型DASP 软件的主界面, 进入单通道示波状态进行波形和频谱同时示波,见图2。 3400Hz 、采样点数为2K,标定值和工程单位等参数(按实际

单自由度系统

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形:,同时也产生弹簧恢复力K ,当其等于重力W 时,则处于静平衡位置,即 W=K 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(+x),显然大于重力W ,由 于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m && (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x && (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x &&== (1-1-5) ()x m x k W F && =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x &x )

两自由度系统的振动

5-1 如图所示的系统,若运动的初始条件:,0,mm 5,0201010====x x x t 试求系统对初始条件的响应。 解: 112211222112102,,22,0,202020cos(),cos()cos()005,k k k k k x x k k x k k x mx kx kx mx kx kx x x A t t kA t t x mm ω?ωω?ω?ω-?? =??-?? -??????????+=??????????-??????????+-=+-===++++== ==2带入可得运动微分方程:m,00,m 令代入原方程可得 -mA 有 时,1020120, cos 5,sin 0,5,0 ().x x A A A mm x x mm ?ω??===-=====有可得 ω有两个值 12p p = = 15522x =+ 255c o c 22x =- 5-2 图示为一带有附于质量m 1和m 2上的约束弹簧的双摆,采用质量的微小水平平移 x 1和x 2为坐标,设m m m ==21,l l l ==21,021==k k ,试求系统的固有频率和主振型。

解:设1m 沿1x 方向移动1个单位,保持 2m 不动,对2m ,1m 进行受力分析,可得: 212 2()0, m A k l m g =--=∑2212m g k l =- 11 12111212122 111211112()()()0 m B k k k l m m g m m m m m g k g k k g k l l l =-+-+=++= +-=++∑ 同理使2m 沿2x 方向移动一个单位,保持1m 不变,对2m 受力分析可得: 22 222()()*0m C k k l m g =--=∑, 22222m g k k l =+ ; 刚度矩阵为 11211222,,k k k k ??=????k ,质量距阵12,00,m m ??=????m , 带入可得运动的微分方程为:mx kx F += 12,00,m m ?? ???? 12x x ??????+11211222,,k k k k ?? ????12x x ???? ??=F ; 综上解得:????? ????=???? ??++-=-???? ??++++)()(222221222212221 2212111t F x l g m k x l g m x m t F x l g m x g l m g l m m k x m 利用刚度影响系数法求刚度矩阵k 。 设0,121==x x ,分别画出1m 与2m 的受力图,并施加二物块力2111,k k ,列平衡方程, 对1m : ∑=0X ,0sin sin 1221111 =---k T T k θθ ∑=0Y ,0cos cos 1 2 2 1 1 =--g m T T θθ 对2 m : ∑ =0X , 0sin 2 2 21 =+θT k ∑ =0Y , 0cos 2 22=-g m T θ

两自由度(无阻尼强迫振动)系统

如图所示两自由度(无阻尼强迫振动)系统,证明在强迫振动共振时系统的运动为主振动。 证: 振动微分方程为 t F x k x k k x m ωsin )(12212111=-++? ? t F x k k x k x m ωsin )(22231222=++-? ? 引入符号 121m k k a += ,12m k b =,22m k c =,22 3m k k d += 111m F f = ,2 22m F f = 则振动微分方程简化为 t f bx ax x ωsin 1211=-+? ? t f dx cx x ωsin 2212=+-? ? 现令 t B x ωsin 11= , t B x ωsin 22= 代入简化的振动方程,得 1212)(f bB B a =--ω 2221)(f B d cB =-+-ω 解之得 2 12 2 2112)()(bf f d f a cf B B +--+=ωω (1) 自由振动时,振动微分方程为 0)(2212111=-++? ?x k x k k x m 0)(2231222=++-? ?x k k x k x m x1 x2 F1sinwt F2sinwt

同理解得主振型为 2 12 2 2112122222)()()()(bf f p d f p a cf f p d cf bf f p a p d c b p a i i i i i i i +--+=-=-=-=-=ν (i=1,2) (2) 由(1)、(2)两式比较可知:当i p =ω时(i=1,2) i i B B ν=)( 1 2 即在系统共振时,系统的振型为主振型,系统的振动为主振动。 李小龙 2017-3-26

