金属共晶相图

金属共晶相图
金属共晶相图

5.3.2 二元共晶相图

①共晶相图: 当两组元在液态能无限互溶,在固态只能有限互溶,并具有共晶转

变,这样的二元合金系所构成的相图称为二元共晶相图。

如Pb-Sn ,Pb-Sb ,Cu-Ag ,Al-Si 等合金的相图都属于共晶相图。Pb-Sn 合金相

图是典型的二元共晶相图,见图5.26, 下面以它为例进行讲解。首先分析相图中

的点,线和相区。

图5.26 铅锡相图

一、相图分析

1、点: t A ,t B 点分别是纯组元铅与锡的熔点,为327.5o C 和231.9o

C 。

M 点:为锡在铅中的最大溶解度点。N 点:为铅在锡中的最大溶解度点。

E 点:为共晶点,具有该点成分的合金在恆温183℃时发生共晶转变L E →αM +β

N

共晶转变:是具有一定成分的液相在恆温下同时转变为两个具有一定成分和结构的固相的过程。 F 点:为室温时锡在铅中的溶解度。G 点:为室温时铅在锡中的溶解度。

2、t A Et B 线:为液相线,其中t A E 线:为冷却时L →α的开始温度线,Et B 线:为 冷

却时L →β的开始温度线。

t A MENt B 线:为固相线,其中t A M 线:为冷却时L →α的终止温度线,t B N 线:

为冷却时L →β的终止温度线。

MEN 线:为共晶线,成分在M~N 之间的合金在恒温183℃时均发生共晶转

变L E →(αM +βN )形成两个固溶体所组成的机械混合物,通常称为共晶体

或共晶组织。

MF 线:是锡在铅中的溶解度曲线。NG 线:是铅在锡中的溶解度曲线。

3、相区

(1)单相区:在t

A Et

B

液相线以上,为单相的液相区用L表示,它是铅与锡组成的合金溶液。

t

A

MF线以左为单相α固溶体区,α相是Sn在Pb中的固溶体。

t

B

NG线以右为单相β固溶体区,β相是Pb在Sn中的固溶体。

(2)两相区:在t

A EMt

A

区为L+α相区,在t

B

ENt

B

区为L+β相区。在FMENGF区为α+β相区。

(3)三相线:MEN线为L+α+β三相共存线。由相律可知三相平衡

共存时,f=2-3+1=0,只能在恒温下实现。

具有共晶相图的二元系合金,通常可以根据它们在相图中的位置不同,分为以下几类:①成分对应于共晶点(E)的合金称为共晶合金,如Pb-Sn相图中含Sn61.9%的合金。②成分位于共晶点(E)以左,M点以右的合金称为亚共晶合金,如含Sn19%~61.9%的合金都是亚共晶合金。③成分位于共晶点(E)以右,N点以左的合金称为过共晶合金。如含Sn61.9%~97.5%的合金都是过共晶合金。④成分位于M点以左,N点以右的合金称为端部固溶体合金。如含Sn小于19%和大于97.5%的合金都是端部固溶体合金。

二.共晶系典型合金的平衡凝固过程分析

1.端部固溶体合金(10%Sn-Pb合金)

由图5.26可以看出,合金①冷却到t

1

温度时开始发生匀晶转变从L→α。随着

温度的降低α量不断增加,L量不断减少,并且α相的成分沿固相线t

A

M变,L

相的成分沿液相线t

A E变。当冷却到t

2

温度时L全部转变成α相,继续降低温度

α相自然冷却不发生成分和相的变化。当冷却到t3温度时,Sn在α固溶体中达到饱和状态,因此随着温度的降低,它处于过饱和状态,多余的Sn以β固溶体的形式从α固溶体中析出,这时α固溶体的平衡成分沿MF线变化,相对量逐渐减少,而析出的β固溶体的平衡成分沿NG线变化,相对量逐渐增加。通常将固溶体中析出另一种固相的过程称为脱溶转变,脱溶转变的产物一般称为次生相或二次相。次生相β固溶体用β

表示,以区别从液相中直接凝固出的β固溶体。由于次生相是从固相中析出的,而原子在固相中的扩散速度慢,所以次生相一般都较细小,并分布在晶界上或固溶体的晶粒内部。由上述分析可知该合金在室温

时的组织为α+β

Ⅱ,见图5.27。图中黑色基体为α相,白色颗粒为β

相。图5.28为该合金的平衡凝固过程示意图。

图5.27 10%Sn-Pb 合金显微组织 500×

图5.28 10%Sn-Pb 合金凝固过程示意图

由相图可以看出F 点以左,G 点以右的合金凝固过程与匀晶合金完全相同,而成分位于F 点和M 点之间的所有合金的平衡凝固过程都与上述合金相同,显微组织都为α+βⅡ ,只是α和βⅡ 的相对量不同。合金成分越接近M 点,其含βⅡ越多,

而越接近F 点,其含βⅡ越少。

另外由相图还可以看出,成分位于N 点和G 点之间的所有合金的平衡凝固过程与上述合金相似,所不同的是它从L →β,从β→αⅡ 。由于某些固溶体合金的溶

解度随温度的降低而降低,因此可以通过热处理来控制次生相的析出量和大小,从而达到改善合金性能的目的。所以,由相图不仅可以判断合金的特性,还可以

指导热处理生产。

2.共晶合金(61.9%Sn-Pb )

由相图可以看出共晶合金②从液态缓慢冷却到t E 温度时, 在恒温下从液相中同

时结晶出两个成分不同的固相,即发生共晶转变L E →αM +βN (L 61.9%→α19%+β97.5% )由于发生共晶转变时是三相平衡,所以可以用相律证明它是在恒温下进行的。共晶转变在恒温下一直进到液相完全消失,继续冷却αM 和βN 分别析出次生相βⅡ 和αⅡ,成分分别沿着MF 和NG 线变化。 由于析出的αⅡ和βⅡ与共晶体中的α和

