热力学原理在化学中的应用

热力学原理在化学中的应用
热力学原理在化学中的应用

热力学原理在化学中的应用

有两个很基本的问题贯穿着整个化学学科:

第一个问题可以通过下面这个例子说明:我已经知道水分子是由氢原子和氧原子构成的,那么我现在有一些氢气和一些氧气,我把它们混合后能否产生水呢?如果不能,那么在什么条件下是可以的?

第二个问题可以沿用上面的例子:现在我有方法让氢气和氧气生成水了,那么我拿1mol氢气和0.5mol氧气就一定能产生1mol水么?

用化学的语言概括:1、如何判断化学反应的方向。2、如何计算化学反应的限度。

下面就以上述的两个问题进行说明热力学原理在化学中的应用:

1.判断化学反应的方向:

a)根据“熵变”判断

当我们已知有材料A、B,并需要C、D时,我们就希望下列反应能够进行:

A+B C+D

能否自发地进行,如果不能,我们又需要给予怎样的条件才能使它们进行?

熵变和吉布斯自由能函数给了我们衡量反应是否自发进行的标准。

在热力学中,我们赋予了反应物与产物“熵”这个概念,它的数值是一个状态函数,即无论在怎样的过程下,只要始态与终态确定了,那么这个过程的熵变就可以确定。

通过化学家反复实验论证,得到了克劳修斯不等式:

这个不等式说明了一个反应过程是否能自发进行,是由这个过程的热温商与其熵变的大小关系决定的。然而一个体系的熵变的测定是十分困难的,所以我们将体系与环境一并考虑:

这就是我们所熟知的热力学第二定律,孤立体系的熵变是恒大于或等于0的,特别的,自发过程的熵变总是大于0,因此它也被称作熵增原理。

于是,当我们需要判断一个反应是否自发发生时,就可以根据:

计算反应前后的系统熵变,并与0相比较即可。

b)根据“吉布斯自由能函数值”判断

事实上,孤立体系的熵变计算要同时考虑环境和体系的熵变,这很不方便,因此根据熵变判断反应方向仍然是有困难的。因此我们引入了一个新的量,叫做吉布斯自由能:

可以将它与熵变及内能公式联立,化简后可以得到:

即在恒温恒压不做非体积功的前提下,体系的吉布斯自由能改变量小于等于0,且等号在可逆过程时取到。而吉布斯自由能的改变量可以由公式:

计算得出。

这样,我们不需要考虑环境的自由能增量也能够判断反应是否自发进行了。

2.确定反应进行的限度

事实上,如果我们想对一个反应的限度进行描述,首选的方法就是去考察每种反应物和生成物的浓度。而恰好在非标准状况下的吉布斯自由能函数表达式中:

有反应物、生成物与标准浓度的比例关系,所以我们可以利用非标准状况下的吉布斯自由能函数来判断反应进行的限度。

为了方便起见,定义下面这样一个量,称为平衡常数:

当反应达到平衡的时候,吉布斯自由能函数值等于0,此时可以算出平衡常数K。

显然,对于一个确定的反应,给定初始状态和一个确定的K值,我们可以利用方程来解出各物质的浓度。即,利用平衡常数,我们可以得知一个确定反应、在确定的初始状态下能够进行到何种状态(这个状态是用各反应物、生成物的浓度描述的),即得到了反应的限度。

同时,定义一个数Q来描述反应在任意时刻的状态:

将这个数值带入吉布斯自由能函数表达式,可以得到如下关系:

这样,我们就可以判断任意时刻反应进行的方向了。

3.总结:

热力学原理虽然被大家认定为物理定律,但它在化学中也发挥着重要的作用。

从这一点也可以看出,科学之间是相通的,不论将来立志于在哪个方面有所建树,都应当对各方各面的科学有所了解。

物理化学第03章化学平衡热力学原理

第三章 化学平衡热力学原理 复习思考题 1.化学反应的m r G ?与Θ?m r G 有什么不同?用m r G ?及Θ ?m r G 判断化学反应进行的方向有什 么不同? 2.“Θ Θ -=?K RT G ln m r ,可见Θ ?m r G 就是反应处于平衡时的吉布斯自由能变化。”这种说 法对吗?为什么? 3.平衡常数改变了,平衡是否移动?平衡发生了移动,平衡常数是否改变? 4.什么是标准平衡常数ΘK ?“标准平衡常数数值上总是等于1”的说法对吗? Θ K 值能否 根据某温度、任一压强下反应达平衡时各气体的分压按 ∏B B ν p 计算? 5.对于一个化学反应,当人为地改变反应体系中各反应物及生成物所取的标准状态时,反 应的m r G ?Δ、Θ ?m r G 及Θ K 有无变化?为什么? 6.为什么有纯凝聚相参加的反应其平衡数表示式中没有凝聚相物质的平衡分压出现? 7.下列碳的不完全燃烧反应为: 2C(s)+O2(g)==== 2CO(g) Θ?m r G =(-232 600-167.8 T)J ·mol -1 当升高温度时, Θ ?m r G 变得更负,从而使Θ K 更大,反应就更完全,对吗? 8.在H 2S 气体中加入较多的NH 3,体系中可有下列二反应进行: ① NH3(g)+H2S(g)==== NH4HS(g) ② NH3(g)+H2S(g)==== NH4HS(s) 当达到平衡时,二反应的Θ ?m r G 、m r G ?是否相等? 9.CO2(g)+C(s)==== 2CO(g)反应是气体物质的量增加的反应,反应向右进行时,压强会增大。这就不是恒温恒压条件下的反应了,是否还能用等温方程式计算m r G ?并用以判定反应的方向呢? 10.在相同温度下,下列两反应的平衡常数是否相同?([C]表示溶解在铁液中的碳) C(石墨)+CO 2(g)==== 2CO(g) [C]+CO 2(g)==== 2CO(g) 11.工业上制取水煤气的反应为:C(s)+H2O(g)==== CO(g)+H2(g) 已知Θ ?m r H =133.5 kJ ·mol -1 ,设在673 K 时达到平衡,试讨论下列因素对平衡的影响: ①提高反应温度;②增加体系的总压;③增加水蒸气的分压;④增加碳的数量;⑤加N 2气。 12.已知一理想气体化学反应:A(g)==== 2B(g),在298.15 K ,Θ p K =0.027,试问:

