最新crispr_cas9基因编辑技术简介

基因编辑技术的方法、原理及应用

Hans Journal of Biomedicine 生物医学, 2015, 5, 32-41 Published Online July 2015 in Hans. https://www.360docs.net/doc/3014334491.html,/journal/hjbm https://www.360docs.net/doc/3014334491.html,/10.12677/hjbm.2015.53005 Methods, Principles and Application of Gene Editing Yuchang Zhu1, Xiaojiang Zheng1, Yibing Hu2* 1School of Biological Science and Technology, Hubei University for Nationalities, Enshi Hubei 2College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing Jiangsu Email: *huyb@https://www.360docs.net/doc/3014334491.html, Received: Jul. 1st, 2015; accepted: Jul. 24th, 2015; published: Jul. 27th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/3014334491.html,/licenses/by/4.0/ Abstract Fast development of gene editing technologies provides more powerful tools for gene function analysis. Now researchers can easily manipulate targeted gene with the Zinc Finger Nuclease (FZN), Transcription Activation Like Effector Nuclease (TALEN) and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR) technologies emerged in the last dec-ade. These technologies revolutionized gene functional analysis and medical treatment. In this re-view, several typical gene editing technologies were listed, and their principles, characteristics and application were discussed. Keywords Gene Editing, Methods, Principles, Application 基因编辑技术的方法、原理及应用 朱玉昌1,郑小江1,胡一兵2* 1湖北民族学院生物科学与技术学院,湖北恩施 2南京农业大学资源与环境科学学院,江苏南京 Email: *huyb@https://www.360docs.net/doc/3014334491.html, 收稿日期:2015年7月1日;录用日期:2015年7月24日;发布日期:2015年7月27日 *通讯作者。

高中生物 第一章 基因工程 第2课时 基因工程的原理和技术学案 浙科版选修3

第2课时基因工程的原理和技术 知识内容要求考情解读 基因工程的原 理和技术 b 1.简述基因工程的原理。 2.概述基因工程基本操作的几个步 骤。 一、基因工程的原理 1.基本原理 让人们感兴趣的基因(即目的基因)在宿主细胞中稳定和高效地表达。 2.变异类型 基因工程属于可遗传变异中的基因重组。 归纳总结(1)在基因工程中,不同DNA链的断裂和连接产生DNA片段的交换和重新组合,形成了新的DNA分子,在这个操作中交换了DNA片段,故属于基因重组。 (2)基因工程中的基因重组不同于减数分裂过程中的基因重组。前者属于无性生殖中的重组,并发生在不同种生物间,打破了物种间的界线,可以定向地改造生物的遗传特性,此操作均在细胞外进行。 例1科学家用纳米技术制造出一种“生物导弹”,可以携带DNA分子。把它注射入组织中,可以通过细胞的内吞作用进入细胞内,DNA被释放出来,进入到细胞核内,最终整合到细胞染色体上,成为细胞基因组的一部分,DNA整合到细胞染色体中的过程属于( ) A.基因突变B.基因重组 C.基因互换D.染色体畸变 答案 B 解析基因突变是基因内部结构的改变;染色体畸变是以染色体作为研究对象,探讨染色体结构和数目的变化;基因工程是将外源基因导入受体细胞,得到人们所需要的产物,属于基因重组。 例2下列叙述符合基因工程基本原理的是( ) A.B淋巴细胞与肿瘤细胞融合,杂交瘤细胞中含有B淋巴细胞中的抗体基因 B.将人的干扰素基因重组到质粒后导入大肠杆菌,获得能产生人干扰素的菌株 C.用紫外线照射青霉菌,使其DNA发生改变,通过筛选获得青霉素高产菌株 D.自然界中天然存在的噬菌体自行感染细菌后其DNA整合到细菌DNA上 答案 B 解析基因工程是在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基