β常常混合在一起,所以在显微镜下很难分辨。因此该合金在室温时的组织一般

认为是由(α+β) 共晶体组成。

图5.29 铅锡共晶合金的显微组织 200×

见图5.29, 它是由黑色的α相和白色的β相呈层片状交替分布。图5.30为该合

金平衡凝固的示意图。

图5.30 共晶合金凝固过程示意图

合金的显微组织: 是指在金相显微镜下能够观察到的组成部分。

共晶合金的显微组织是由α和β两相组成,所以它的相组成物为α和β两相。

相组成物:是指组成合金显微组织的基本相。

组织组成物: 是指合金在结晶过程中,形成的具有特定形态特征的独立组成部

分。

如共晶合金的组织组成物为100%的(α+β)共晶体。

而相组成物的相对量可用杠杆定律计算,如在t E 温度时的相对量为

97.561.9%100%100%45.4%97.519M EN MN α-=?=?=-%6.54%%100%=-=M N αβ或

61.919%100%100%45.6%97.519N ME MN β-=?=?=-,而在室温时的相对量为

%,100'%?=FG G E F α%100'%?=FG FE G β。

3、亚共晶合金(50%Sn-Pb 合金)

由图5.26可以看出该合金③在冷却到t 1温度时,开始发生匀晶转变,从L

→α,该α称为初生相或初晶固溶体或先共晶相,用α初表示,随着温度的降低,

α初的成分沿着固相线t A M 变,相对量不断增加,L 的成分沿着液相线t A E 变,相对量不断减少,当冷却到t 2温度时α初的成分达到M 点的成分,剩余液相的成分

达到E 点的成分,它们的相对量可用杠杆定律计算:

α初%=%8.27%100199.61509.61%1002=?--=?ME E t (L%=100%-α初%=72.2%)或 L%=%2.72%100199.611950%1002=?--=?ME Mt

在该温度(略低于t 2)剩余液相发生共晶转变L E

N M t βα+?→?2全部转变为共晶体,此时的组织为α初+(α+β),可以看出共晶体的量就等于t 2温度时液

相的量。因此(α+β)%=L%=72.2%,这时它的相组成物为α和β,它们的相对

量为α%=%5.60%100195.97505.97%1002=?--=?MN N t ,β%=100%-α%=39.5%。继续冷却由于固溶体的溶解度减小,因此它们都要发生脱溶过程,α初和α共的成分沿

MF 线变化析出二次相α初→βII , α共→βII ;β共的成分沿NG 线变化析出二次相

β共→αII ,它们析出的二次相αII 和βII 的成分也分别沿着MF 和NG 线变化,相

对量逐渐增加。由于共晶体(α+β)中析出的二次相βII 与共晶体α、β混合

在一起,在显微镜下分辨不出,所以该合金的室温组织为α初+βII +(α+β)。

见图5.31暗黑色块状部分为α初,在其上的白色颗粒为βII ,而黑白相间的部分

为共晶体(α+β),图5.32为该合金的平衡凝固示意图。可以看出该合金在室

温时的相组成物为α和β两相,它们的相对量为%100%3?=FG G t F α,

%100%3?=

FG Ft G β,而组织组成物为α初+βII +(α+β),它们的相对量也可用

杠杆定律计算。由前面计算可知α初%=27.8%,(α+β)%=72.2%,现在要计算从α初中析出的βII 的量,应先计算出βII 的最大析出量(即为100%α初中能析出的βII 的量)βII 最大%=%100'?FG FM ,则从α初中析出的βII 量为,βII %=βII 最大%×α

初%=

%

8.

27

%

100

'

?

?

FG

FM

。另外由相图可以看出,所有亚共晶合金的凝固过程都

与该合金的凝固过程相同,不同的是当合金成分靠近M点时,α初的相对量增加,析出的βII%增加,其(α+β)的相对量减少;而合金的成分靠近E点时,α初的相对量减少,析出的βII%减少,(α+β)相对量增加。

图5.31 50%Sn-Pb 合金显微组织 200×

图5.32 亚共晶合金凝固过程示意图

4 、过共晶合金(70%Sn-Pb合金)

由相图可以看出过共晶合金的凝固过程与亚共晶合金的凝固过程相似,不同的是它的初生相(先共晶相)为β固溶体,因此它在室温时的组织为:β初+αII+(α+β),见图5.33,其中白亮色卵形部分为β初,黑白相间部分为共晶体(α+β),过共晶合金的具体凝固过程请大家课后自己进行分析。

由上述典型合金的平衡凝固过程分析,可以得出二元共晶系合金的组织组成物图

(或叫组织分区图)如图5.34。

图5.33 70%Sn-Pb 合金显微组织 200×图5.34 铅锡合金组织分区图

三、共晶系合金的不平衡凝固及组织

共晶系合金在不平衡凝固时,由于冷却速度快原子扩散不能充分进行,这不仅使固溶体产生枝晶偏析,而且还使共晶体的组织形态和共晶体与初晶的相对量发生变化,共晶系合金的典型不平衡凝固组织主要有伪共晶和离异共晶。

1. 伪共晶

由共晶系合金的平衡凝固过程分析可知,只有共晶成分的合金在平衡凝固时,才能得到100%的共晶组织。但是在不平衡凝固时,成分在共晶点附近的亚共晶和过共晶合金,也能得到100%的共晶组织,这种由非共晶成分的合金经不平衡凝固后,所得到的全部共晶组织称为伪共晶组织。

成分在共晶点附近的亚共晶和过共晶的合金,在不平衡凝固时能够得到全部共晶组织的原因是,在不平衡凝固时由于冷却速度较快,合金液体被过冷到共晶温度以下才凝固,这时液相对α固溶体的饱和极限,沿着α液相线的延长线变化,而液相对β固溶体的饱和极限,沿着β液相线的延长线变化,当合金液体过冷到这两条延长线所包围的区域中时,同时被α和β两相所饱和,发生共晶转变而得到全部的共晶组织,这两条延长线所包围的区域称为伪共晶区,凡是合金被过冷

