1脱硫系统设备选型计算指导意见

1脱硫系统设备选型计算指导意见
1脱硫系统设备选型计算指导意见

脱硫设计计算

4.2废气处理工艺选择 综上比较可知,几种主要的湿法除硫的比较可知:双碱法不仅脱硫效率高(>95%),吸收剂利用率高(>90%)、能适应高浓度SO2烟气条件、钙硫比低(一般<1.05)、采用的吸收剂价廉易得、管理方便、能耗低、运行成本低,不产生二次污染,所以本次设计采用双碱法进行脱硫。 4.2.2 工艺说明 脱硫工艺原理: 干燥塔废气经洗涤塔进行降温后,进入旋风除尘器除尘,然后进入双碱法脱硫除尘系统,双碱法脱硫除尘系统采用NaOH作为脱硫吸收剂,将脱硫剂经泵打入脱硫塔与烟气充分接触,使烟气中的二氧化硫与脱硫剂中的NaOH进行反应生成Na2SO3,从脱硫塔排出的脱硫废水主要成分是Na2SO3溶液,Na2SO3溶液与石灰反应,生成CaSO3和NaOH,CaSO3经过氧化,生成CaSO4沉渣,经过沉淀池沉淀,沉淀池内清液送入上清池,沉渣经板框压滤机进一步浓缩、脱水后制成泥饼送至煤灰场,滤液回收至上清池,返回到脱硫塔/收集池重新利用,脱硫效率可达95%以上。 工艺过程分为三个部分: 1石灰熟化工艺: 生石灰干粉由罐车直接运送到厂内,送入粉仓。在粉仓下部经给料机直接供熟化池。为便于粉仓内的生石灰粉给料通畅,在粉仓底部设有气化风装置和螺旋输送机,均匀地将生石灰送入熟化池内,同时按一定比例加水并搅拌配制成一定浓度的Ca(OH)2浆液,送入置换池。 配制浆液和溶液量通过浓度计检测。 2吸收、再生工艺: 脱硫塔内循环池中的NaOH溶液经过循环泵,从脱硫塔的上部喷下,以雾状液滴与烟气中的SO2充分反应,生成Na2SO3溶液,在塔内循环,当PH值降低到一定程度时,将循环液打入收集池,在置换池内与Ca(OH)2反应,生成CaSO3浆液。将浆液送入氧化池氧化,生成CaSO4沉渣,送入沉淀池。向置换池中加Ca(OH)2和NaOH都是通过PH 计测定PH值后加入碱液,脱硫工艺要求的PH值为9~11。 3废液处理系统:

湿式氧化镁法烟气脱硫中吸收塔系统的设计与应用

通道的能力。 3结语在煤炭行业所运用的多级安全数据库系统,其经典的BLP 模型的“向上写”违反了数据库的完整性,而随之带来的是会产生隐通道问题。事务间的提交和回退依赖也会产生隐通道。然后,通过分析隐通 道的产生的原因,提出了利用并发控制上锁机制进行隐蔽通信的方式,通过提出算法,来消除用户通过并发控制上锁机制泄漏信息的途径。算法中当高安全级事务将数据读入私有区后,低安全级事务更新数据后,系统将通知用户,由用户自行处理。文中对于事务并发执行时事务间的安全问题,只讨论了隐通道问题这个方面,而如何去提高避免 隐通道算法的性能将是未来研究的主力方向。 参考文献: [1]谷千军,王越.BLP 模型的安全性分析与研究[J].计算机工程,2006 (22):157-158.[2]肖卫军, 卢正鼎,洪帆.安全数据库系统中的事务[J].小型微型计算机系统,2004(4):591-594.[3]朱虹,冯玉才.避免隐通道的并发控制机制[J].小型微型计算机系统,2000(8):844-846. (责任编辑赵勤)收稿日期:2012-08-18;修订日期:2012-10-22 基金项目:河北省教育厅自然科学计划项目(Z2012198) 作者简介:闫志谦(1973-),男,河北晋州人,副教授,硕士,研究方向:化学工程。0前言 锅炉烟气中的SO 2与氧化镁反应后生成的亚硫酸镁,再氧化反应生成为硫酸镁(MgSO 4)溶液。氧化镁湿法烟气脱硫,具有脱硫效率高,操作简单,不易结垢等优点[1],以氧化镁(MgO)作为脱硫剂,可有效防止沉淀、积垢、堵塞、结块;运行可靠性高,电耗低,取得了较高的脱硫效率。1吸收塔装置设计脱硫吸收塔选用逆流喷淋结构,塔身为圆柱体,底部为锥形的循环浆液池。吸收塔的上部为喷淋洗涤区,共布置了3层喷嘴。氢氧化镁/亚硫酸镁/硫酸镁浆液通过喷嘴向吸收塔下方成雾罩形状喷射,形成液雾高度叠加的喷淋区,含有SO 2的烟气与浆液中悬浮的氧化镁微粒发生化学反应而被洗涤吸收。为了避免烟气和喷淋浆液在接触区形成沉淀,采用 工业水定期喷水,清洗吸收塔入口部分的内壁。吸收塔下部的浆池与吸收塔体为一体的结构。吸收塔内所有部件能承受最大入口气流及最高进口烟气温度的冲击。 吸收塔体为碳钢加防腐衬里的结构,在烟气进口处采取预冷却喷水的防高温措施。 1个吸收塔共配有3台离心式浆液循环泵,整个脱硫区配有罗茨型强制氧化风机,吸收塔选用的材料适合工艺过程的特性,并且能承受烟气飞灰和脱硫工艺固体悬浮物的磨损。所有部件包括塔体和内部结构设计上都考虑了腐蚀度。吸收塔设计成气密性结构,防止液体泄漏。为保证壳体结构的完整性,使用焊接连接,法兰和螺栓连接仅在必要时使用。塔体上的入孔、通道、连接管道等需要在壳体穿孔的地方进行密封,防止泄漏。 第32卷第2期2013年2期煤炭技术Coal Technology Vol.32,No.02February,2013湿式氧化镁法烟气脱硫中吸收塔系统的设计与应用 闫志谦,程艳坤,张 滨,霍鹏(河北化工医药职业技术学院化工与环境工程系,石家庄050026)摘要:介绍了湿法氧化镁烟气脱硫技术应用的原理及工艺,对吸收氧化反应所在的吸收塔系统进行了装置的设 计与应用,并提供理论依据和参考影响吸收因素。 关键词:氧化镁;烟气脱硫;吸收塔 中图分类号:X701.3文献标识码:A 文章编号:1008-8725(2013)02-0181-03 Application of Absorbing Tower System in Wet Process of Magnesium Flue Gas Desulfurization YAN Zhi-qian ,CHENG Yan-kun ,ZHANG Bin ,HUO Peng (Department of Chemical and Environmental Engineering,Hebei Chemical and Pharmaceutical Vocational Technology College,Shijiazhuang 050026,China ) Abstract:Introduced the application of the principle of wet magnesia flue gas desulphurization technology and process,this paper absorption oxidation reaction in which the absorber tower system design and application of the device,and provides a theoretical basis and reference. Key words:magnesium oxide;flue gas desulfurization;absorbing tower system !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

脱硫工艺参数

1×200MW 石灰石/石膏湿法脱硫工艺参数设计 一. 课程设计的目的 通过课题设计进一步巩固本课程所学的内容,培养学生运用所学理论知识进行湿法烟气脱硫设计的初步能力,使所学的知识系统化。通过本次设计,应了解设计的内容、方法及步骤,使学生具有调研技术资料,自行确定设计方案,进行设计计算,并绘制设备结构图、编写设计说明书的能力。 二.课程设计课题的内容与要求 (1)根据给定的设计任务及操作条件,查阅相关资料,确定自选参数,进行工艺参数的计算; (2)根据设计指导书及相关资料,计算系统工艺参数及主要设备设备尺寸; (3)编写设计说明书; (4)对设计结果进行分析。 1.已知参数: (1)校核煤质: %64=ar C ,%5=ar H ,%6.6=ar O ,%1=ar N ,%4.0=ar S ,%8=ar W ,%16=ar A ,%15=ar V (2)环境温度:-1℃ (3)除尘器出口排烟温度:135℃ (4)烟气密度(标准状态):1.34)/(3m kg (5)空气过剩系数:3.1=α (6)排烟中飞灰占煤中不可燃组分的比例:16% (7)烟气在锅炉出口前阻力:800Pa (8)当地大气压力:97.86kPa (9)空气含水(标准状态下):0.01293)/(3m kg (10)基准氧含量:6% (11)按锅炉大气污染物排放标准(GB13271-2011)中二类区标准执行 烟尘浓度排放标准(标准状态下):30)/(3m mg 二氧化硫排放标准(标准状态下):200)/(3m mg