化学发光及生物发光的原理及其应用

化学发光及生物发光的原理及其应用 点击次数:291 发表于:2008-08-24 01:39转载请注明来自丁香园 来源:丁香园 一、发光物质的类型 (一)无机化合物化学发光分析 1、金属离子分析 痕量金属离子对化学发光反应具有很好的催化作用,因而化学发光测定金属离子得到广泛的应用( 见表1) 。但是,由于不同金属离子催化氧化发光试剂时,发光光谱相同,致使金属离子催化化学发光反应的选择性较差。为提高分析的选择性,可采用以下方法: (1)利用待测金属离子与干扰离子配合物稳定性不同进行选择性分析,如加入掩蔽剂EDTA 或水杨酸掩蔽干扰离子; (2) 优化实验条件以减少其它离子的干扰; (3) 稀释样品溶液; (4) 加入敏化剂。但是,当样品中待测物相对于干扰物浓度很小时,上述方法也无济于事,只得进行前处理,常用的分离方法有色谱、溶剂萃取等。 色谱分离的高选择性与化学发光检测的高灵敏度相结合,是一种很有前途的联用技术。关键是流动相的选择,流动相选择得好,不仅可以提高选择性,还可以进行多个离子的同时测定。如用离子交换分离法同时测定Cr (à) 和Cr (? ) 。溶剂萃取也是提高化学发光测定金属离子选择性的一个有效方法。这种方法的主要问题是费时,因为进行化学发光检测前必须将无机物从有机溶剂中反萃取出来,或是将有机溶剂蒸发除去。较好的方法是自动在线溶剂萃取选择性检测待测物。

2、其它无机化合物的分析 化学发光反应中,过氧化氢是最常用的一种氧化剂,因此有关H 2 O 2 化学发光分析的报道较多( 见表2) ,涉及到鲁米诺、过氧草酸酯及光泽精等化学发光反应。根据鲁米诺化学发光反应制成的H2O 2 光纤传感器与流动注射法联用,可检测10nmo l /L ~1 mmo /L 的H 2 O 2 ,用模拟酶代替辣根过氧化物酶催化鲁米诺发光,检测限可达5 . 5×10 -9 mo l /L 。根据ClO - 对鲁米诺的氧化作用,可用于测定ClO - ,其它物质如Cl 2 的干扰,可用流动注射法消除。利用停流技术测定水中ClO - 不必进行前处理。含氮的无机化合物如NH3 /NH 4 ,可将其衍生后用TCPO 化学发光法检测,线性范围为2 。9ug /L ~6 m g /L 。CN -能抑制鲁米诺H 2 O 2 -Cu (II ) 的化学发光,据此可分析测定CN —。在低温条件下化学发光分析测定CN -,当进样量为100uL 时,线性范围为10 -9 -10 -7 g /mL ,当进样量20 uL 时,线性范围为10 -8 ~5×10 -7 g /mL 。 (二)有机化合物的化学发光分析 1、有机酸 有机化合物的同系物结构和性质相似,使单一组分的测定遇到困难,因此有机化合物同系物的分析常与HPLC 相结合。有机酸的化学发光分析( 见表3) ,一般是先将其衍生

第三章化学热力学

第三章化学热力学 (g) + O2(g) ?H2O(l)(298K)的Q p与Q V之差(kJ·mol-1)是………………………() (A)(B) (C)(D) 2.已知HCN(aq)与NaOH(aq)反应,其中和热是kJ·mol-1,H+(aq) + OH-(aq) = H2O(l),= kJ·mol-1,则1 mol HCN 在溶液中电离的热效应(kJ·mol-1)是……………() (A)(B) (C)(D) 3.已知2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g) ,= kJ·mol-1 ,则该反应的Q V值是…………………………………………………………………………() (A)(B) (C)(D) 4.如果体系经过一系列变化,最后又变到初始状态,则体系的………………………() (A)Q = 0 W = 0 ΔU = 0 ΔH = 0 (B)Q 0 W 0 ΔU = 0 ΔH = Q (C)Q = WΔU = Q - WΔH = 0 (D)Q WΔU = Q - WΔH = 5.在一定温度下:(1) C(石墨) + O2(g) = CO2(g) ΔH1 ;(2) C(金刚石) + O2(g) = CO2(g) ΔH2;(3) C(石墨) = C(金刚石) ΔH3 = kJ·mol-1,其中ΔH1和ΔH2的关系是…………………………………………………………………() (A)ΔH1>ΔH2(B)ΔH1<ΔH2 (C)ΔH1=ΔH2(D)不能判断 6.若两个液态组分混合形成理想溶液,则混合过程的…………………………………( (A)ΔV = 0 ΔH = 0 ΔS = 0 ΔG = 0(B)ΔV > 0 ΔH < 0 ΔS < 0 ΔG > 0 (C)ΔH = 0 ΔV = 0 ΔS > 0 ΔG < 0 (D)ΔH > 0 ΔV < 0 ΔG< 0 ΔS > 0