到该区域才凝固,都能得到伪共晶组织。见图5.35。

图5.35 共晶系合金的不平衡凝固

通常亚共晶合金和过共晶合金在不平衡凝固时,随着冷却速度的增加,初晶量减少,共晶量增加。这种比平衡凝固时多出的共晶体都具有伪共晶特征,但不称它为伪共晶组织,因为伪共晶组织的形态特征与共晶组织完全相同,只是它的合金

成分不是共晶成分。

值得注意的是伪共晶区并不只是简单的由两液相线的延长线所构成,伪共晶区的形状和位置,通常与组成合金的两组元的熔点和组成共晶体的两相的生长速度以及共晶点的位置等因素有关。①当两组元的熔点相近,共晶点的位置一般处在共晶线的中间,这时两组成相的生长速度相差不大,因此,伪共晶区大体上与共晶点对称,见图5.36(a),②当组元的熔点相差较大时,共晶点的位置一般

偏向低熔点的组元,在这种情况下形成α(与液相成分相近)比形成β(与液相成分相差较大)容易。(因为只有当α相生长到一定程度后,使液相中溶质浓度升高到一定程度时才能形成β相),如果α相的生长速度比β相大的多,则伪共晶区偏向高熔点组元;当α相的生长速度约大于或等于β相的生长速度,则伪共晶区逐渐向低熔点组元偏离,见图5.36(c),(d),(b),在这种情况下不平衡凝固时,共晶成分的合金也得不到全部共晶组织。

图5.36 四种伪共晶区

因此伪共晶区在相图中的位置,对于了解合金在不平衡凝固后的组织是很有帮助的,图5.37中共晶成分的Al-Si合金,由于伪共晶区偏向右边(Si侧),使其在不平衡凝固后得到α初+(α+Si)的亚共晶组织,(因为共晶成分的液相过冷后其表象点a,没有落入伪共晶区,则先凝固出α相,使液相成分移到b点,才能发生共晶转变,这就相当于共晶点向右移动,共晶合金变成了亚共晶合金),同样过共晶成分的合金在不平衡凝固后,也可能得到亚共晶或共晶组织。

图5.37 铝-硅合金系的伪共晶区

2. 离异共晶

离异共晶通常出现在成分接近M点或N点的端部固溶体合金的不平衡凝固组织

中,见图5.38。

图5.38 可能产生离异共晶示意图图5.39 4%Cu-Al 铸造合金中的离异

共晶,

晶界上的相为Al

Cu 200×

2

由图可以看出这样的合金Ⅱ在平衡凝固时,组织中不会有共晶体出现。但在不平衡凝固时,由于冷却速度较快,原子扩散不能充分进行,使形成的固溶体中存在

着枝晶偏析,其平均成分线偏离了固相线;(液相中由于原子扩散快,故可以认为它的平均成分线偏离的少或不偏离),因此当合金冷却到与固相线相交的温度时,凝固过程还没有完成,仍剩有少量液体;当合金冷却到共晶温度或共晶温度以下时,剩余液相的成分达到或接近共晶成分,它将发生共晶转变形成共晶体,由于剩余液相的量很少,并且是最后凝固,因此形成的共晶体往往为一薄层,分布在先共晶固溶体(初晶固溶体)的晶界或枝晶间,它的组织形态见图5.39。由于共晶体中与初生固溶体相同的一相,往往依附在初生固溶体上生长,而把另一相推向最后凝固的晶界处,因此这种共晶体失去了共晶组织的形态特征,看上去好象两相被分离开来,所以称为离异共晶。图5.39是含4%Cu的Cu-Al合金在不平衡凝固时形成的离异共晶(α+Al2Cu),在晶界处分布的是金属化合物Al2Cu。

由于端部固溶体合金在不平衡凝固时可以形成离异共晶,所以这种离异共晶组织是一种不平衡组织,可以用均匀化处理的方法予以消除。这种方法是将具有离异共晶组织的端部固溶体合金,加热到低于共晶温度并进行长时间保温,让原子进

行充分扩散,这样就能得到接近平衡状态的组织α+βII。

另外成分接近M点和N点的亚共晶和过共晶合金,在平衡凝固时也可能形成离异共晶(因为形成的初晶量很多,共晶量很少)这种离异共晶不是不平衡组织,所

以用均匀化处理也无法消除。

离异共晶组织容易和次生相组织混淆,所以容易将端部固溶体合金当作亚共晶或过共晶合金,或把亚共晶和过共晶合金当作端部固溶体合金,因此在制订实际生

产工艺时应严格加以区分。

金属相图

实验 金属相图 [实验目的] 1.学会用热分析法测绘Pb - Sn 二组分金属相图。 2.掌握热分析法的测量技术与有关测量温度的方法。 [基本原理] 热分析法是先将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间读体系温度一次,将所得温度值对时间作图,所得曲线即为步冷曲线(如下图1)。每一种组成的Pb - Sn 体系均可根据其步冷曲线找出相应的转折点和水平台温度,然后在温度-成分坐标上确定相应成分的转折温度和水平台的温度,最后将转折点和恒温点分别连接起来,即为相图(如下图2)。 图1 步冷曲线 图2 步冷曲线与相图 [仪器结构] 图1 加热装置 图2 测量装置 仪器参数设置法: 最高温度:C 350℃ 加热功率:P1 400W 保温功率:P2 40W 报警时间:E1 30s 报警声音:n 0 按设置键:显示温度时就是退出了设置状态,可以进行实验。