第8讲 多自由度受迫振动教案

系统对简谐力激励的响应 设 n 自由度系统沿各个广义坐标均受到频率和相位相同的广义简谐力的激励,系统受迫振动方程: t i e ω0 F KX X M =+ ω:外部激励的频率; 0F :广义激励力的幅值列阵T n F F F ][002010??=F 设稳态解:t i e ωX X =,T n X X X ][21 ??=X 代入作用力方程,得:() 02F X M K =-ω 记()1]2[--=M K H ωω,多自由度系统的幅频响应矩阵 0HF X =,t i e ω0HF X = 简谐激励下,系统稳态响应也为简谐响应,并且振动频率为外部激励的频率,但是各个自由度上的振幅各不相同。 工程中:() M K 2ω-称为阻抗矩阵,()12][--=M K H ωω导纳矩阵。 因此H ij 的物理意义为仅沿j 坐标作用频率为w 的单位幅度简谐力时, 沿 i 坐标所引起的受迫振动的复振幅 ()1 2 ][--=M K H ωωM K M K 2 2)(ωω--= adj 由于 H 含有1 2--M K ω,系统的特征方程02=-M K ω 因此,当外部激励频率ω接近系统的任意一个固有频率时,都会使受迫振动的振幅无限增大,引起共振。 动力吸振器 许多机器或部件由于旋转部分的质量偏心而产生强迫振动,为减小这种振动有时可以采用动力吸振器 若忽略主系统阻尼,主系统固有频率:1 1 1m k = ω,为抑制主系统的振动,

在主系统上附加一个弹簧-质量系统,动力吸振器的无阻尼固有频率: 2 2 2m k = ω 通过调节动力吸振器的参数大小,以达到抑制主系统振动的目的。 系统的强迫振动方程: ?? ? ???=????????????--++????????????--+????????????0sin 0002122221212121t F x x k k k k k x x c c c c x x m m ω 当吸振器阻尼为零时,利用直接法t ωsin X X = 稳态响应振幅: ?????????? ??----+=??????-001 222222 12121F m k k k m k k x x ωω?? ? ???-?=22220)(k m k F ωω M K 2)(ωω-=?:系统的特征多项式 2 2 2222121))(()(k m k m k k ---+=?ωωω 212221221421)(k k m k m k m k m m +++-=ωω 当2 2 m k = ω时,外部激励频率等于吸振器的固有频率,主系统不再振动,01=x 。 此时22 )(k -=?ω,吸振器振幅2 2k F x - =,主系统上受到的激振力恰好被来自吸振器的弹性恢复力平衡。 吸振器参数 k 2、m 2 一般选为:μ==1 2 12m m k k ,使吸振器的固有频率和主系统的固有频率相等。

两自由度系统的振动

x 1 ax 1 bx 2 x 2 cx 1 dx 2 显然此时 m 2 但对不同的系统, 式(5-2)中各系数的意义并不相同。 第5章两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问 题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自 由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两 自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以 由质心C 偏离其平衡位置的铅直位移 z 及平板的 转角 来确定。这样,车辆在铅直面内的振动问 题就被简化为一个两自由度的系统。 图 21-1 5.1双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩 擦力及其它阻尼,以它们各自的静平衡位置为坐标 X 1、X 2的原点,物体离开其平衡位置的位移用 X 1、X 2 何 表示。两物体在水平方向的受力图如图 5-2(b)所示, 由牛顿第二定律得 图5-2两自由度的弹簧质量系统 m 1x 1 (k 1 k 2)x 1 k 2x 2 0 m 2x 2 k 2 x 1 k 2x 2 0 (5-1) 这就是两自由度系统的自由振动微分方程 。习惯上写成下列形式 (5-2) k 1 k 2 k 2 k 2 m 1

5.1.2 固有频率和主振型 根据微分方程的理论,设方程 (5-2)的解,即两自由度无阻尼自由振动系统的解为 x i A i sin( pt ) x 2 A 2 sin( pt ) 或写成以下的矩阵形式 将式(5-4)代入式(5-2),可得代数齐次方程组 a p 2 b A i 0 c d p 2 A 2 保证式(5-5)具有非零解的充分必要条件是式 (5-5)的系数行列式等于零,即 2 a p 2 b (p 2) p 2 c d p 展开后为 p 4 (a d) p 2 ad be 0 的两个特征根为 (ad bc) (5-7) 由于式(5-7)确定的p 2的两个正实根仅取决于系统本身的物理性质, 与运动的初始条件无关, 因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率P 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的 振幅比 (5-3) x i X 2 A i sin( pt ) A 2 (5-4) (5-5) (5-6) 式(5-6)唯一确定了频率 p 满足的条件, 通常称为频率分程或特征方程。 它是p 2的二次代数方程,它 2 a d 2 bc

相关文档
最新文档