2.设计内容: (1)燃煤锅炉排烟量及烟尘和二氧化硫的浓度计算。 (2)采用石灰石石膏湿法烟气脱硫。 (3)计算石灰石消耗量,石膏产量,并进行水平衡的计算。 (4)选择合适的液气比和空塔气速计算吸收塔塔径塔高并对喷淋系统,除雾器,浆液箱,石膏脱水系统进行计算。 (5)风机及电机的选择设计:根据脱硫系统所处理的烟气量,烟气温度,系统总阻力等计算选择风机种类,型号及电动机的种类,型号和功率。 (6)编写设计说明书:设计说明书按设计程序编写,包括方案的确定,设计计算,设备选择和有关设计的简图等内容。课程设计说明书包括封面,目录,前言,正文,小结及参考文献等部分,文字应简明通顺,内容正确完整,书写工整,装订成册。 (7)图纸要求:脱硫系统图一张(A3)。系统图应按比例绘制,标出设备管件编号,并附明细表。 前言 我国的能源构成以煤炭为主,其消费量占一次能源总消费量的70%左右,这种局面在今后相当长的时间内不会改变。火电厂以煤作为主要燃料进行发电,煤 直接燃烧开释出大量SO 2,造成大气环境污染,且随着装机容量的递增,SO 2 的排 放量也在不断增加,加大火电厂SO 2的控制力度就显得非常紧迫和必要。SO 2 的控 制途径有三个:燃烧前脱硫、燃烧中脱硫、燃烧后脱硫即烟气脱硫(FGD),目前 烟气脱硫被以为是控制SO 2 最行之有效的途径。目前国内外的烟气脱硫方法种类繁多,主要分为干法(或半干法)和湿法两大类。湿法脱硫工艺绝大多数采用碱性浆液或溶液作为吸收剂,技术比较成熟,是目前使用最广泛的脱硫技术,根据吸收剂种类的不同又可分为石灰石/石膏法(钙法)、氨法、海水法等。其中钙法因其成熟的工艺技术,在世界脱硫市场上占有的份额超过80%。 截至2011年底,我国脱硫装机超过6亿千瓦,其中85%以上为湿法烟气脱硫,多存系统稳定性差,脱硫效率波动较大等问题。火电厂大气污染物排放标准 GB13223-2011将执行200mg/m3的SO 2 排放浓度限值,且新建脱硫装置将不允许设置旁路,对脱硫装置性能与可靠性要求极高。 工艺介绍

燃煤锅炉烟气除尘脱硫系统设计方案

燃煤锅炉烟气除尘脱硫系统设计方案 一、设计题目 燃煤锅炉烟气除尘系统设计。 二、课程设计的目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD绘制工程图、使用技术资料、编写设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4-13型,1台 排烟温度: 160℃ 烟气密度(标准状态下):1.34kg/m3 空气过剩系数: =1.4 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前的阻力:800 Pa 当地大气压力:97.86 Kpa

冬季室外温度:-5℃ 空气中含水(排标准状态下):10g/kg 烟气其它性质按近似空气计算 燃料的工业分析值: Y C =85% Y H = 4% Y S = 1% Y O =5% Y N = 1% Y W = 6% Y A = 15% Y V =13% 烟尘和SO 2排放标准按《锅炉大气污染物排放标准(GB13271—2001)》执行: 烟尘浓度排放(标准标准状态下):200mg/m 3; 二氧化硫排放标准(标准标准状态下):900 mg/m 3。 四、计划安排 1、资料查询和方案选定1天 2、设计计算2天 3、说明书编制及绘图2天 五、设计内容和要求 1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算 2、净化系统设计方案的分析确定 3、除尘器的选择和比较

确定除尘器的类型、型号及规格,并确定其主要运行参数。 4、管布置及计算:确定各装置的位置及管道布置 并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力 5、风机及电机的选择设计 根据净化系统所处理烟气量、烟气温度、系统阻力等计算选择风机种类、型号及电动机的种类和功率。 六、成果 1、设计说明书 设计说明书按设计程序编写,包括方案的确定、设计计算、设备选择和有关设计的简图(工艺管网简图和设备外形图)等内容。课程设计说明书应有封面、目录、前言、正文、小结及参考文献等内容,书写工整或打印输出,装订成册。 2、图纸 A、除尘器图一张(2号图)。系统图应按比例绘制、标出设备部件编号,并附明细表。 B、除尘系统平面布置图、剖面布置图各一张(1号或2号),可以有局部放大图(3号)。布置图应按比例绘制。锅炉房及锅炉的绘制可以简化,但能表明建筑的外形和主要结构形式。在图上中应有指北针方位标志。

脱硫塔设计

目录 1.设计任务书 (2) 1.1 设计题目 (2) 1.2 设计内容 (2) 1.3 主要设计参数 (3) 2.脱硫工艺的选择与工艺流程简介 (3) 2.1 脱硫工艺的选择 (3) 2.2 工艺流程简介 (4) 3. 工艺流程中主要发生的化学反应 (5) 4. 脱硫塔设计 (6) 4.1 物料衡算 (6) 4.1.1 入塔的煤气质量 (6) 4.1.2 出塔煤气的变化量 (8) 4.1.3 m3的计算 (12) 4.1.4 m4的计算 (12) 4.1.5 脱硫塔的液气比 (12) 4.2 热量衡算 (12) 4.2.1 入塔脱硫煤气带入的热量 (12) 4.2.2 出脱硫塔的煤气带走的热量 (13) 4.2.3 脱硫过程中发生的熔解热和反应热 (14) 4.2.4 总的热量衡算 (15) 4.3 设备计算 (15) 4.3.1 选择填料 (15) 4.3.2 塔径的计算 (16) 4.3.3 传质面积和填料高度 (17) 5.脱硫塔工艺设计结果表 (18) 5.1 总表 (18) 5.2 煤气入塔物质汇总表 (19) 5.3 出塔物质汇总表 (20) 5.4 其他数据 (20) 6.设计小结 (20) 7.参考文献 (23)