[实验步骤] 1.配制样品。配制含锡量分别为20%,40%,61.9%,80%的铅-锡混合物各100g,装入4个样品管中,然后在样品管内插入玻璃套管(管中应有硅油,增加热传导系数),并在样品上方盖一层石墨粉; 2.将需加热的样品管放入一炉子中,将加热选择旋钮指向该加热炉(加热炉和选择旋钮上均有数字标号),并将测温传感器置于需加热的样品管中; 3.设定具体需加热的温度,加热功率和保温功率,本实验中这些参数依次设定为350o C,400W, 40W,参数设定完成后, 按下“加热”键,即进入加热状态; 4.当测量装置上的温度示值接近于330 O C时,可停止加热。待样品熔化后,用玻璃套管小心搅拌样品; 5.待温度降到需要记录的温度值时(比如305 C),可点击测量软件中的“开始实验”按钮,降温过程中,若降温速度太慢,可打开风扇;若降温速度太快,则可按“保温”键,适当增加加热量。当温度降到平台以下,停止记录。 按照上述步骤,测定不同组成金属混合物的温度—时间曲线。 [数据处理] 1.依实验数据绘制T-t步冷曲线,6根曲线绘制在同一张图上; 2.依样品的组成和步冷曲线中转折点和平台的温度绘制出Pb-Sn的T-w金属相图; 3.你所测得的Pb, Sn的熔点与教材(东北师大第90面)上的值的相对误差分别为: %, %. [问答题] 金属相图的用途有哪些? ---------------------------------------------------------------------------------------------------------------- 班级: 姓名: 学号: 实验日期: 分数: 教师:

实验六 二组分金属相图的绘制

实验六二组分金属相图的绘制 一、实验目的 1.学会用热分析法测绘Sn—Bi二组分金属相图。 2.了解热电偶测量温度和进行热电偶校正的方法。 二、预习要求 1.了解纯物质的步冷曲线和混合物的步冷曲线的形状有何不同,其相变点的温度应如何确定。 2.掌握热电偶测量温度的原理及校正方法。 三、实验原理 测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线叫步冷曲线。当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,则因体系产生之相变热与自然冷却时体系放出的热量相抵偿,冷却曲线就会出现转折或水平线段,转折点所对应的温度,即为该组成合金的相变温度。利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。 二元简单低共熔体系的冷却曲线具有图1所示的形状。

图1根据步冷曲线绘制相图 图2有过冷现象时的步冷曲线 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,轻微过冷则有利于测量相变温度;但严重过冷现象,却会使折点发生起伏,使相变温度的确定产生困难。见图2。遇此情况,可延长dc线与ab线相交,交点e即为转折点。 四、仪器药品 1.仪器 立式加热炉1台;冷却保温炉1台;长图自动平衡记录仪1台;调压器1台;镍铬-镍硅热电偶1副;样品坩埚6个;玻璃套管6只;烧杯(250mL)2个;玻璃棒1只。

九年级化学金属和金属材料讲学案及思维导图

九年级化学金属和金属材料讲学案及思维导图公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

金属和金属材料讲学案 【本课思想导图】 课题1 金属材料教学 【教学设计思路】 根据课程标准要求,关于金属材料的学习,在认知领域的教学属于知道和了解水平,且学生已有关于金属和合金的不少生活常识,学习难度不大。为维护课标的严肃性,教学忌拔高知识难度,但在教学中,对于过程与方法,情感态度与价值观可考虑加强一些。使学生在学习过程中去深刻感知金属的物理性质及合金的巨大使用价值。从方法和情感层面获得加强和熏陶,不失为一种教学创新。这样做对知识学习而言,可以变枯燥为生动;对过程与方法而言,可以获得实验探究、调查研究、归纳分析等训练;还可透过关于中国冶金发展史的学习对爱国情感的熏陶等等。同时,本课题教材联系学生生活常识较多。为扩大学习成果,在课前、课中及课后力求安排一些学生活动,以激发化学学习的持久兴趣及升华科学情结。因此,本课题的教学,以指导学生探究学习、发展学生认知能力为出发点及归宿而设计。 【教学目标】 知识与技能: 1、通过日常生活中广泛使用金属材料等具体事例,认识金属材料与人类生活和社会发展的密切关系。 2、了解常见金属的物理性质,知道物质的性质在很大程度上决定了物质的用途,但同时还需考虑如价格、资源以及废料是否易于回收等其他因素。 3、认识在金属中加热熔合某些金属或非金属可以制得合金,知道生铁和钢等重要合金,以及合金比纯金属具有更广泛的用途。

过程与方法: 1、引导学生自主实验探究金属的物理性质(重点探究导电、导热性等)。 2、通过讨论探究物质的性质与用途的关系,培养学生综合分析问题的能力。 3、通过查阅合金的资料,培养学生独立获取知识的能力。 情感态度与价值观: 1、通过实验探究活动让学生体验成功的喜悦,逐步养成在学习过程中敢于质疑敢于探究的良好品质。 2、通过调查考察认识化学科学的发展在开发新材料提高人类生存质量方面的重大意义和贡献。 【教学重点】1、引导自主探究金属的物理性质。 2、在交流学习中认识常见的合金并了解其广泛的用途。 【教学方法】引导探究;指导调察,收集资料整理归纳;组织小组讨论交流及分享等。【仪器、药品及其它】 1、学生收集日常生活中的金属材料。 2、学生查阅有关金属材料发展前景资料。 3、酒精灯、火柴、干电池、导线、小灯泡、砂纸、铜丝、铁丝、铝丝、铁架台、黄铜、铜、焊锡、锡、铁片、铅、铝片、铝合金。 4、教师制作多媒体课件。 课时安排:2课时

金属材料教案-铁碳合金相图

广东省技工学校文化理论课教案 共3页第1页 科目金属 材料 四章一节课题合金的组织 授课 日期 9.1 6 课 时 1 班级12机电班 授 课方式讲授、分析、演示 作业 题数 1 拟 用 时 间 0.1 小 时 教学目的1、了解合金的概念 2、懂得合金的组织类型,及各类的组织成分。 选 用 教 具 挂 图 重 点合金的组织类型 难 点 合金的组织类型 教 学 回 顾 第一章的内容。 审阅签名:年月日