化学发光系统工作原理

化学发光系统工作原理 半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。它具有体积小、寿命长的特点,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。 由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 激光器的发光原理 >>>>产生激光要满足以下条件: 一、粒子数反转; 二、要有谐振腔,能起到光反馈作用,形成激光振荡;形成形式多样,最简单的是法布里——帕罗谐振腔。 三、产生激光还必须满足阈值条件,也就是增益要大于总的损耗。 1、满足一定的阀值条件

为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场。这就必须要有足够强的电流注人,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件。当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出。 2、谐振腔,能起到光反馈作用 要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。 对F-P腔(法布里—拍罗腔)半导体激光器可以很方便地利用晶体的与P-N 结平面相垂直的自然解理面构成F-P 腔。 3、增益条件 建立起激射媒质(有源区)内载流子的反转分布。在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现,将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。

第三章 地球化学热力学基础

第三章地球化学热力学基础 热力学是研究热现象的一门科学。它从具有公理性质的几个基本定律出发,演绎物质体系的宏观性质与热、功形式的能量之间的关系。经典热力学只研究达到平衡态时物质体系的宏观性质,近代热力学的发展还可以研究非平衡态、不可逆过程和自然界的自组织现象等。热力学原理应用于研究化学反应(包括相变)形成了化学热力学分支,它要解决的主要问题是根据化学反应和相变过程中伴随的能量变化,预测化学反应和相变的方向和进程。化学热力学与地球化学相结合形成了地球化学热力学。 热力学的基本定律是大量实验事实和生产经验的总结,它是非常可靠的。热力学的方法是演绎性的。因而,从基本定律出发,通过严密的逻辑推理而得出的结论,必然具有高度的普适性和可靠性。热力学可以广泛地用于解决不同学科领域的许多问题。热力学的研究对象是宏观体系,即由大数量分子构成的集合体,它不考虑物质的微观结构,一点也不涉及物质体系宏观性质变化的微观机理和变化速率。 地球化学是研究地球和天体物质的化学组成、化学反应和

化学演化历史的一门科学。由于地球化学的研究对象具有空间上的巨大性、时间上的漫长性和演化过程的多阶段多旋迴性等特点,它们的成因和演化往往不是研究者可以直接观察的,甚至是难以在实验室里重现的。地球化学家只得采用反序的思维方法,即根据地质地球化学过程中产生的遗迹,如对岩石、矿物、岩体和矿床等地质体的研究,反演地球演化历史中发生过的各种地质地球化学作用的性质及其物理化学条件。因而热力学是地质地球化学研究中极其有用的理论工具。假定我们直接观察到的各种地质体是曾经在某种热力学平衡条件下形成的,并且自形成那时以来,一直保持着当时的平衡状态,而未被后来的作用所改造,那么依靠实验测得的矿物和岩石的热力学性质,运用热力学理论,可以合理地推测各种地质体形成的过程及其物理化学条件。事实上地质地球化学家运用热力学原理解决地学问题,有力地推动了地球化学的发展,地球化学热力学已经成为现代地球化学体系中的重要分支学科。 热力学应用于地质地球化学研究的成功例子极多,下面仅举几个实例予以说明,它们是由几位地质地球化学大师在地球化学发展初期所作的开创性研究工作。 J.H.Van′t Hoff在1896—1909年进行了一系列水—盐体系相平衡的实验研究,其目的是解释德国上古生代二叠纪蔡希斯坦(Zechstein)统海相钾盐矿床的成因,这种类型的矿床在

化学发光免疫分析技术原理简介

化学发光免疫分析技术原理简介 20 世纪60 年代即有人利用化学发光法测定水样中细菌含量和菌尿症患者尿液检查。1977 年Halman 等将化学发光系统与抗原抗体反应系统相结合,创建了化学发光免疫分析法,保留了化学发光的高度灵敏性,又克服了它特异性不足的缺陷。近年来对技术与仪器的不断改进,使此技术已成为一种特异,灵敏,准确的自动化的免疫学检测方法。1996 年推出的电化学发光免疫技术,在反应原理上又具有一些新的特点。这两种技术目前已在国内一些大型医院实验室用于常规免疫学检验。 一、化学发光免疫分析法 化学发光免疫分析法( chemiluminescence immunoassay , CLlA) 是把免疫反应与发光反应结合起来的一种定量分析技术,既具有发光检测的高度灵敏性,又具有免疫分析法的高度特异性。在CLIA中,主要有两个部分,即免疫反应系统和化学发光系统。免疫反应系统与放射免疫测定中的抗原抗体反应系统相同化学发光系统则是利用某些化合物如鲁米诺( luminol) 、异鲁米诺(isolu-minol) 、金刚烷( AMPPD) 及吖啶酯( AE) 等经氧化剂氧化或催化剂催化后成为激发态产物,当其回到基态时就会将剩余能量转变为光子,随后利用发光信号测量仪器测量光量子的产额。将发光物质直接标记于抗原(称为化学发光免疫分析)或抗体上(称为免疫化学发光分析) ,经氧化剂或催化剂的激发后,即可快速稳定的发光,其产生的光量子的强度与所测抗原的浓度可成比例。亦可将氧化剂(如碱性磷酸酶等)或催化剂标记于抗原或 抗体上,当抗原抗体反应结束后分离多余的标记物,再与发光底物反应,其产生的光量子的强度也与待测抗原的浓度成比例。发光免疫分析的灵敏度高于包括RIA 在内的传统检测方法,检测范围宽,测试时间短,仅需30 - 60min 即可。试