基因操作技术

1.载体的定义? 载体:指携带外源基因进入受体细胞的运载工具,它的本质是DNA复制子。 2.载体必须具备的3个基本条件?载体的碱基对越多越好? (1)基本条件:1具有复制子,能在宿主细胞内自主复制,并携带重组DNA分子一同扩增;2具有单一限制性内切酶的酶切位点或多克隆位点;3有合适的选择标记基因,用来筛选重组DNA。 (2)载体的碱基对越少越好,能够更好的控制目的基因 3.目前研究最深,使用最多的载体有? 目前研究最深、使用最多的载体是经过改造的质粒载体和噬菌体载体。 4.按功能分,有哪些载体?克隆载体的概念?表达载体的概念? (1)按功能分,可分为克隆载体、表达载体、测序载体、转化载体、穿梭载体、多功能载体等。(2)克隆载体:携带插入外源片段的质粒或噬菌体,从而产生更多物质或蛋白质的产物。(3)表达载体:在克隆载体基本骨架的基础上增加表达元件(如启动子、PBS、终止子),使目的基因能够表达的载体。 5.选择标记有哪些?插入失活、a-互补是什么意思? (1)选择标记有插入失活和a-互补(2)插入失活:若把外源DNA片段插入到载体的选择标记基因中而使基因失活,丧失其原有的表性特征。(3)a-互补:单独存在的a及w片段均无β半乳糖苷酶活性,只有宿主细胞与克隆载体同时共表达两片段时,宿主细胞内才有β半乳糖苷酶活性,使特异性作用物变为蓝色化合物。 6.列举常用的质粒载体名称? PBR322质粒、PUC载体、TA克隆载体 7.噬菌体的溶原状态是指? 噬菌体感染大肠杆菌时,可能进入一个溶菌循环,结果导致细胞的裂解,释放出噬菌体颗粒;或者进入与宿主不同程度的稳定状态。 8.噬菌体DNA由哪三个部分组成?目的基因插入哪个部分? (1)噬菌体DNA由左臂、中臂、右臂三部分组成。(2)目的基因插入中臂(非必须区)部分。 9.超级载体的特点?有哪些超级载体? 1)超级载体的特点:运载量大(2)超级载体:YACs、BACs 10.表达载体与克隆载体有什么最大的区别? 表达载体有强大的启动子和SD序列,而克隆载体没有 11.限制性内切酶 限制性内切酶:能识别DNA分子上的特定位点并将双链DNA切断的酶 12.DNA连接酶,T4连接酶 DNA连接酶:一种能够在两条DNA链之间催化5’-P和3’-OH形成磷酸二酯键的酶T 4连接酶:连接黏性末端或平末端的酶 13.DNA聚合酶,Taq聚合酶 DNA聚合酶:催化脱氧核糖核苷三磷酸(dNTPs)聚合成DNA的酶 Taq聚合酶:从嗜热水生菌中分离纯化出来的 14.逆转录酶 逆转录酶:又称依赖于RNA的DNA聚合酶,是分子生物学中最重要的核酸酶之一。 15.核酸酶,DNase,Rnase 核酸酶:通过切割相邻两个核糖酸残基之间的磷酸二酯键,从而导致核酸分子发生水解断裂的蛋白酶

基因编辑技术最新进展

基因编辑技术最新进展 人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi 技术在应用的广泛性上还存在局限。 基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的"鼻祖",美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。 基因编辑技术的基本原理

归巢酶,ZFN,TALEN以及CRISPR/cas9四种核酸内切酶均能够特异性地识别与切割特定的DNA序列,引起DNA双链断裂(DSB)。根据其识别方式的不同可以分为:蛋白质与DNA的识别与切割,包括归巢酶,ZFN,TALEN; RNA与DNA的识别与蛋白质介导的切割,即CRISPR/cas9。在特异性方面,归巢酶具有一个较大的DNA识别结构域,此结构同时负责DNA的切割;ZFN与TALEN是由多个酶亚基组成的复合体,分别具有特异性识别DNA的能力与 DNA内切活性。在应用方面,归巢酶及ZFN需要通过人工突变的方式构造切割不同DNA序列的工程酶,LALEN则需要复杂的分子克隆达到此目的。与之不同,在CRISPR/cas9系统中,可以通过简单的sgRNA的变化达到切割不同的基因片段的目的。切割完成后,目的位点会出现双链断裂(DSB)的结果并引起生物体的主动修复。NHDJ修复以另外一条未被切割的DNA链为模板,从而保证修复结果的准确。在反复不断地断裂-修复过程中,容易在切割位点造成插入或缺失突变,这样就达到了造成基因紊乱的目的。另外,研究人员利用HDR的修复机制可以人为制造想要得到的突变结果,从而达到基因修复的效果。 基因编辑疗法简介 基因编辑在疾病治疗方面的应用模式主要为:矫正/沉默有害突变,插入保护性突变,加入治疗性基因以及敲除病毒DNA。对于突变引起的有害基因的活化,可以通过简单的沉默或敲除的方式达到治疗的目的,如亨廷顿氏舞蹈症(一种显性突变引起的家族性遗传病),但是对于突变引起的正常基因的失活,则需要通过HDR的方式对目的序列进行编辑,使其恢复到原有的健康状态,如泰萨氏病(一种隐性基因突变引起的遗传性疾病)。 基因编辑的效率 基因编辑的效率受到编辑方式,细胞类型,位点序列等多个因素的影响。总体上来讲,NHEJ要比HDR效率更高。对于我们更关心的HDR方式,主要受到4个因素的影响:1,修饰的本质,如改变的序列幅度;2,其识别特异性的干扰,如