共3 页第 2 页新课 由日常生活所见金属材料引入合金概念 一、合金 合金是一种金属元素与其他金属元素或非金属元素通过熔炼成或其他方法结合而成的具有金属特性的材料。 组元:组成合金的最基本的独立物质成为组元,组元可以为金属元素,非金属元素,或稳定的化合物。 相:在合金中成分,结构及性能相同的组成部分称为相。 二、合金的组织 1、固溶体 2、金属化合物 3、混合物 1、固溶体 固溶体是一种组元的原子溶入另一组元的晶格中所形成的均匀固相。溶入元素成为溶质,而基本元素成为溶剂,固溶仍然保持溶剂的晶格。 固溶体分类 1、间隙固溶体:溶质原子分布于溶剂晶格间隙之中而形成 2、置换固溶体:溶质原子置换了溶剂晶格提点上某些原子而形成。 2、金属化合物 合金组元间发生相互作用而形成一种具有金属特性的物质称为金属化合物。(其晶格类型不同于任一组元) 具有熔点高,硬度高,脆性大的特点。

共 3 页第3页 3、混合物 两种或两种以上的相接一定质量分数组成的物质称为混合物(混和物中各相仍保持自己原来的晶格) 小结 1、合金的概念 2、合金的组织主要有哪几种? 作业 1、预习第四章三节内容。 2、P51 1

二组分金属相图的绘制

二组分金属相图的绘制 一.实验目的 1.用热分析法(冷却曲线法)测绘Bi —Sn 二组分金属相图。 2.了解固液相图的特点,进一步学习和巩固相律等有关知识。 二.实验原理 表示多相平衡体系组成、温度、压力等变量之间关系的图形称为相图。 较为简单的二组分金属相图主要有三种:一种是液相完全互溶,凝固后,固相也能完全互溶成固熔体的系统,最典型的为Cu —Ni 系统;另一种是液相完全互溶而固相完全不互溶的系统,最典型的是Bi —Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如本实验研究的Bi —Sn 系统。在低共熔温度下,Bi 在固相Sn 中最大溶解度为21%(质量百分数)。 图1冷却曲线 图2由冷却曲线绘制相图 热分析法(冷却曲线法)是绘制相图的基本方法之一。它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。通常的做法是先将一定已知组成的金属或合金全部熔化,然后让其在一定的环境中自行冷却,画出冷却温度随时间变化的冷却曲线(见图 1)。当金属混合物加热熔化后再冷却时,开始阶段由于无相变发生,体系的温度随时间变化较大,冷却较快(ab 段)。若冷却过程中发生放热凝固,产生固相,将减小温度随时间的变化,使体系的冷却速度减慢(bc 段)。当融熔液继续冷却到某一点时,如c 点,由于此时液相的组成为低共熔物的组成。在最低共熔混 合物完全凝固以前体系温度保持不变,冷却曲线出现平台,(如图cd 段)。当融熔液完全凝固形成两种固态金属后,体系温度又继续下降(de 段)。 由此可知,对组成一定的二组分低共熔混合物系统,可以根据它的冷却曲线得出有固体析出的温度和低共熔点温度。根据一系列组成不同系统的冷却曲线的各转折点,即可画出二组分系统的相图(T - x 或T - w B 图)。不同组成熔液的冷却曲线对应的相图如图2所示。 图3可控升降温电炉前面板 1.电源开关 2.加热量调节旋钮 3、4.电压表 5.实验坩埚摆放区 6.控温传感器插孔 7.控温区电炉8.测试区电炉 9.冷风量调节

实验3 金属相图实验报告dyl

物理化学实验备课材料 实验3 热电偶温度计的校正及金属相图 一、基本介绍 一个多相体系的状态可用热力学函数来表达,也可用几何图形来描述。表示相平衡体系状态与影响相平衡强度因素关系的几何图形叫平衡状态图,简称相固,也叫状态图。由于常见的影响相平衡的强度因素是温度、压力和浓度,所以也可以说,相图是描述多相体系的状态与温度、压力和组成关系的几何图形。 相平衡的研究对生产和科学研究具有重大意义。钢铁和合金冶炼生产条件的控制、硅酸盐(水泥、耐火材料等)生产的配料比、盐湖中无机盐的提取等,都需要相干衡的知识。又如对物质进行提纯(如制备半导体材料)、配制各种不同低熔点的金屑台金等,都要考虑到有关相干衡问题。化工生产中产品的分离和提纯是非常重要的,其中溶解和结晶、冷凝和熔融、气化和升华等都属相交过程。 总之.由于相变过程和相干衡问题到处存在,研究和革捏相变过程的规体,用以解释有关的自然现象和指导生产甚为重要。 二、实验目的 1、用热电偶—电位差计测定Bi—Sn体系的步冷曲线,绘制相图; 2、掌握热电势法测定金属相图的方法; 3、掌握热电偶温度计的使用,学习双元相图的绘制。。 三、实验原理 绘制固液二相平衡曲线的方法,常用的有溶解度法和热分析法。溶解度法是指在确定的温度下,直接测定固液二相平衡时溶液的浓度,然后依据澜得的温度和相应的溶解度数据绘制成相固。此法适用于常温下易澜定组成的体系,如水盐体系等。热分析法是指在常温下不便直接澜定固液乎衡时溶液组成的体系(如合金和有机化合物的体系).通常利用相变时的热效应来测定组成已确定之体系的温度,然后依据选定的一系列不同组成的二组分体系所测定的温度,绘制相图。此法简单易行,应用顾广。 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态。因此.体系的冷却速度必须足够慢.才能得到较好的结果。体系温度的测量,可用水银温度计,也可选用合适的热电偶。由于水银温度计的测量范围有限,而且其易破损,所以目前大都采用热电偶来进行测温。用热电偶测温其优点是灵敏度高、重现性好、量度宽。而且由于它是将非电信号转换为电信号,故将它与电子电热差计配合使用,可自动记录温度—时间曲线。原则上也可用升温过程中的实验数据作温度-时间关系曲线,但由于升温过程中温度很难控制,不易做到均匀加热,由此产生的误差大于冷却过程,所以通常都绘制冷却曲线。 本实验用热电偶作为感温元件,自动平衡电位差计测量各样晶冷却过程中的热电势,作出电位—时间曲线(步冷曲线),再由热电偶的工作曲线找出相变温度,从而作出Bi-Sn体系的相图.