化学发光检测

第一章化学发光技术 一、免疫学检测发展阶段 免疫学检测主要是利用抗原和抗体的特异性反应进行检测的一种手段,由于其可以利用同位素、酶、化学发光物质等对检测信号进行放大和显示,因此常被用于检测蛋白质、激素等微量物质。我国免疫学的检测基本历经了以下几个过程,如图1.1所示。 20世纪60年代70年代90年代时间 图1.1免疫学检测发展阶段 尽管免疫诊断在临床诊断中占据着非常重要的地位,但是从我国临床免疫诊断现状来看,无论是临床应用方面,还是产业化角度,都处于相对比较落后的状态,亟待改进。下表1.1就此做一比较: 表1.1 中国免疫诊断现状 由以上分析不难看出,化学发光免疫检测是大势所趋;而取代进口,发展我国的化学发光检测事业,

正是临床检验界着手发展的方向。由此,我公司自1998年立项至今,致利于化学发光检测方案设计,自行开发了具有国内领先水平的化学发光底物,与国外知名检测仪器生产商联合开发了化学发光全自动、半自动检测仪,并自行设计开发了化学发光管理软件,而今形成了仪器、试剂、软件全面配套,为我国的临床检验界提供了一套完善的解决方案。 二、化学发光免疫分析技术 【概述】 本世纪70年代中期Arakawe首次报道用发光信号进行酶免疫分析,利用发光的化学反应分析超微量物质,特别是用于临床免疫分析中检验超微量活性物质。目前,这一技术已从实验室的稀有技术过渡到临床医学的常规检测手段。化学发光免疫分析(Chemiluminescence Immunoassay,CLIA)是将化学发光或生物发光体系与免疫反应相结合,用于检测微量抗原或抗体的一种新型标记免疫测定技术。其检测原理与放射免疫(RIA)和酶免疫(EIA)相似,不同这处是以发光物质代替放射性核素或酶作为标记物,并藉助其自身的发光强度直接进行测定。 化学发光免疫分析既具有放射免疫的高灵敏度,又具有酶联免疫的操作简便、快速的特点,易于标准化操作。且测试中不使用有害的试剂,试剂保持期长,应用于生物学、医学研究和临床实验诊断工作,成为非放射性免疫分析法中最有前途的方法之一。 【原理】 在化学发光免疫分析中包含两个部分,即免疫反应系统和化学发光系统。免疫反应系统,其基本原理同酶联免疫技术(ELISA),常采用双抗体夹心法、竞争法、间接法等反应模式,如图1.2,1.3,1.4所示。 如图1.2双抗体夹心法反应原理示意图

化学热力学与化学平衡

第二讲化学热力学与化学平衡 一、基础知识点 1. 焓与焓变 (1)热力学第一定律: (2)焓: 热力学把定义为焓 焓变: 例1 1g火箭燃料肼在氧气中完全燃烧(等容),放热20.7kJ(273.15K),求1mol肼在该温度下完全燃烧的内能变化和等压反应热 2. 生成焓,熵,自由能 标态(100kPa)和T(K)下,由稳定单质生成1mol化合物(或不稳定态单质或其他形式)的焓变称为该物质在T(K)时的标准生成焓(kJ/mol) 标态下,1mol某物质的熵值叫做标准熵()(J/mol) 标态(100kPa)和T(K)下,由稳定单质生成1mol化合物(或不稳定态单质或其他形式)的自由能变化值称为该物质在T(K)时的标准生成自由能(kJ/mol)G:吉布斯自由能G = H - TS ?G m < 0 反应右向自发进行; ?G m = 0 反应达平衡; ?G m > 0 反应左向自发进行 3. 化学平衡 可逆反应:在同一条件下,既能向正反应方向又能向逆反应方向进行的反应。

化学平衡:正逆反应速度相等时,体系所处的状态称为化学平衡。 (1)建立平衡的前提:封闭体系、恒温、可逆反应; (2)建立平衡的条件:正逆反应速度相等(动态平衡,体系并非处于静止状态); (3)建立平衡的标志:各物质浓度不再随时间改变。平衡状态是封闭体系中可逆反应进行的最大限度; (4)化学平衡是有条件的平衡。外界因素:温度、压力、浓度、添加剂等。 4. 化学平衡常数 (1)一切可逆反应: (2)对于含气体的可逆反应: where mol/L→K C : (mol/L) ?n ; Pa , atm →K p : (Pa) ?n, (atm) ?n ?n = 0时,K C ,K p 无量纲 (1)如果反应中有固体和纯液体参加,它们的浓度不应写在平衡关系式中,因为它们的浓度是固定不变的,化学平衡关系式中只包括气态物质和溶液中各溶质的浓度。 (2)稀溶液中进行的反应,如有水参加,水的浓度也不必写在平衡关系式中 (3)同一化学反应,可以用不同的化学反应方程式来表示,每个化学方程式都有自己的平衡常数关系式及相应的平衡常数。进行化学平衡的计算时必须写出反应方程式和相应的平衡常数。 (4)对于气体反应,写平衡常数关系式时,除可以用平衡时的(物质的量)浓度表示外,也可以用平衡时气体的分压来表示 5. 平衡常数意义 (1)平衡常数的大小可以判断反应进行的程度、估计反应的可逆性。因为平衡状态是