1. 设计任务书 1.1 设计题目 干煤气量为 40000Nm 3/h 的炼焦煤气的脱硫的工艺计算。 入口煤气 出口煤气 温度/℃ 34 36 压力(表压)/Pa 17000 15000 煤气中S H 2含量/g/Nm 3 99.5 1.0 入口煤气中杂质的含量: 组分 焦油 苯 S H 2 HCN 3NH 萘 水汽 含量/g/Nm 3 微量 28.45 5.99 1.57 8.37 0.4 23.97 剩余氨水:12470Kg/h ,t=75℃,P=0.45MPa ,氨的质量分数10%。 1.2 设计内容 (1)脱硫工艺的选择与工艺流程介绍; (2)脱硫塔的物料衡算; (3)脱硫塔的工艺尺寸计算; 3NH S H 2 2CO HCN 挥发氨 24Kg/h 97%3NH 0.18g/L 1.3g/L 0.04g/L 固定氨 18Kg/h 90%3NH

脱硫吸收塔SO2吸收系统

共享知识分享快乐 第三章SO 2吸收系统 3. 1、系统简介 SO2吸收系统是整个脱硫装置的核心系统,对烟气除去SO等有害成分的过程主要在这个系统完 成。本系统主要是由吸收塔、浆液循环泵、除雾器、吸收塔搅拌器及氧化风机等组成。石灰石- 石膏湿法烟气脱硫是由物理吸收和化学吸收两个过程组成。在物理吸收过程中SQ溶解于吸收剂 中,只要气相中被吸收气体的分压大于液相呈平衡时该气体分压时,吸收过程就会进行,吸收过程取决于气-液平衡,满足亨利定律。由于物理吸收过程的推动力很小,所以吸收速率较低。 而化学吸收过程使被吸收的气体组分发生化学反应从而有效地降低了溶液表面上被吸收气体的 分压,增加了吸收过程的推动力,吸收速率较快。FG[反应速率取决于四个速率控制步骤,即SQ 的吸收、HSO氧化、石灰石的溶解和石膏的结晶。 3.2、吸收反应原理 3.2.1、物理过程原理 SQ吸收是从气相传递到液相的相间传质过程。对于吸收机理以双膜理论模型的应用较广, 双膜理论模型如图所示。图中p表示SQ在气相主体中的分压,p表示在界面上的分压,c和e 则分别表示SC2组分在液相主体及界面上的浓度。把吸收过程简化为通过气膜和液膜的分子扩 散,通过两层膜的分子扩散阻力就是吸收过程的总阻力。 气体吸收质在单位时间内通过单位面积界面而被吸收剂吸收的量称为吸收速率。根据双膜 理论,在稳定吸收操作中,从气相传递到界面吸收质的通量等于从界面传递到液相主体吸收质 的通量。吸收传质速率方程一般表达式为:吸收速率=吸收推动力x吸收系数,或者吸收速率=吸收推动力/吸收阻力。吸收系数和吸收阻力互为倒数。

共享知识分享快乐 3.2.2 、化学过程原理 321.1 、SQ、SQ和HCI 的吸收: 烟气中的SQ和SQ与浆液液滴中的水发生如下反应: —+ SQ + H2Q T HSQ3 + H SQ3 + H2Q T H 2SQ HCI 遇到液滴中的水即可迅速被水吸收而形成盐酸。 3.2.1.2 、与石灰石反应 浆液水相中的石灰石首先发生溶解,吸收塔浆池中石灰石溶解过程如下 CaCQ3 + H 2Q t Ca2+ + HCQ3—+ QH— 水中石灰石的溶解是一个缓慢的过程,其过程取决于以下几个因素: a. 固态石灰石颗粒的颗粒尺寸。颗粒细小的石灰石粉要比颗粒粗大的石灰石粉溶解要快。 b. 石灰石的反应率。活性石灰石的溶解率要比没有活性的石灰石溶解率要快。 c.吸收塔浆液的pH值。pH值越低,石灰石溶解得越快。 高的pH值对酸性气体的脱除效率有利,但是不利于石灰石的溶解。 的脱除效率,但是有利于石灰石的溶解。 SQ2、SQ3、HCI 等与石灰石浆液发生以下离子反应: 2+ — Ca2+ + HCQ3—+ QH—+ HSQ3—+ + 2H + 2+ — t Ca 2+ + HSQ + CQ 2 f +2H2Q 氧化反应:2HSQ3—+ Q2 t2SQ42—+ 2H + Ca2+ + HCQ3—+ QH —+ SQ42— + 2H +t Ca 2+ + SQ 42— + CQ2 f +2H2Q Ca2+ + HCQ3—+ QH—+ 2H+ + 2CI —t Ca 2+ + 2CI —+ CQ2f+ 2H 2Q 经验显示,吸收剂浆液的pH值控制在5.5?6.0之间,pH值为5.6时最佳,此时酸性气 体的脱除率和石灰石的溶解速度都很高。吸收塔浆液池中的pH值是通过调节石灰石浆液的投放 量来控制的,而加入塔内的新制备石灰石浆液的量取决于预计的锅炉负荷、SQ含量以及实际的吸收塔浆液的pH值。 3.2.1.3 、氧化反应通入吸收塔浆液池内的氧气将亚硫酸氢根氧化成硫酸根: —2—+ 2HSQ3—+ Q2 t 2SQ42—+ 2H + 3.2.1.4 、石膏形成: Ca2+ + SQ 42—+ 2H 2Q t CaSQ4 ? 2H2Q 石膏的结晶主要发生在吸收塔浆液池内,浆液在吸收塔内的停留时间、通入空气的体积和方式 低的pH值不利于酸性气体