九年级化学金属和金属材料讲学案及思维导图

金属和金属材料讲学案 【本课思想导图】 课题1 金属材料教学 【教学设计思路】 根据课程标准要求,关于金属材料的学习,在认知领域的教学属于知道和了解水平,且学生已有关于金属和合金的不少生活常识,学习难度不大。为维护课标的严肃性,教学忌拔高知识难度,但在教学中,对于过程与方法,情感态度与价值观可考虑加强一些。使学生在学习过程中去深刻感知金属的物理性质及合金的巨大使用价值。从方法和情感层面获得加强和熏陶,不失为一种教学创新。这样做对知识学习而言,可以变枯燥为生动;对过程与方法而言,可以获得实验探究、调查研究、归纳分析等训练;还可透过关于中国冶金发展史的学习对爱国情感的熏陶等等。同时,本课题教材联系学生生活常识较多。为扩大学习成果,在课前、课中及课后力求安排一些学生活动,以激发化学学习的持久兴趣及升华科学情结。因此,本课题的教学,以指导学生探究学习、发展学生认知能力为出发点及归宿而设计。 【教学目标】 知识与技能: 1、通过日常生活中广泛使用金属材料等具体事例,认识金属材料与人类生活和社会发展的密切关系。 2、了解常见金属的物理性质,知道物质的性质在很大程度上决定了物质的用途,但同时还需考虑如价格、资源以及废料是否易于回收等其他因素。 3、认识在金属中加热熔合某些金属或非金属可以制得合金,知道生铁和钢等重要合金,以及合金比纯金属具有更广泛的用途。 过程与方法:

1、引导学生自主实验探究金属的物理性质(重点探究导电、导热性等)。 2、通过讨论探究物质的性质与用途的关系,培养学生综合分析问题的能力。 3、通过查阅合金的资料,培养学生独立获取知识的能力。 情感态度与价值观: 1、通过实验探究活动让学生体验成功的喜悦,逐步养成在学习过程中敢于质疑敢于探究的良好品质。 2、通过调查考察认识化学科学的发展在开发新材料提高人类生存质量方面的重大意义和贡献。 【教学重点】1、引导自主探究金属的物理性质。 2、在交流学习中认识常见的合金并了解其广泛的用途。 【教学方法】引导探究;指导调察,收集资料整理归纳;组织小组讨论交流及分享等。 【仪器、药品及其它】 1、学生收集日常生活中的金属材料。 2、学生查阅有关金属材料发展前景资料。 3、酒精灯、火柴、干电池、导线、小灯泡、砂纸、铜丝、铁丝、铝丝、铁架台、黄铜、铜、焊锡、锡、铁片、铅、铝片、铝合金。 4、教师制作多媒体课件。 课时安排:2课时

金属材料与热处理课后习题答案

第1章金属的结构与结晶 一、填空: 1、原子呈无序堆积状态的物体叫,原子呈有序、有规则排列的物体称为。一般固态金属都属于。 2、在晶体中由一系列原子组成的平面,称为。通过两个或两个以上原子中心的直线,可代表晶格空间排列的的直线,称为。 3、常见的金属晶格类型有、和三种。铬属于晶格,铜属于晶格,锌属于晶格。 4、金属晶体结构的缺陷主要有、、、、、和 等。晶体缺陷的存在都会造成,使增大,从而使金属的提高。 5、金属的结晶是指由原子排列的转变为原子排列的过程。 6、纯金属的冷却曲线是用法测定的。冷却曲线的纵坐标表示,横坐标表示。 7、与之差称为过冷度。过冷度的大小与有关, 越快,金属的实际结晶温度越,过冷度也就越大。 8、金属的结晶过程是由和两个基本过程组成的。 9、细化晶粒的根本途径是控制结晶时的及。 10、金属在下,随温度的改变,由转变为的现象称为

同素异构转变。 二、判断: 1、金属材料的力学性能差异是由其内部组织结构所决定的。() 2、非晶体具有各向同性的特点。() 3、体心立方晶格的原子位于立方体的八个顶角及立方体六个平面的中心。() 4、金属的实际结晶温度均低于理论结晶温度。() 5、金属结晶时过冷度越大,结晶后晶粒越粗。() 6、一般说,晶粒越细小,金属材料的力学性能越好。() 7、多晶体中各晶粒的位向是完全相同的。() 8、单晶体具有各向异性的特点。() 9、在任何情况下,铁及其合金都是体心立方晶格。() 10、同素异构转变过程也遵循晶核形成与晶核长大的规律。() 11、金属发生同素异构转变时要放出热量,转变是在恒温下进行的。() 三、选择 1、α—Fe是具有()晶格的铁。 A、体心立方 B、面心立方 C、密排六方 2、纯铁在1450℃时为()晶格,在1000℃时为()晶格,在600℃时为 ()晶格。A、体心立方 B、面心立方 C、密排六方 3、纯铁在700℃时称为(),在1000℃时称为(),在1500℃时称为()。

金属相图实验步骤(学生)

实验八金属相图 一、实验目的 1、学会用热分析法测绘铅-锡二组分金属相图; 2、掌握热分析法的测量技术; 3、熟悉ZR-HX金属相图控温仪、ZR-08金属相图升温电炉等仪器。 二、基本原理 相图是用以研究体系的状态随浓度、温度、压力等变量的改变而发生变化的图形,它可以表示在指定条件下存在的相数和各相的组成,对蒸汽压较小的二组分凝聚体系,常以温度-组成图来描述。 热分析法是绘制相图常用的基本方法之一。这种方法是通过观察体系在冷却时温度随时间的变化关系,来判断有无相变的发生。通常的做法是先将体系全部融化,然后让其在一定环境中自行冷却,并每隔一定时间记录一次温度,以温度(T)为纵坐标,时间(t)为横坐标,画出步冷曲线。当体系均匀冷却时,如果体系不发生相变,则体系的温度随时间的变化将是均匀的,冷却也较快(如图8-1中ab线段)。若在冷却过程中发生了相变,由于在相变过程中伴随着热效应,所以体系温度的降温速度随时间的变化将发生改变,体系的冷却速度减慢,步冷曲线就出现转折(如图8-1中bc 线段)。当熔液继续冷却到某一点时,由于此时熔液的组成已达到最低共熔混合物的组成,故有最低共熔混合物析出,在最低共熔混合物完全凝固以前,体系温度保持不变,因此步冷曲线出现平台(如图中cd线段)。当熔液完全凝固后,温度才迅速下降(见图中de线段)。 由此可知,对组成一定的二组分低共熔混合物体系来说,可以根据它的步冷曲线,判断有固体析出时的温度和最低共熔点的温度。如果作出一系列组成不同的体系的步冷曲线,从中找出各转折点,即能画出二组分体系最简单的相图(温度-组成图)。不同组成熔液的步冷曲线与对应相图的关系可以从8-2中看出。 图8-2 图8-1 用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态。因此,体系的冷却速度必须足够慢,才能得到较好的结果。