第三章 金属电化学腐蚀的热力学原理

第三章金属电化学腐蚀的热力学原理 §3-1 腐蚀原电池 1.腐蚀原电池是指导致金属材料的破坏而不能对外做有用功的短路原电池。 电极反应方程式阳极:Fe →Fe2+ +2e 阴极:2H+ +2e →H2 (图3-1) 电极反应方程式阳极:Fe →Fe2+ +2e 阴极:2H+ +2e →H2 O2 + 4H+ +4e →2H2O

(图3-2) 电化学腐蚀发生的根本原因是由于介质中存在着平衡电极电位高于金属的平衡电极电位的氧化性物质。 2.腐蚀原电池的组成及工作过程 1)组成:阳极、阴极、电解质溶液、外电路。 2)工作过程:①金属阳极溶解过程如Fe →Fe2+ +2e ②溶液中氧化性物质的阴极还原过程如

2H+ +2e →H2 ③电子和离子的定向流动过程 以上三个过程是彼此独立进行的,但又是串联在一起的,因而只要其中的某个过程的进行受到阻滞,则金属的腐蚀速度就会减缓。3.电化学腐蚀的次生过程 腐蚀电池工作过程中,阳极附近金属离子(如Fe2+)浓度增大,阴极附近的pH升高,则随着离子的迁移发生如下反应: Fe2+ + 2OH- →Fe(OH)2 ↓ 或者进一步被氧化为:4Fe(OH)2+ O2 +2H2O →Fe(OH)3↓ 即铁在含氧水溶液中腐蚀的次生过程。 如图所示是铁在含氧水溶液中的腐蚀及其次生过程。

(图3-3 P22) 4.腐蚀原电池的分类 按照电极的大小,被破坏金属的表观形态,腐蚀电池可分为三类: 1)超微电池腐蚀:金属表面上存在的超微 观的(原子大小的)电化学不均一性引起,可以认为阴阳极是等电位,导致金属材料 的均匀腐蚀。 2)微电池腐蚀:金属表面存在许多微小的

化学发光法及其应用

化学发光法及其应用 摘要:对近年来化学发光分析法的研究应用最新进展作了评述,包括化学发光体系的类型,化学发光法的新方法,化学发光在无机、药物分析及食品中的应用。 关键字:化学发光法;化学发光体系;应用; 化学发光是在没有光、电、磁、声、热源激发的情况下,由化学反应或生物化学反应产生的一种光辐射。以此为基础的化学发光化学发光(Chemiluminescence ,简称CL)分析法是近30 年来发展起来的一种高灵敏的微量及痕量分析法,由于可以进行发射光子计量,又没有外来激发光源存在时散射光背景的干扰,因而具有很高的灵敏度(检出限可达 10-12-10-21mol),很宽的线性范围(3-6个数量级),同时仪器设备又很简单、廉价、易微型化,在二十世纪的最后十年发展非常迅速。 近来,在改进和完善原有发光试剂和体系的同时,新发光试剂的合成,新体系的开发,与其它技术的联用,尤其是流动注射技术,传感器技术,HPLC 技术及各种固定化试剂技术的联用,更显示出化学发光分析快速,灵敏,简便等优点,也进一步拓宽了化学发光的应用范围。并且,化学发光在多类复杂有机物质,如氨基酸、蛋白质、维生素、核酸、DNA、激素、生物碱及各类药物及毒物的检测,多种生物活性物质的分析,多种抗体和抗原的免疫分析,基因芯片、蛋白质芯片、受体芯片、酶芯片、微流控芯片研究中得到了广泛地应用,而且呈现出上升趋势。为生命科学、环境科学、材料科学的研究提供了许多新的、高灵敏度的、有效的分析手段,推动了这方面科学理论和高新技术的发展;同时,其他相关学科的研究成果也为化学发光和生物发光提供了许多新的技术和手段,出现了许多新的化学发光和生物发光法,如纳米发光、发光成像、发光活体分析,大大促进了化学发光的发展及应用。本文将从以下几个方面论述化学发光分析法。 1 化学发光分析法的原理 化学发光(Chemiluminescence,简称CL) 分析法是分子发光光谱分析法中的一类,是指物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出一定波长的光。根据化学发光反应在某一时刻的发光强度或发光总量来确定组分含量的分析方法叫化学发光分析法[1]。 换句话说,化学发光是指吸收了化学反应能的分子由激发态回到基态时所产生的光辐射现象, 广义的化学发光也包括电致化学发光。一个化学反应要产生化学发光现象, 必须满足