简述转基因技术原理

转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。 1992年荷兰培育出植入了人促红细胞生成素基因的转基因牛,人促红细胞生成素能刺激红细胞生成,是治疗贫血的良药。转基因技术标志着不同种类生物的基因都能通过基因工程技术进行重组,人类可以根据自己的意愿定向地改造生物的遗传特性,创造新的生命类型。同时转基因技术在药物生产中有着重要的利用价值。转基因技术,包括外源基因的克隆、表达载体、受体细胞,以及转基因途径等,外源基因的人工合成技术、基因调控网络的人工设计发展,导致了21世纪的转基因技术将走向转基因系统生物技术2000年国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程与转基因技术。 1.转基因的细胞学原理: (1)细胞周期及MPF:细胞周期可人工分成4个时期,分别为G1期、S期、G2期和M期。细胞在正常情况下,沿着G1-S-G2-M路线运转。S期为DNA合成期,M期为有丝分裂期,M期结束到S期开始之前为G1期,S期末到有丝分裂期(M期)为G2期。有丝分裂的启动由成熟促进因子也叫M期促进因子(maturation/mitosism/meiosis promoting factor,MPF)调控,MPF 在细胞分裂中呈周期性变化即分裂后逐渐积累,到G2晚期达到高峰,由中期向后期转换时骤然消失。因此推测MPF是真核细胞M期的一个基本调节物质,能引导细胞由间期向M期转变。MPF由蛋白激酶激活,存在于所有的真核细胞中(包括减数分裂的性细胞)。但并非所有的细胞都是周期中细胞,某些细胞在一定的条件下可以脱离细胞周期进入G0期或分化为不分裂的细胞,而且G0期细胞可通过诱导重新进入周期。 (2)通过MⅡ期的卵母细胞转基因:MⅡ期的卵母细胞的MPF含量很高,可以诱导细胞核发生一系列变化包括核膜破裂(NEBD)和早熟染色体凝集(premature chromosome condensation,PCC),处于减数分裂MⅡ期的卵母细胞无核膜的时间远远长于有丝分裂M期的细胞。所以此时期的卵母细胞可作为基因导入的受体。据此1998年Anthonv等对逆转录病毒载体感染发育早期的动物胚胎方法加以改进,用逆转录病毒载体注射MⅡ期的卵母细胞,注射完毕的卵母细胞同获能后的精子共同孵育后,体外发育至囊胚,再移植到母牛体内得到了转基因小牛。1999年Anthonv等又将精子与外源基因共孵育,然后将精子头部显微注射入MⅡ期的卵母细胞,这两种方法共同之处都是利用MⅡ期的卵母细胞无核膜,外源基因易导入的 特点。 2.转基因的胚胎学原理: (1)哺乳动物转基因的胚胎学原理:精子和卵子只有发育成熟后,精卵相遇时才能完成受精过程。精子进入卵子后头尾分离,胞核出现核仁,形成核膜,头部膨大形成雄原核;同时卵子排出第二极体形成雌原核。一般来说雄原核比雌原核大。接着雌雄原核的核膜消失,雌雄原核融合。随后细胞周期性卵裂,分裂球增加到32个时形成桑葚胚,进入子宫再发育至囊胚,此前的胚胎细胞具有很强的分化能力。从哺乳动物受精卵分裂发育的规律来看,转基因操作时较合适的部位是受精卵的雄原核,精子进入卵细胞后的1小时,雄原核和雌原核还未融合,在显微镜下容易看到雄原核。多数研究者在此时期把外源基因显微注射到雄原核,通

基因编辑技术简介

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN ——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内切酶是否可以应用于基因编辑技术,韩春雨团队发表文章,利用NgAgo蛋白实现了格DNA引导的基因组编辑,但其实验结果目前依然存在争议。