某燃煤锅炉房烟气净化系统设计

前言 在目前,大气污染已经变成了一个全球性的问题,主要有温室效应、臭氧层破坏和酸雨。而大气污染可以说主要是人类活动造成的,大气污染对人体的舒适、健康的危害包括对人体的正常生活和生理的影响。目前,大气污染已经直接影响到人们的身体健康。 随着我国经济的高速发展,我国的二氧化硫污染越来越严重,必须通过有效的措施来进行处理,以免污染空气,影响人们的健康生活。 一、题目 某燃煤锅炉房烟气净化系统设计 二、目的 通过课程设计进一步消化和巩固本课程所学的内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、查阅有关设计手册、编写设计说明书的能力。 三、原始资料 锅炉型号:SZL6-1.25-AII型,共2台(每台蒸发量为6t/h) 所在地区:二类区。2006年新建。 锅炉热效率:75%,所用的煤低位热值:20939kJ/kg,水的蒸发热:2570.8kJ/kg 锅炉出口烟气温度:160℃ 烟气密度:(标准状态下)1.34kg/m3 空气过剩系数:α=1.3 排烟中飞灰占煤中不可燃成分的比例:15% 烟气在锅炉出口前阻力:800Pa 当地大气压力:98kPa 平均室外空气温度:15℃ 空气含水率(标准状态下)按0.01293kg/m3 烟气的其它性质按空气计算

煤的工业分析: C :65% H :4% S :1% O :4% N :1% W :7% A :18% 净化系统布置场地如图1所示的锅炉房北侧20m 以内。图2为锅炉立面图。 图1 锅炉房平面布置图 图2 锅炉房立面图 四、 设计计算 (一)、用煤量计算 每台锅炉的所需热量为:Q =蒸发量×水的蒸发热 =6×103×2570.8=1.54×107kJ/h 所需的煤量为:热 η?n H Q =%75209391054.17??=982.2kg/h H n ——煤的低位热值 η 热 ——锅炉的热效率 (二)、烟气量、烟尘和二氧化硫浓度的计算 以1kg 煤燃烧为基础,则 重量(g ) 摩尔数(mol ) 产物摩尔数(mol ) 需氧数(mol) C 650 54.167 CO 2:54.167 54.167 H 40 40 H 2O: 20 10

石灰石-石膏湿法脱硫系统的设计计算解析

石灰石 - 石膏湿法脱硫系统 设计 (内部资料) 编制: x xxxx 环境保护有限公司 2014年 8 月 1.石灰石 - 石膏法主要特点 ( 1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达 95%以上。(2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。

(3)对燃料变化的适应范围宽,煤种适应性强。无论是含硫量大于 3%的高硫燃料,还是含 硫量小于 1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。(5)脱硫副产物便于综合利用。副产物石膏的纯度可达到 90%,是很好的建材原料。 (6)技术进步快。近年来国外对石灰石 - 石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2.反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触 ,循环浆液吸收大部分 SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→ H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3- +2H2O→ CaSO3·2H2O+H+(结晶) H+ +HCO3-→ H2CO3(中和) H2CO3→ CO 2+H2O 总反应式: SO2+ CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分 HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的 HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→ CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) 4)其他污染物