(物理化学)第三章 化学反应热力学总结

第三章 化学反应热力学总结 本章主要是运用热力学的基本概念、原理和方法研究化学反应的能量变化,引入反应焓与温度的关系式——Kirchhoff 公式,建立热力学第三定律以求算化学反应的熵变,引入化学热力学重要关系式——Gibbs-Helmholtz 方程。 一、 基本概念 1、化学反应进度 ()/B B d dn ξξν= B B n /?ξ=?ν 或 B B n /ξ=?ν 2、盖斯定律 3、标准生成热 4、标准燃烧热 5、热力学第三定律 6、规定熵与标准熵 二、化学反应焓变的计算公式 1、恒压反应焓与恒容反应焓的关系 p,m V,m B B Q Q (g)RT =+ν ∑ 或 p ,m V ,m B B H U (g )R T ?=?+ν∑ 简写为: m m B B H U (g)RT ?=?+ν∑ 2、用f B H ?$计算r m H ?$: r m H ?$ (298K)= B f B B H (298K)ν ?∑$ 3、由标准燃烧焓c m H ?!的数据计算任一化学反应的标准反应焓r m H ?! ()r m H 298K ?=$()B C m,B B H 298K -ν?∑$ 4、计算任意温度下的r m H ?!——基尔霍夫公式 (1)微分式 r m B p,m p,m B p H (T)C (B)C T ????=ν=??????∑$ (2)已知()r m H 298K ?$ 求任意温度下的r m H ?! 当(),p m C B 表示式为形式: ()2 ,p m C B a bT cT =++ 时 ()()T 2r m r m 298K H TK H 298K (a bT cT )dT ?=?+?+?+??$ $,积分得: ()()()()22 33r m r m b c H TK H 298K a T 298T 298(T 298)23 ???=?+?-+ -+-$$ 若令:230r m b c H H (298k)a 29829829823???=?-??-?-?$ 则: 23r m 0b C H (TK)H aT T T 23 ???=?+?++$

第6章 化学平衡热力学原理

第6章化学平衡热力学原理 1. 1000 K,101.325kPa时,反应2SO3(g) ==== 2SO2(g)+O2(g)的Kc=3.54 mol·m-3。 (1)求此反应的 Kp和Ky;(2)求反应SO3(g)==== SO2(g)+1/2O2(g)的Kp和Kc。 (答案:①K p= 29.43 kPa,K Y= 0.29,②K p= 171.6 kPa,K c= 1.88 mol1/2·m-3/2) 解:(1) 2SO3(g)==== 2SO2(g)+O2(g) K p=Kc(RT)∑νβ=3.54×8.314×1000=29.43×103 Pa=29.43kPa K y= K p·P-∑νβ=29430×(101325)-1=0.29 (2) SO3(g)==== SO2(g)+1/2O2(g) = = 2.在温度T容积V的容器中,充入1mol H2和3mol I2,设平衡后有x mol HI生成。若再加入2mol H2,则平衡后HI的物质的量为2x mol。试计算Kp值。 (答案:4) 解:已知平衡时生成HI摩尔数为x H2(g) + I2(g) ==== 2HI 反应前摩尔数 1 3 0 平衡时摩尔数 1-0.5x3-0.5x x 总摩尔数∑n=1- 0.5x +3- 0.5x + x = 4mol ∵∑νB = 0 若在上述平衡体系中再加入2摩尔H2

H2(g) + I2(g) ==== 2HI 重新平衡时摩尔数3-x 3-x 2x 总摩尔数=3-x+3-x+2x = 6 在同一温度T,, ∴,解此方程得:x =1.5,故 3.将含有50% CO、25% CO2、25% H2(均为摩尔分数)的混合气体通入1 173 K的炉子中,总压为202.65 kPa。试计算平衡气相的组成。已知反应 CO2(g)+H2(g)===H2O(g)+CO(g)在1 173 K时,Kp=1.22。 (答案:CO2:18.03%,H2:18.03%,H2O:6.97%;CO:56.97%) 解:CO2(g)+H2(g) === H2O(g)+CO(g) 反应前物质的量0.25 0.25 0 0.5 mol 平衡时0.25-x0.25-x x0.5+x ∑n1= 0.25-x + 0.25-x + x + 0.5+x =1 0.22x2-1.11x + 0.07625 = 0 ,x = 0.0697 所以H2O%=6.97% CO% = (0.5+0.0697)×100% = 56.97% CO2% = H2% = (0.25-0.0697)×100% = 18.03%

第三章化学热力学基础与化学平衡(3)

第三章化学热力学基础与化学平衡 3.1 什么是化学热力学? 3.2 化学热力学常用术语 3.3 热化学方程式和热化学定律 3.4 生成焓和键焓 3.5 熵 3.6 Gibbs自由能 3.7 化学反应的限度与化学平衡

(二) 熵的概念 为了表述体系的混乱度,人们引入了熵的概念(S, 最早由Clausius提出)。可以把熵看作是体系混乱度(或有序度)的量度,也是一种热力学状态函数。 显然,混乱度与体系中可能存在的微观状态数目(?) 有关,即有: S= f(?) 体系中可能存在的微观状态数越多,体 系的外在表现就越混乱,熵也就越大。 Boltzmann(1877)用统计热力学方 法证明S和?呈以下对数关系,即 S= k ln? 式中k是Boltzmann常数,且k= R/N A 。 Ludwig Boltzmann (1844-1906) ,奥地利物理学家 状态I 状态II 由状态I变成状态II,混乱度增加

A tiny sample of solid carbon monoxide consisting of four molecules. When there is only one way of arranging the molecules so that all the molecules point in one direction, the entropy of the solid is 0 (S = 0).CO CO CO CO

All 16 ways of arranging four CO molecules, assuming that each orientation is equally likely. The entropy of such a solid is greater than 0. (?= 2 ×2 ×2 ×2 = 16)