《基因工程原理与技术》标准答案及评分标准.0001

精品文档 《基因工程原理与技术》标准答案及评分标准 一、名词解释(本大题共5小题,每题2分,总计10分) 限制性内切酶的Star活性:限制性内切酶的识别和酶切活性一般在一定的温度、离子强度、pH 等条件下才表现最佳切割能力和位点的专一性。如果改变反应条件就会影响酶的专一性和切割效率,称为星号(*)活性。 受体细胞:又称为宿主细胞或寄主细胞等,从试验技术上讲是能摄取外源DNA并使其稳定维持的细胞;从试验目的讲是有应用价值和理论研究价值的细胞 T-DNA是农杆菌侵染植物细胞时,从Ti质粒上切割下来转移到植物细胞的一段DNA 该DNA片段上的基因与肿瘤的形成有关。 克隆基因的表达:指储存遗传信息的基因经过一系列步骤表现出其生物功能的整个过 程。典型的基因表达是基因经过转录、翻译,产生有生物活性的蛋白质的过程。 a -互补:3 -半乳糖苷酶(B -gal)是大肠杆菌lacZ基因的产物,当培养基中的一种色素元(X-gal )被3 -gal切割后,即产生兰色。大肠杆菌的3一半乳糖苷酶由1021个氨基酸构成,只有在四聚体状态下才有活性。大肠杆菌lacZ基因由于a区域缺失,只能编码一种在氨基端截短的多肽,形成无活性的不完全酶,称为a受体;如果载体的lacZ 基因在相反方向缺失,产生在羧基端截短的多肽,这种部分3 -半乳乳糖苷酶也无活性。 但是这种蛋白质可作为a供体。受体一旦接受了供体(在体内或体外),即可恢复3 -半乳糖苷酶的活性,这种现象称为a互补. 由载体产生的a供体能够与寄主细胞产生 的无活性的a受体互作形成一种八聚体,从而恢复3 -半乳糖苷酶的活性。如果培养基 中含有X-gal的诱导物IPTG时,凡是包含有3 -半乳糖苷酶活性的细胞将转变为蓝色,反之不含有这种酶活性的细胞将保持白色。 、填空题(本大题共7小题,每空1分,总计20 分) 1、质粒按自我转移的能力可分为—接合型—质粒和—非接合型—质粒;按复制类型可分为松 弛性质粒和严紧型质粒。 2、为了防止DNA的自身环化,可用碱性磷酸酶除去双链DNA 5'—端的磷酸基团 。 3、人工感受态的大肠杆菌细胞在温度为_0匸—时吸附DNA在温度为_42乜__ 时摄人 DNA 4、仅克隆基因(DNA片段)用途而言,最简单的质粒载体也必需包括三个组成部分: 复制区:含有复制起点__、选择标记:主要是抗性基因 ________ 、__克隆位点:便于外源_ DNA的插入_。另外,一个理想的质粒载体必须具有低分子量。 5、Southern blotting 杂交能够检测外源基因是否整合进受体细胞基因组;外源基 因的转录表达需要通过—northern_杂交或_ RT-PCR_来揭示;而外源基因_____ 翻 译—水平的表达则需通过免疫学检测或Western杂交才能揭示,其使用的探针是 —蛋白质____ 。 6、外源蛋白在大肠杆菌中的表达部位有—细胞质_、_ —周质_、一细胞外 _。 7、Vir区基因的激活信号有三类,它们是—酚类化合物_、_中性糖和酸性糖_、— _ pH 值_。 简答题(本大题共7 小题,总计50 分) 1欢迎下载

基因编辑技术简介

基因编辑技术简介-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因编辑技术学习总结 CRISPR(Clustered regularly interspaced short palindromic repeats)是在细菌中发现的适应性免疫反应系统,能有效抵抗噬菌体等对细菌造成的损伤。这项机制被应用于基因编辑,是当前生物学的研究热点。 一、基因编辑技术的发展 基因编辑技术的发展可追溯到1968年I型限制性内切酶的发现,它可以识别DNA并随即剪切DNA,但由于不具有特异性而不能得到应用;1970年后具有识别特异性的Ⅱ型限制性内切酶被发现;1981年一种Ⅱ型限制性内切酶,FokI 在黄杆菌中被分离出来,成为了基因研究的重要工具。 FokI不同于一般的Ⅱ限制性内切酶(识别和剪切利用同一结构域,因而难以在保证剪切活性的条件下改变识别域),FokI的含有两个相对独立的结构域,N端为识别域,C端为剪切域;这种特性使得FokI可以通过对识别域的改造对DNA进行定点切割。在这种理论的基础上,发展出了ZFN——锌指核酸酶,TALEN——转录激活样效应蛋白核酸酶;两种技术都是通过使能够识别DNA 序列的蛋白与FokI相连实现基因的特异性切割,其不同在于锌指结构域通过约30个氨基酸对DNA三联体进行识别,而转录激活效应蛋白则是通过34个氨基酸组成的识别单体对不同核苷酸进行识别,因而TALEN的识别效率显著高于ZFN。然而它们都是利用利用蛋白进行DNA识别,并使用相同的剪切蛋白-FokI 形成二聚体进行DNA剪切。 CRISPR的不同之处在于它利用RNA进行DNA识别,其识别效率优势显而易见;此外CRISPR技术不需要对识别域和限制性内切酶剪切域进行连接,因而设计简单,编辑高效。 CRISPR技术起源于1987年日本在细菌DNA中发现“重复-居间(spacer)-重复序列”,2002年命名为成簇规律性间隔短回文重复(Clustered Regularly Interspaced Short Palindromic Repeats)并预测改基因序列与细菌获得性免疫有关,2007年其免疫功能得到证实,并最终于2012年成功运用于基因编辑。 蛋白质、RNA介导的DNA编辑技术都已取得成功。2014年,单链DNA引导的具有核酸内切酶活性的TtAgo蛋白在嗜热菌中被发现。这种DNA指导核酸内