某燃煤采暖锅炉烟气除尘系统设计

目录 第一章总论 (2) 1.1 前言 2 1.2 设计任务书 (2) 1.2.1 设计题目 (2) 1.2.2 设计目的 (3) 1.2.3 设计原始资料 (3) 1.2.4 设计内容和要求 (4) 1.3 设计依据和原则 (4) 第二章除尘器系统 (5) 2.1 方案确定与认证 (5) 2.2 工艺流程描述 (5) 第三章主要及辅助设备设计与选型 (5) 3.1 烟气量、烟尘和二氧化硫浓度的计算 (5) 3.1.1 标准状态下理论空气量 (5) 3.1.2 标准状态下理论烟气量 (6) 3.1.3 标准状态下实际烟气量 (6) 3.1.4 标准状态下烟气含尘浓度 (7) 3.1.5 标准状态下烟气中二氧化硫浓度的计算 (7) 3.2 除尘器的选择 (7) 3.3 除尘器、风机、烟囱的位置及管道布置 (9) 3.3.1 各装置及管道布置的原则 (9) 3.3.2 管径的确定..................................... 错误!未定义书签。 3.4 烟囱的设计 (10) 3.4.1 烟囱高度的确定 (10) 3.4.2 烟囱的抽力..................................... 错误!未定义书签。 3.5 系统中烟气温度的变化 (12) 3.5.1 烟气在管道中的温度降 (12) 3.5.2 烟气在烟囱中的温度降 (12) 3.6 系统阻力的计算 (13) 3.6.1 混合气体产物的量,混合气体的密度 (13) 3.6.2 摩擦压力损失 (13) 3.6.3 局部压力损失 (14) 3.7 风机和电动机的计算................................... 错误!未定义书签。 3.7.1 风机风量的计算................................. 错误!未定义书签。 3.7.1 风机风压的计算................................. 错误!未定义书签。 3.7.2 电动机功率的计算............................... 错误!未定义书签。第四章附图................................................ 错误!未定义书签。 4.1 脱硫除尘工艺流程图................................... 错误!未定义书签。 4.2 XL旋流式水膜除尘器工艺设备图 (19) 参考文献..................................................... 错误!未定义书签。致谢 ........................................................ 错误!未定义书签。

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

石灰石石膏湿法脱硫系统的设计计算

石灰石-石膏湿法脱硫系统 设计 (内部资料) 编制:xxxxx环境保护有限公司 2014年8月

1、石灰石-石膏法主要特点 (1)脱硫效率高,脱硫后烟气中二氧化硫、烟尘大大减少,脱硫效率高达95%以上。 (2)技术成熟,运行可靠性高。国外火电厂湿法脱硫装置的投资效率一般可达98%以上,特别就是新建的大机组采用湿法脱硫工艺,使用寿命长,可取得良好的投资效益。 (3)对燃料变化的适应范围宽,煤种适应性强。无论就是含硫量大于3%的高硫燃料,还就是含硫量小于1%的低硫燃料,湿法脱硫工艺都能适应。 (4)吸收剂资源丰富,价格便宜。石灰石资源丰富,分布很广,价格也比其它吸收剂便宜。 (5)脱硫副产物便于综合利用。副产物石膏的纯度可达到90%,就是很好的建材原料。 (6)技术进步快。近年来国外对石灰石-石膏湿法工艺进行了深入的研究与不断改进,可望使该工艺占地面积较大、造价较高的问题逐步得到妥善解决。 (7)占地面积大,一次性建设投资相对较大。 2、反应原理 (1)吸收剂的反应 购买回来石灰石粉(CaCO3)由石灰石粉仓投加到制浆池,石灰石粉与水结合生成脱硫浆液。 (2)吸收反应 烟气与喷嘴喷出的循环浆液在吸收塔内有效接触,循环浆液吸收大部分SO2,反应如下: SO2(气)+H2O→H2SO3(吸收) H2SO3→H+ +HSO3- H+ +CaCO3→ Ca2+ +HCO3-(溶解) Ca2+ +HSO3-+2H2O→ CaSO3·2H2O+H+ (结晶) H+ +HCO3-→H2CO3(中与) H2CO3→CO2+H2O 总反应式:SO2+CaCO3+2H2O→CaSO3·2H2O+CO2 (3)氧化反应 一部分HSO3-在吸收塔喷淋区被烟气中的氧所氧化,其它的HSO3-在反应池中被氧化空气完全氧化并结晶,反应如下: CaSO3+1/2O2→CaSO4(氧化) CaSO4+2H2O→CaSO4·2H2O(结晶) (4)其她污染物

大气课程设计任务书DLP4-13型锅炉中硫烟煤烟气袋式除尘湿式脱硫系统设计

中北大学 课程设计说明书 学生姓名:徐宁学号:08040141X61 学院:信息商务学院 专业:环境工程 题目:DLP4-13型锅炉中硫烟煤烟气袋式 除尘湿式脱硫系统设计 指导教师:赵光明职称: 讲师 2011年 6月10日