二元合金相图的测定实验

实验报告 实验名称:金属的塑性变形 组别第6组 学号、姓名:2012034036 谈鑫学号、姓名:2012034035 何韦唯学号、姓名:2012034034 周卫东学号、姓名:2012034037 安望学号、姓名:2012034038 罗伟学号、姓名:2012034039 陈科宇 2014年 5月 28日

一、实验目的 1.用热分析法测熔融体步冷曲线,再绘制Pb-Sn二元金属相图。 2.了解热分析法的实验技术热电偶测量温度的方法。 二、实验仪器 SWKY型数字控温仪一台;KWL-08型可控升降温电炉一台; 三、实验原理 相图是多相(二相或二相相以上)体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡情况(相的数目及性质等),故称为相图。二元或多元体系的相图常以组成为自变量,其物理性质则大多取温度。由于相图能反映出多相平衡体系在不同自变量条什下的相平衡情况,因此,研究多相体系的性质,以及多相体系相平衡情况的演变(例如冶金工业冶炼钢铁或其他合金的过程,石油工业分离产品的过程等),都要用到相图。 图4.1是一种类型的二元简单低共熔物相图。图中A、B表示二个组分的名称,纵轴是物理量温度T,横轴是组分B的百分含量B%。在acb线的上方,体系只有一个相(液相)存在;在ecf线以下,体系有两个相(两个固相——晶体A、晶体B)存在; 在ace所包为的面积中,一个固相(晶体A)和一个液相(A在B中的饱和熔化物)共存; 在bcf所包围的面积中,也是一个固相(晶体B)和一个液相(B在A中的饱和熔化物)共存;图中c点是ace与bef两个相区的交点,有三相(晶体A、晶体B、饱和熔化物)共存。测绘相图就是要将相图中这些分隔相区的线画出来。常用的实验方法是热分析法。 热分析法所观察的物理性质是被研究体系的温度。将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间(例如半分钟或一分钟)读体系温度一次,以所得历次温度值对时间作图,得一曲线,通常称为步冷曲线或冷却曲线,图4.2是二元金属体系的一种常见类型的步冷曲线。冷却过程中,若体系发生相变,就伴随着一定热效应,团此步冷曲线的斜率将发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点。若图4.2是图4.1中组成为P的体系的步冷曲线,则点2、3就分别相当于相图中的点G、H。因此,取一系列组成不同的体系,作出它们的步冷曲线,找出各转折点,即能画出二元体系的最简单的相图(对复杂的相图,

九年级化学金属和金属材料讲学案及思维导图

九年级化学金属和金属材料讲学案及思维导图 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金属和金属材料讲学案 【本课思想导图】 课题1 金属材料教学 【教学设计思路】 根据课程标准要求,关于金属材料的学习,在认知领域的教学属于知道和了解水平,且学生已有关于金属和合金的不少生活常识,学习难度不大。为维护课标的严肃性,教学忌拔高知识难度,但在教学中,对于过程与方法,情感态度与价值观可考虑加强一些。使学生在学习过程中去深刻感知金属的物理性质及合金的巨大使用价值。从方法和情感层面获得加强和熏陶,不失为一种教学创新。这样做对知识学习而言,可以变枯燥为生动;对过程与方法而言,可以获得实验探究、调查研究、归纳分析等训练;还可透过关于中国冶金发展史的学习对爱国情感的熏陶等等。同时,本课题教材联系学生生活常识较多。为扩大学习成果,在课前、课中及课后力求安排一些学生活动,以激发化学学习的持久兴趣及升华科学情结。因此,本课题的教学,以指导学生探究学习、发展学生认知能力为出发点及归宿而设计。 【教学目标】 知识与技能: 1、通过日常生活中广泛使用金属材料等具体事例,认识金属材料与人类生活和社会发展的密切关系。 2、了解常见金属的物理性质,知道物质的性质在很大程度上决定了物质的用途,但同时还需考虑如价格、资源以及废料是否易于回收等其他因素。 3、认识在金属中加热熔合某些金属或非金属可以制得合金,知道生铁和钢等重要合金,以及合金比纯金属具有更广泛的用途。 过程与方法: 1、引导学生自主实验探究金属的物理性质(重点探究导电、导热性等)。

2、通过讨论探究物质的性质与用途的关系,培养学生综合分析问题的能力。 3、通过查阅合金的资料,培养学生独立获取知识的能力。 情感态度与价值观: 1、通过实验探究活动让学生体验成功的喜悦,逐步养成在学习过程中敢于质疑敢于探究的良好品质。 2、通过调查考察认识化学科学的发展在开发新材料提高人类生存质量方面的重大意义和贡献。 【教学重点】1、引导自主探究金属的物理性质。 2、在交流学习中认识常见的合金并了解其广泛的用途。 【教学方法】引导探究;指导调察,收集资料整理归纳;组织小组讨论交流及分享等。【仪器、药品及其它】 1、学生收集日常生活中的金属材料。 2、学生查阅有关金属材料发展前景资料。 3、酒精灯、火柴、干电池、导线、小灯泡、砂纸、铜丝、铁丝、铝丝、铁架台、黄铜、铜、焊锡、锡、铁片、铅、铝片、铝合金。 4、教师制作多媒体课件。 课时安排:2课时