基因工程原理与技术思考题

Chapter I Introduction 1)什么是基因基因有哪些主要特点 基因是一段可以编码具有某种生物学功能物质的核苷酸序列。 ①不同基因具有相同的物质基础.②基因是可以切割的。③基因是可以转移的。④多肽与基因之间存 在对应关系。⑤遗传密码是通用的。⑥基因可以通过复制把遗传信息传递给下一代。 2)翻译并解释下列名词 genetic engineering遗传工程 gene engineering基因工程:通过基因操作,将目的基因或DNA片段与合适的载体连接转入目标生物获得新的遗传性状的操作。 gene manipulation基因操作:对基因进行分离、分析、改造、检测、表达、重组和转移等操作的总称。 recombinant DNA technique重组DNA技术 gene cloning基因克隆:是指对基因进行分离和扩大繁殖等操作过程,其目的在于获得大量的基因拷贝,在技术上主要包括载体构建、大肠杆菌遗传转化、重组子筛选和扩大繁殖等环节。 molecular cloning分子克隆 3)什么是基因工程简述基因工程的基本过程p2 p4 4)简述基因工程研究的主要内容p5 5)简述基因工程诞生理论基础p2和技术准备有哪些p3 6)基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同为什么 否,密码子简并性 7)举例说明基因工程技术在医学、农业、工业等领域的应用。 医学:人胰岛素和疫苗 农业:抗虫BT农药 工业:工程酿酒酵母 Chapter Ⅱ The tools of trade 1)什么是限制性核酸内切酶简述其主要类型和特点 是一种核酸水解酶,主要从细菌中分离得到。类型特点p11 2)II型核酸内切酶的基本特点有哪些p12-14简述影响核酸内切酶活性的因素有哪些p14

基因编辑基本原理

1 基本介绍 基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。 而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术无可比拟的优势,技术不断改进后,更被认为能够在活细胞中最有效、最便捷地“编辑”任何基因。 2016年美国间谍首脑发布了一项公开警告,将基因编辑列为潜在的大规模杀伤性武器(WMD)之一。[2] 2 应用技术 这不是CRISPR/Cas9这项明星技术第一次得到人们的关注。在此之前,有着“豪华版”诺奖之称的“2015年度生命科学突破奖”颁发给了发现基因组编辑工具“CRISPR/Cas9”的两位美女科学家——珍妮弗·杜德娜和艾曼纽·夏邦杰。二人更是获得了2015年度化学领域的引文桂冠奖——素有诺奖“风向标”之称,曾被认为是今年诺贝尔化学奖的最有力竞争者。 那CRISPR/Cas9到底是一项什么技术,为何能够获得如此这般青睐,又何以在短短两三年时间内,发展成为生物学领域最炙手可热的研究工具之一,并有近700篇相关论文发表?它将来又会如何影响到我们的生活? CRISPR/Cas9是继“锌指核酸内切酶(ZFN)”、“类转录激活因子效应物核酸酶(TALEN)”之后出现的第三代“基因组定点编辑技术”。与前两代技术相比,其成本低、制作简便、快捷高效的优点,让它迅速风靡于世界各地的实验室,成为科研、医疗等领域的有效工具。 3 执行手段 1)基因敲除:如果想使某个基因的功能丧失,可以在这个基因上产生DSB,NHEJ修复的过程中往往会产生DNA的插入或删除(indel),造成移码突变,从而实现基因敲除。2)特异突变引入:如果想把某个特异的突变引入到基因组上,需要通过同源重组来实现,这时候要提供一个含有特异突变同源模版。正常情况下同源重组效率非常低,而在这个位点产生DSB会极大的提高重组效率,从而实现特异突变的引入。3)定点转基因:与特异突变引入的原理一样,在同源模版中间加入一个转基因,这个转基因在DSB修复过程中会被拷贝到基因组中,从而实现定点转基因。通过定点转基因的方法可以把基因插入到人的基因组AAVS1位点,这个位点是一个开放位点,支持转基因长期稳定的表达,破坏这个位点对细胞没有不良影响,因此被广泛利用。