中北大学 课程设计任务书 2009/2010 学年第二学期 学院:化工与环境学院 专业:环境工程 学生姓名:徐宁学号:08040141X61 课程设计题目:DLP4-13型锅炉中硫烟煤烟气 袋式除尘湿式脱硫系统设计 起迄日期: 5 月30 日~ 6 月10 日课程设计地点:环境工程专业实验室 指导教师:赵光明 系主任:王海芳 下达任务书日期: 2011年 5月 4日

课程设计任务书 1.设计目的: 通过本课程设计,掌握《大气污染控制工程》课程要求的基本设计方法,掌握大气污染控制工程设计要点及其相关工程设计要点,具备初步的大气污染控制工程方案及设备的独立设计能力;培养环境工程专业学生综合运用所学的理论知识独立分析和解决大气污染控制工程实际问题的实践能力。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 1.设计题目DLP4-13型锅炉中硫烟煤烟气袋式除尘湿式脱硫系统设计 2.设计原始资料 锅炉型号:DLP4-13 即,单锅筒横置式抛煤机炉,蒸发量4t/h,出口蒸汽压力13MPa 设计耗煤量:610kg/h 设计煤成分:C Y=61.5% H Y=4% O Y=3% N Y=1% S Y=1.5% A Y=21% W Y=8%; V Y=15%;属于中硫烟煤 排烟温度:160℃ 空气过剩系数=1.4 飞灰率=22% 烟气在锅炉出口前阻力650Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头10个。 3.设计内容及要求 (1)根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。 (2)净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。 (3)除尘设备结构设计计算 (4)脱硫设备结构设计计算 (5)烟囱设计计算 (6)管道系统设计,阻力计算,风机电机的选择 (7)根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张,以解释清楚为宜,最少4张A4图,并包括系统流程图一张。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 课程设计计算说明书一份,并按照规定格式打印装订; 课程设计所需若干图纸,要求作图规范,A4纸打印。

双碱法烟气脱硫计算

双碱法计算过程 标态:h Nm Q /4000030= 65℃:h m Q /4952340000273 6527331=?+= 还有约5%的水份 如果在引风机后脱硫,脱硫塔进口压力约800Pa ,出口压力约-200Pa ,如果精度高一点,考虑以上两个因素。 1、脱硫塔 ⑴ 塔径及底面积计算: 塔内流速:取s m v /2.3= m v Q r r v vs Q 17.12 .314.33600/49532121=?==???==ππ D=2r=2.35m 即塔径为2.35米。底面积S=∏r 2=4.3m 2 塔径设定为一个整数,如2.5m ⑵ 脱硫塔高度计算: 液气比取L/G= 4,烟气中水气含量设为8% SO 2如果1400mg/m3,液气比2.5即可,当SO2在4000mg/m3时,选4 ① 循环水泵流量:h m m l HG Q G L Q /1821000)08.01(495324) /(100033=-??=??= 取每台循环泵流量=Q 91m 。选100LZ A -360型渣浆泵,流量94m 3/h ,扬程22.8米, 功率30KW ,2台 ② 计算循环浆液区的高度: 取循环泵8min 的流量,则H 1=24.26÷4.3=5.65m 如此小炉子,不建议采用塔内循环,塔内循环自控要求高,还要测液位等,投资相应大一点。 采用塔外循环,泵的杨程选35m ,管道采用碳钢即可。 ③ 计算洗涤反应区高度

停留时间取3秒,则洗涤反应区高度H2=3.2×3=9.6m ④除雾区高度取6米 H3=6m ⑤脱硫塔总高度:H=H1+H2+H3=5.65+9.6+6=21.3m 塔体直径和高度可综合考虑,直径大一点,高度可矮一点,从施工的方便程度、场地情况,周围建筑物配套情况综合考虑,可适当进行小的修正。如采用塔内循环,底部不考虑持液槽,进口管路中心线高度可设在2.5m,塔排出口设为溢流槽,自流到循环水池。塔的高度可设定在16~18m 2、物料恒算 每小时消耗99%的NaOH 1.075Kg。每小时消耗85%的CaO 60.585Kg。石灰浆液浓度:含固量15%,可得石灰浆液密度1.093。按半小时配置一次石灰浆液计算,每次配置石灰浆液的体积是185m3。 浆液区的体积是24.26 m3。 石灰浆液按浆液区体积的10% 的流量(即石灰浆液泵的流量为 2.4 m3/h)不间断往塔内输送浆液。石膏浆液排出泵按浆液区体积的20% 的流量(即石膏浆液排出泵的流量为4.8 m3/h)不间断往塔外输出石膏浆液。由计算可得每小时产石膏干重0.129吨。 蒸发水分量2.16 m3/h。除雾器及管道冲洗水量约为3 m3/h。补充碱液量按按浆液区体积的10% 的流量(即碱液泵的流量为 2.4 m3/h)不间断往塔内输送碱液进塔部分:石灰浆液2.4 m3/h + 除雾器及管道冲洗水量3 m3/h + 补充碱液量2.4 m3/h 出塔部分:石膏浆液4.8m3/h +蒸发水分量2.16 m3/h 若氧化还原池按两塔5小时排出浆液量计算,则容积应为3.6×2×5=36 m3 如果采用塔外循环,循环水池也即再生、沉淀、碱水池可设定容量为250m3,有效容积200m3,池高度≤4m(便于抽沉淀),循环水停留时间设定为1小时。石灰采用人工加料,沉淀用离心渣泵或潜水渣泵抽出,采用卧式离心机脱水。