化学发光及生物发光的原理及其应用(精)

化学发光及生物发光的原理及其应用 第一部分概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: 依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反 应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、气相、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为:

在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。 第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ),第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物 鲁米诺的衍生物主要有异鲁米诺、 4—氨基已基—N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。 在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。

第三章化学热力学

第三章化学热力学 1.H2(g) + O2(g)?H2O(l)(298K)的Q p与Q V之差(kJ·mol-1)是………………………() (A)-3.7(B) 3.7 (C) 1.2(D)-1.2 2.已知HCN(aq)与NaOH(aq)反应,其中和热是-12.1 kJ·mol-1,H+(aq) + OH-(aq) = H2O(l),= -55.6 kJ·mol-1,则1 mol HCN 在溶液中电离的热效应(kJ·mol-1)是……………() (A)-67.7(B)-43.5 (C)43.5(D)99.1 3.已知2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g),= -843.4 kJ·mol-1 ,则该反应的Q V值是…………………………………………………………………………() (A)840.9(B)845.9 (C)-845.9(D)-840.9 4.如果体系经过一系列变化,最后又变到初始状态,则体系的………………………() (A)Q = 0W = 0 ΔU = 0 ΔH = 0(B)Q ≠ 0 W ≠ 0 ΔU = 0 ΔH = Q (C)Q = WΔU = Q - WΔH = 0(D)Q ≠WΔU = Q - WΔH = 0 5.在一定温度下:(1) C(石墨) + O2(g) = CO2(g) ΔH1 ;(2) C(金刚石) + O2(g) = CO2(g) ΔH2;(3) C(石墨) = C(金刚石) ΔH3 = 1.9 kJ·mol-1,其中ΔH1和ΔH2的关系是…………………………………………………………………() (A)ΔH1>ΔH2(B)ΔH1<ΔH2 (C)ΔH1=ΔH2(D)不能判断 6.若两个液态组分混合形成理想溶液,则混合过程的…………………………………( (A)ΔV = 0 ΔH = 0 ΔS = 0 ΔG = 0(B)ΔV > 0 ΔH < 0 ΔS < 0 ΔG > 0 (C)ΔH = 0 ΔV = 0 ΔS > 0 ΔG < 0 (D)ΔH > 0 ΔV < 0 ΔG< 0 Δ S > 0 7.某恒容绝热箱中有CH4和O2混合气体,通电火花使它们起反应(电火花的能可以不计),该变化过

化学发光仪工作原理

化学发光仪工作原理 化学发光技术是近二十年来发展非常迅速的非放射性免疫分析技术。化学发光免疫测定(Chemiluminesent Immunoassay,CLIA)是免疫测定技术继酶免技术(EIA)、放免技术(RIA)、荧光免疫技术(FIA)之后发展的一项新兴测定技术。由于这种测定具备很高的特异性和很小的干扰,因此,如同RIA、FIA等一样利用免疫反应的特异性和化学发光本身的信号特异性形成了目前所说的化学发光免疫测定(CLIA)技术。 工作原理: 化学发光免疫分析仪是通过检测患者血清从而对人体进行免疫分析 的医学检验仪器。将定量的患者血清和辣根过氧化物(HRP)加入到固相包被有抗体的白色不透明微孔板中,血清中的待测分子与辣根过氧化物酶的结合物和固相载体上的抗体特异性结合。分离洗涤未反应的游离成分。然后,加入鲁米诺Luminol发光底液,利用化学反应释放的自由能激发中间体,从基态回到激发态,能量以光子的形式释放。此时,将微孔板置入分析仪内,通过仪器内部的三维传动系统,依次由光子计数器读出各孔的光子数。样品中的待测分子浓度根据标准品建立的数学模型进行定量分析。最后,打印数据报告,以辅助临床诊断。 产品参数: 测量系统:单光子计数器(PMT) 样品形式:96孔微孔板

光谱范围:300~700nm 检测时间:0.1~100S/孔 检测速度:0.1 秒/孔时小于3分钟每96孔孔间干扰:< 1×10-6 本底噪声:0RLU—100RLU/秒 检测范围:0RLU—2.5×107RLU/秒 灵敏度:1×10-22mol/孔 重复性:CV<3% 功率:小于等于300瓦 数据接口:RS232串行口或USB通信口 工作环境:0℃—45℃,最大相对湿度85%工作电压:220V±10% 50HZ±1HZ 试剂自动加样器(为选配) 数量:0,1,2(可升级) 加样体积:20-300μL,最小步进1μL 加样速度:多于180个测试/6分钟 加样精度:20μL ±1% 50μL ±0.4% 100μL ±0.2% 200μL ±0.1% 300μL ±0.067% 加样模式:1个加样器孔孔随机任选