最新基因操作原理

基因操作原理

《基因操作原理》课程教学大纲 课程编码:13019课程名称:基因操作原理 课程英文名 称: Princeples of Gene Manipulation 先修课程:生物化学、遗传 学、分子生物学 等 适用专业:生物技术生物科学 总学时:56 讲课学时 56 实验学时 0 实习学时 0 总学分:3.5 一、课程性质、地位和任务 “基因操作原理”是伴随着生物学尤其是分子生物学的飞速发展而兴起的一门新学科。重点介绍基因操作中的工具酶及其种类、活性和用途;质粒载体、λ噬菌体载体和表达载体等的基本构成、种类和用途;重组DNA导入细菌和真核细胞的方法;DNA、RNA和蛋白质的分离及检测技术;定点诱变技术; PCR技术原理及其应用;cDNA文库和基因组文库的构建;分子杂交原理和技术; DNA序列分析的原理,通过Internet进行序列分析处理以及数据的获取。本门课程开设的指导思想在于使学生在掌握一般生物学以及分子生物学知识的基础上,掌握DNA重组,转移、表达和检测等技术的基本概念和基本原理,为日后从事基因工程和分子生物学研究打下技术操作方面的理论基础。”分子克隆技术”是与本课程配套的实验课程。 二、课程基本要求 能对以基因克隆和表达为主线的基因操作自行设计技术路线,要求学生随着科学研究和技术的发展,及时掌握新的知识和方法。 本课程涉及到生物学的一些重要课程,如:普通生物学、生物化学、微生物学、遗传学和分子生物学,因此要学生选修这些课程之后,再选修本课程。如果能做到理论与实验并至,将能巩固所学知识。重点要求学生掌握在核酸水平上进行研究的基本方法。 三、教学内容及安排 绪论:基因操作的理论基础(2学时) 本章重点与难点: 掌握与基因操作有关的基本概念 0.1基因的概念 0.1.1 什么是基因 0.1.2基因与其产物的共线性及非共线性 0.1.3 基因的重叠与可变性

浅谈基因编辑技术在农作物领域中的应用与问题探究

现代农业研究 近年来,农作物转基因技术得到了快速发展,将基因编辑技术应用在农作物育种上,能得到多个新的生物品种,尤其在玉米、大豆、棉花等农作物上有着较好应用。转基因技术的应用,一定程度推动了农业领域发展,但是还存在一定安全问题,要想充分利用作物转基因技术,还要注重基因编辑农作物的管理和检测,以便能发挥基因编辑技术在研发新品种上的作用,尽可能提高农作物营养价值。 1基因编辑技术在农作物领域的应用 1.1ZFN 技术 ZFN 主要负责识别和结合特定的核苷酸序列,将ZFN 技术应用到作物育种中,可对植物基因进行重新编辑。锌指核酸酶由锌脂蛋白和核酸酶结构域组成,其中核酸酶结构域对切割点不具有识别特异性,只有在二聚体情况下可使其具备酶活性。因此,需要对任一靶位点设置一对ZFN,以便形成核酸酶二聚体,从而进行DNA 链的切割。有研究学者采用该技术,替换掉烟草中乙酰乳酸酶基因的三个核苷酸点,进而得到抗除草剂的作物[1]。另外,将ZFN 技术应用在玉米作物 中,能合成磷酸酶基因,使得玉米具有抗除草剂性能,同时还能减少玉米中的肌醇六磷酸含量,提高了作物营养品质。尽管当前ZFN 技术在多种植物中取得较好运用,但是由于锌指单元对切割点识别性不高,因此在不同基因改造上的识别差异较大,限制了该技术的广泛使用。 1.2TALEN 技术 该技术是一种基于核苷酸的编辑技术,是由核酸内切酶和DNA 结构域共同组成的,其中DNA 结构域主要是由多个氨基酸序列构成的,重复序列能识别相应的碱基。TALEN 技术运用原理为:结合靶位点两端的序列设置一对TALEN,与识别位点结合后,两个核酸内切酶结合起到形成二聚体,在切割DNA 链后可完成基因编辑。有学者将该技术运用到水稻中,破坏了细菌性病原菌效应蛋白在作物基因组上的位点,进而提高了水稻抗百叶枯病。另外,在这一技术作用下,还能破坏水稻甜菜碱乙醛脱氢酶结合位点,能起到提高水稻品质的作用。而将该转基因技术运用到小麦育种中,能得到抗性较强的小麦,相对于传统育种技术来讲有 浅谈基因编辑技术在农作物领域中的 应用与问题探究 (威海海洋职业学院 264300) 【摘要】随着ZFN 、CPISPR/Cas9等基因编辑技术的发展和运用,大量基因编辑作物生产出来,这种背景下,基因编辑作物的检测及安全成为重点研究问题。本文主要围绕基因编辑技术在农作物领域的应用、针对基因编辑农作物的安全评价监管、基因编辑农作物的检测等方面展开讨论,具体分析了基因编辑技术在农业领域的应用现状,并以保障农作物食用安全为主,加强基因编辑作物有关问题的研究,促进农业领域良好发展。【关键词】基因编辑技术;农作物领域;应用分析 邹丹丹 Discussion on the Application and the Problem of the Gene Editing Technology in the Field of Crop Zou Dandan [Abstract]With the development and application of gene editing technology such as ZFN,CPISPR/Cas9,a large number of gene editing crops have been produced.Under this background,the detection and safe?ty of gene editing crops has become a key research issue.In this paper,the application of gene editing technology in agriculture was analyzed in detail,and the main purpose was to ensure the food safety of crops,to strengthen the research on related problems of gene editing crops,and to promote the good de?velopment of agricultural field. [Keywords]gene editing technology;crop field;application analysis (Weihai Marine V ocational College 264300) 农业经济