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

电厂脱硫吸收塔的改造方案

XX电厂吸收塔的改造方案 一、工程概况 1.1XXX烟气脱硫装置增容改造工程安装工程。本次脱硫改造对象为#1、#2机组配套的脱硫装置及公用系统。 1.2 原吸收塔为(16.5米*37.8)分两次截塔。一是从吸收塔浆池底部截塔加高4m,相应修改调整搅拌器、循环泵、安装门、液位计等各接口及吸收塔进出口烟道;二是从顶层喷淋层上方截塔加高2m,也就是在原塔标高27.5米处。本机组脱硫系统原增压风机已设置了增压风机旁路,改造后保留原增压风机旁路烟道和增压风机,只需根据要求拆除脱硫大旁路及旁路挡板门。 二、编制依据 1.1本次吸收塔改造增容招标文件以及设计图纸。 1.2 GB50205-95《钢结构工程施工及验收规范》 1.3 GB150-98《钢制压力容器》 1.4 DL/T869-2004《火力发电厂焊接技术规程》 1.5 DL/T5047-95《电力建设施工及验收技术规范》(锅炉机组篇) 1.6 GBJ128-90《立式圆筒型钢制焊接油罐施工及验收规范》 1.7 SH3530-93《石油化工立式圆筒型钢制储罐施工工艺标准》 1.8 JB4708-2000《钢制压力容器焊接工艺评定》 1.9 JB/T4709-2000《钢制压力容器焊接规程》 1.10 JB4735-97《压力容器无损检测》 1.11 吸收塔设备改造技术协议及规范书 1.12国电龙源FGD制作验收规范 1.13现场踏勘记录等 三、项目管理组织机构和人员配置 我公司对本工程非常重视,经领导班子研究,为了按期保质圆满完成本工程任务,由管理经验丰富的国家建造师 XXX、副经理XXX 组建现场项目部。

四、施工综合进度 4.1 工程里程碑进度 里程碑计划 工程项目完工时间 施工准备10天 浆液池部分改造15天 喷淋层改造25天包括交叉施工 移交防腐10天 其他工作完善20天 4.2 图纸交付进度(分项工程开工前20天应提供相应图纸,详见施工进度计划)

脱硫工艺设计说明

工艺设计说明 1、沼气管道与前部接口 根据PURAC的总体设计,考虑到二期工程的总沼气量需要,从厌氧罐接出的沼气管汇总后将采用DN450管径的沼气输送管,在进入沼气进化系统前设三通,一端接DN300沼气管至沼气火炬,另一端接手动阀门后至沼气净化系统。本方案起始位置自此DN450阀门始。详见场内沼气管网平面布置图及工艺系统图。 2、沼气脱硫工艺设计 厌氧发酵罐刚产出的沼气是含饱和水蒸气的混合气体,其组成绝大部分为气体燃料CH4与CO2外,还含有H2S和悬浮的颗粒状杂质。H2S不仅有毒,而且遇水蒸汽反应后极容易生成有很强腐蚀性的稀硫酸。因此,沼气中过量的H2S 含量会危及发电机组的寿命,因此需进行脱硫净化处理。 本工艺拟采用生物脱硫法对沼气进行脱硫处理。 生物脱硫法是利用微生物的作用,在微氧条件下将H2S氧化成单质硫或亚硫酸的脱硫过程。这种脱硫方法已在欧洲广泛使用,在国内某些工程已有采用,其优点是:不需要催化剂、不需处理化学污泥,产生很少生物污泥、耗能低、去除效率高。脱硫效率稳定,H2S去除率可达90%以上,脱硫成本低,每立方米沼气处理费用小于0.03元,比化学脱硫法成本降低70%以上。 当沼气中进入了一定数量的氧气时,专门的好氧嗜硫细菌(如:丝硫细菌属或硫杆菌属等)可以将沼气中的硫化氢成分氧化成硫元素,并根据环境条件的不同,将其进一步氧化成硫酸。这种反应需要的条件为:氧气、营养液、温度、湿度与生长区域。 在不同的温度下会产生不同的好氧嗜硫菌群,一般认为,在25℃至35℃的温度环境下,好氧嗜硫菌群的生长与活动是最快的,因而在此温度下脱硫效果最高。 反应方程式如下: 2H2S + O2→2H2O +2S 2H2S +3O2→2H2SO3

相关文档
最新文档