第三章化学热力基础

思考与习题(第三章 化学热力学基础) 一、填空题 1.应用热力学基本原理研究化学变化及其与之有关的物理变化中能量转化规律的科学,称为 。 2.热力学系统性质就是它一系列宏观性质的总和,而这些描述系统状态的性质又称为 ;在n 、V 、T 、x B 中,属于广延性质的是 ,属于强度性质的是 。 3.热力学平衡态包含 、 、 、 等四种平衡。 4. 是在无限接近平衡,且没有摩擦力条件下进行的理想过程。 5.热力学标准态又称热化学标准态,对气体而言,是指在压力为 下,处于 状态的气体纯物质。 6.隔离系统中发生的自发过程总是向熵增大的方向进行, 时达到最大值,这就是 原理,又称为 判据。 7.应用吉布斯函数判据判断过程的方向和限度的条件是, 、 且非体积功为零的 系统。 8.热力学中规定:标准状态下,稳定相态 的标准摩尔生成吉布斯函数为零。 二、选择题 1.与环境只有能量交换,而没有物质交换的系统称为( )。 A .敞开系统 B .隔离系统 C .封闭系统 D .孤立系统 2.某系统由状态A 变化到状态B ,经历了两条不同的途径,与环境交换的热和功分别为Q 1、W 1和Q 2、W 2。则下列表示正确的是( )。 A .Q 1=Q 2,W 1=W 2 B .Q 1+W 1=Q 2+W 2 C .Q 1>Q 2,W 1>W 2 D .Q 1<Q 2,W 1<W 2 3.当系统状态发生变化后,其热力学能差值一定为零是( )。 A .循环过程 B .绝热过程 C .恒容过程 D .恒压过程 4.某理想气体恒温压缩时,正确的说法是( )。 A .ΔU >0,ΔH <0 B .ΔU =0, ΔH =0 C .ΔU <0,ΔH <0 D .ΔU <0, ΔH >0 5.1mol 单原子理想气体,从300K 压缩到500K ,则其ΔH 为( )。 A .300R B .500R C .-300R D .-500R 6.298K 时,下列物质中θm f H ?=0的是( )。 A .CO 2(g ) B . I 2(g) C .Br 2(l ) D .C (s ,金刚石) 7.下列热力学第二定律的数学表达式正确的是( )。

化学发光原理

简介 上世纪70年代中期Arakawe首先报道CLIA ,发展至今已经成为一种成熟的、先进的超微量活性物质检测技术,应用范围广泛,近10年发展迅猛,是目前发展和推广应用最快的免疫分析方法,也是目前最先进的标记免疫测定技术,灵敏度和精确度比酶免法、荧光法高几个数量级,可以完全替代放射免疫分析、彻底淘汰酶联免疫分析。主要具有灵敏度高、特异性强、试剂价格低廉、试剂稳定且有效期(6-18个月)、方法稳定快速、检测范围宽、操作简单自动化程度高等优点。高灵敏度的化学发光检测技术以被广大研究人员所认可,并正逐渐替代传统的生物检测技术。 化学发光与放射免疫法是公认的肿瘤标志物和各种激素最精确和最成熟的检测方法,二者的原理、技术与方法早已成熟并被国外各大医院用于肿瘤检测和激素检测,二者的试剂与仪器均通过美国FDA认证与我国药监局的批准。但是,放射免疫分析法虽有很高的灵敏度,却存在放射性防护和同位素污染的问题,况且试剂价格昂贵只有一个有保质期,在基层医疗机构难以普及。化学放光免疫分析仪继承了放射免疫的所有优点,同时克服了放射免疫和酶联免疫各自的缺点,是临床免疫检测最理想的新方法。可以肯定的说,她将取代放射免疫和酶联免疫成为临床免疫检测最理想的新技术。[1] 2原理 化学发光免疫分析包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。 3类型 化学发光免疫分析法以标记方法的不同而分为两种: (1)化学发光标记免疫分析法; (2)酶标记、以化学发光底物作信号试剂的化学发光酶免疫分析法 化学发光标记免疫分析 化学发光标记免疫分析又称化学发光免疫分析(CL IA ) , 是用化学发光剂直接标记抗原或抗体的免疫分析方法。常用于标记的化学发光物质有吖啶酯类化合物——acridin ium ester (A E) , 是有效的发光标记物[ 3 ] , 其通过起动发光试剂(N aOH2H2O 2 ) 作用而

化学发光的原理

化学发光的原理 化学发光标记免疫分析又称化学发光免疫分析(CL IA ) ,是用化学发光剂直接 标记抗原或抗体的免疫分析方法。化学发光免疫分析仪包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪器测量光量子产额。免疫反应系 统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。化学发光免疫分析仪包含两个部分, 即免疫反应系统和化学发光分析系统。化学发光分析系统是利用化学发光物质经催化剂的催化和氧化剂的氧化, 形成一个激发态的中间体, 当这种激发态中间体回到稳定的基态时, 同时发射出光子(hM) , 利用发光信号测量仪 器测量光量子产额。免疫反应系统是将发光物质(在反应剂激发下生成激发态中间体) 直接标记在抗原(化学发光免疫分析) 或抗体(免疫化学发光分析) 上, 或酶作用于发光底物。 化学发光免疫分析仪器中核心探测器件为光电倍增管(PMT),由单光子检测并 传输至放大器,并加高压电流放大,放大器将模拟电流转化为数字电流,数字电流将发光信号由R232数据线传输给电脑并加以计算,得出临床结果。 化学发光标记免疫分析法 化学发光标记免疫分析又称化学发光免疫分析(CL IA ) ,是用化学发光剂直接 标记抗原或抗体的免疫分析方法。常用于标记的化学发光物质有吖啶酯类化合物——acridin ium ester (A E) ,是有效的发光标记物[ 3 ] , 其通过起动发光试剂(N aOH2H2O 2 ) 作用而发光, 强烈的直接发光在一秒钟内完成,为快速的闪烁发光(见图1)。吖啶酯作为标记物用于免疫分析, 其化学反应简单、快速、无须催化剂;

相关文档
最新文档