基因操作原理

(这份材料根据老师给的PDF课件整理,仅供参考) 第一章 编码产生一种有生物学功能产物---蛋白质(多肽)或RNA所需信息的一段DNA称基因。Include: 1.编码蛋白质肽链或RNA所必需的核苷酸序列(open reading frame) 2.保证转录所必须的调控序列(S-D) 3. 5’-和3’-非翻译序列(leader and trailer) 4.内含子(intron) Recombinant DNA(重组DNA):是将一种生物体(供体)的基因与载体在体外进行拼重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。 这项技术可概括为∶分、切、连、转、选。 两个最基本的特点是分子水平上的操作和细胞水平上的表达。 基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 Genetic Engineering(基因工程)重组DNA技术与基因工程的基本用途分离、扩增、鉴定、研究、整理生物信息资源大规模生产生物活性物质设计、构建生物的新性状甚至新物种大规模生产生物活性物质工程细胞。 Development of gene engineering: 第一代基因工程蛋白多肽基因的高效表达经典基因工程 第二代基因工程蛋白编码基因的定向诱变蛋白质工程 第三代基因工程代谢信息途径的修饰重构途径工程 第四代基因工程基因组或染色体的转移基因组工程 第二章 目的基因的获得(DNA的准备) 1.从基因组直接获得 2.RT-PCR 方法获得 3.人工合成法 DNA抽提的基本原理 ?1 获得细胞,裂解细胞 三种破壁、膜的方法比较:非离子型去污剂法较温和.适用于抽提10kb左右的质粒;而煮沸法与碱性SDS法相对较剧烈.只能抽提小于10kb的质粒,当然在熟练方法的前提下,碱性SDS法也能抽提较大的质粒。非离子型去污剂的变性能力较弱,常用的TritonX—100等,常用的离子型去污别是SDS。在选择去污剂类型对应根据变性剧烈程度的要求而定。 2 分离(质粒DNA与染色体DNA的分离) 3 纯化(去除RNA) ?RNA与DNA相比在化学及生化性质上有差别,因此可选用RNA酶处理.以保留DNA分子而专门分解RNA。 3 纯化(去除蛋白) ?常用的去除蛋白质的试剂有酚、酚/氯仿、氯仿/异戊醇。 PCR的基本原理:变性、复性、半保留复制 PCR三步曲:1. DNA热变性90~97℃ 2. 引物退火45~55℃ 3. 引物延伸72℃左右

基因编辑技术进展

基因编辑技术最新进展 ? 人体内已命名的基因共有25000多条,目前已知一部分基因(3000)的突变会引起各类疾病。对于此类疾病的治疗,最本质的手段是通过一些方法将突变后的遗传物质矫正回原来的状态。这类方法被称为遗传疗法(genetic therapies)。目前最广泛的遗传疗法手段为:1. 以病毒载体感染方式引导的源基因导入;2. 以RNA干扰方式引导的目的基因表达下调。这些手段在治疗严重复合型免疫缺陷疾病(SCID)以及Wiskott-Aldrich综合征方面获得了成功。尽管如此,RNAi 技术在应用的广泛性上还存在局限。 ? 基因编辑技术(genome editing technologies)是针对DNA本身进行的操作手段。最近应用型基因编辑领域的"鼻祖",美国麻省理工学院张锋教授等人发表在《Nature Medicine》杂志上的一篇综述详细介绍了这些技术的原理以及在临床上的应用前景。 ? 基因编辑技术的基本原理

? 归巢酶,ZFN,TALEN以及CRISPR/cas9四种核酸内切酶均能够特异性地识别与切割特定的DNA序列,引起DNA双链断裂(DSB)。根据其识别方式的不同可以分为:蛋白质与DNA的识别与切割,包括归巢酶,ZFN,TALEN; RNA与DNA的识别与蛋白质介导的切割,即CRISPR/cas9。在特异性方面,归巢酶具有一个较大的DNA识别结构域,此结构同时负责DNA的切割;ZFN与TALEN是由多个酶亚基组成的复合体,分别具有特异性识别DNA的能力与 DNA内切活性。在应用方面,归巢酶及ZFN需要通过人工突变的方式构造切割不同DNA序列的工程酶,LALEN则需要复杂的分子克隆达到此目的。与之不同,在CRISPR/cas9系统中,可以通过简单的sgRNA的变化达到切割不同的基因片段的目的。切割完成后,目的位点会出现双链断裂(DSB)的结果并引起生物体的主动修复。NHDJ修复以另外一条未被切割的DNA链为模板,从而保证修复结果的准确。在反复不断地断裂-修复过程中,容易在切割位点造成插入或缺失突变,这样就达到了造成基因紊乱的目的。另外,研究人员利用HDR的修复机制可以人为制造想要得到的突变结果,从而达到基因修复的效果。 ? 基因编辑疗法简介 ? 基因编辑在疾病治疗方面的应用模式主要为:矫正/沉默有害突变,插入保护性突变,加入治疗性基因以及敲除病毒DNA。对于突变引起的有害基因的活化,可以通过简单的沉默或敲除的方式达到治疗的目的,如亨廷顿氏舞蹈症(一种显性突变引起的家族性遗传病),但是对于突变引起的正常基因的失活,则需要通过HDR的方式对目的序列进行编辑,使其恢复到原有的健康状态,如泰萨氏病(一种隐性基因突变引起的遗传性疾病)。 ? 基因编辑的效率 ? 基因编辑的效率受到编辑方式,细胞类型,位点序列等多个因素的影响。总体上来讲,NHEJ要比HDR效率更高。对于我们更关心的HDR方式,主要受到4个因

基因操作原理名词解释

第一章 1. Gene manipulation 基因操作。将在细胞外产生的核酸(物质)分子插入到病毒,质粒或其它载体系统中,再整合到特定的宿主中,从而形成一种新的可连续繁殖的有机体。 2. Interrupted genes 间断基因。序列中间插入有与氨基酸编码无关的DNA 间隔区,使一个基因分隔成不连续的若干区段。我们称这种编码序列不连续的基因为间断基因。 3 .Promotor 启动子。DNA 分子可以与RNA 聚合酶特异结合的部位,也就是使转录开始的部位。4. Subcloning 亚克隆。当初始克隆中的外源DNA 片段较长,含有许多目的基因以外的DNA 片段时,在诸如表达、序列分析和突变等操作中不便进行,将目的基因所对应的一小段DNA 找出来,这个过程叫“亚克隆”。 第二章 1.Restriction and modification 限制和修饰。宿主特异性地降解外源遗传物质(DNA)的现象称为限制。外源遗传物质通过甲基化等作用避免宿主的限制作用称为修饰。 2. Matched ends 匹配末端。识别位点为回文对称结构的序列,经限制酶切割后,产生的相同的,互补的末端称为匹配粘端,亦即粘性末端(cohesive end)。 3. Blunt ends 平末端。在回文对称轴上同时切割DNA 的两条链,产生的没有碱基突出的末端称为平末端。 4. Isoschizomer :同裂酶。识别相同序列的限制酶称同裂酶,但它们的切割位点可能不同。 5. Isocaudiners :同尾酶。来源不同、识别序列不同,?但产生相同粘性末端的酶。 6.Site preferences :位点偏爱。某些限制酶对同一介质中的不同位置的同一个识别序列表现出不同的切割效率的现象称为位点偏爱。 7.Star activity 星星活性。在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特殊性称星星活性。 8. Nicking enzyme 切口酶。有些限制酶只切割双链DNA 中的一条链,产生单链缺口,这种酶称为切口酶。 9. Klenow fragment Klenow 片段。Klenow DNA 聚合酶是E.coli DNA polymerase 经蛋白酶(枯草杆菌蛋白酶)裂解而从全酶中除去5'--3' 外切活性的多肽大片段,而聚合活性和3'--5' 外切活性不受影响。 10 .Sequenase 测序酶。是改造的T7 噬菌体DNA 聚合酶,切除了99% 以上的3'--5' 外切活性。Sequenase Version2 切除了所有的3'--5' 外切活性,用于双脱氧链终止法对长片段进行测序。 11.Reverse transcriptase 反转录酶。即依赖于RNA 的DNA 聚合酶,它有5'--3' 合成DNA 活性,但是无3'--5' 外切活性。它来自AMV (禽成髓细胞瘤病毒)或Mo-MLV (Moloney 鼠白血病病毒,又称M-MuLV)。 12. Terminal transferase 末端转移酶。来源于小牛胸腺,是存在于前淋巴细胞及分化早期的类淋巴样细胞内的一种不寻常的DNA 聚合酶,在二价阳离子存在下,末端转移酶催化dNTP 加于DNA 分子的3' 羟基端。若dNTP 为T 或C ,此二价阳离子首选钴离子;若dNTP 为A 或G,此二价阳离子首选镁离子。 13. Ligase 连接酶。催化DNA 5' 磷酸基与3' 羟基之间形成磷酸二酯键,将两段核酸连接起来的酶。 14. T4 polynucleotide kinase T4 多核苷酸激酶。催化ATP 的γ-磷酸基转移至DNA 或RNA 的5' 末端。 15. Alkaline phosphatase 碱性磷酸酶。主要来源于牛小肠(Calf intestinal alkaline phosphatase),简称CIP 或CIAP,也有来自细菌(BAP)。催化除去DNA 或RNA 5' 磷酸。 16. S1 nuclease Sl 核酸酶。来源于米曲霉(Aspergillus oryzae),可降解单链DNA 或RNA ,产生带5' 磷酸的单核苷酸或寡核苷酸双链;对dsDNA ,dsRNA ,DNA:RNA 杂交体不敏感。

相关文档
最新文档