试验五金属相图

实验五 金属相图 一 实验目的 1. 了解热分析的测量技术 2. 掌握热分析法绘制Pb - Sn 合金相图的方法 二 实验原理 物质在不同的温度、压力和组成下,可以处于不同的状态。研究多相平衡体系的状态如何随温度、压力、浓度而变化,并用几何图形表示出来,这种图形称为相图。二组分体系的相图分为气-液体系和固-液体系两大类。本实验为后者也称凝聚体系,它受压力影响很小,其相图常用温度-组成的平面图表示。 热分析法(步冷曲线法)是绘制相图的常用方法之一。这种方法是通过观察体系在冷却(或加热)时温度随时间的变化关系,来判断有无相变的发生。通常的做法是先将体系全部熔化,然后让其在一定环境中自行冷却;并每隔一定的时间(例如半分钟或一分钟)记录一次温度。以温度(T )为纵坐标,时间(t )为横坐标,画出步冷曲线T -t 图。图5-1是二组分金属体系的一种常见类型的步冷曲线。 当体系均匀冷却时,如果体系不发生相变, 则体系的温度随时间的变化将是均匀的, 冷却也较快(如图中ab 线段)。若在冷却 过程中发生了相变,由于在相变过程中伴 随着热效应,所以体系温度随时间的变化 速度将发生改变,体系的冷却速度减慢, 步冷曲线就出现转折即拐点(如图中b 点 所示)。当熔液继续冷却到某一点时(例如 图中c 点),由于此时熔液的组成已达到最 低共熔混合物的组成,故有最低共熔混合物 析出,在最低共熔混合物完全凝固以前,体 系温度保持不变,因此步冷曲线出现水平线 段即平台(如图中cd 段)。当熔液完全凝固 后,温度才迅速下降(见图中de 线段)。 (a) 步冷曲线 图 5-1 步冷曲线 (b) A -B 体系相图 图 5-2 步冷曲线与相图

初中化学《金属与金属材料》单元教学设计以及思维导图

初中化学《金属与金属材料》单元教学设计以及思维导图适用年级九年级 所需时间课内共5学时,每周3课时,课外共3课时主题单元学习概述( 金属是现代生活和工业生产中应用及为普遍的一类重要物质。教材把金属的相关知识安排在氧气、水、二氧化碳及常见的酸、碱、盐等元素化合物知识之后,让学生在积累了相当多的关于非金属元素化合物的感性和理性认识的基础上,再来比较全面地认识有关金属元素化合物的知识,既有助于形成较系统的元素化合物知识体系、全面地认识物质之间的相互关系,又降低了学生学习的难度,体现了以人为本的教育理念。 单元教学目标 : 1、解金属和金属材料的主要特征及其应用。知道金属的重要化学性质和金属的活动性规律及其简单应用。 2、知道铁的冶炼原理、钢铁锈蚀的原因及其防护。 3、发展学生运用科学探究的方法学习化学、研究化学问题的能力。 4、认识“混合(熔合)”在改善物质性能、开发新材料方面的重要意义。 5、树立珍惜资源、爱护环境的意识,培养学生的科学精神和爱国主义热情。 重点: 金属的化学性质、金属活动性顺序及其简单应用、置换反应。 难点: 合金的性质、冶铁的原理、还原反应、钢铁锈蚀的原因。主题单元规划思维导图

主题单元学习目标 知识与技能: 1、了解金属与金属材料的主要特性及其应用。知道金属的重要化学性质和金属活动性规律及其简单应用 2、知道贴的冶炼原理、钢铁锈蚀的原因及其防护 3、认识混合在改善物质性能、开发新材料方面的重要意义 4、发展运用科学探究的方法学习化学、研究化学问题的能力过程与方法: 1、通过实验探究和交流讨论使其对金属制品的成分和各项性能及其用途的认识逐渐清晰、系统、深入 2、从复习金属化学性质入手,使学生对不同的金属化学活泼型不同产生一定的感性认识,在此基础上再来认识金属在水溶液与酸和盐反应的情况,归纳其活动规律 3、通过对钢铁锈蚀条件的探究,了解钢铁锈蚀的因素及防护措施 情感态度与价值观: 1、初步建立“混合”能改变物质性质的化学概念。通过混合能得到适合人类不同需要的合金 2、通过我国湿法冶金技术的介绍,增强学生民族自豪感和爱国主义情感 3、通过对钢铁锈蚀条件的探究,进一步加深对科学探究个要素的理解,提高学生的科学素养

Bi-Sn 二元金属相图的绘制(热电势法)实验报告

Sn—Bi二元金属相图的绘制(热电势法) 一、实验目的 1、用热电偶—电位差计测定Bi—Sn体系的步冷曲线,绘制相图; 2、掌握热电势法测定金属相图的方法; 3、掌握热电偶温度计的使用,学习双元相图的绘制; 二、实验原理 研究多相体系的状态随浓度、温度、压力等变量的改变而发生变化的规律,并用图形来表示体系状态的变化,这种图形就称为相图或称为状态图。用热分析法可绘制相图,测绘一系列不同组成的金属混合物的步冷线,然后把各步冷曲线上物态变化的温度绘在温度--组成图上,即把图中各步冷曲线的转折点和水平段所对应的温度用。表示在温度--组成图中,即得到该体系的相图。液相完全互溶的二组分体系,在凝固时有的能完全互溶成为固溶体,有的仅部分互溶,如本实验的Bi--Sn体系。 本实验用热电偶作为感温元件,自动平衡电位差计测量各样品冷却过程中的热电势,作出电位—时间曲线(步冷曲线),再由热电偶的工作曲线找出相变温度,从而作出Bi-Sn体系的相图。 三、实验仪器和试剂 坩埚电炉(含控温仪);自动平衡电位差计;冷却保温装置;样品管;杜瓦瓶;镍铬---镍铝(或含其他材料);热电偶. 锡(AR)232;铋(AR)271 四、实验步骤 1、准备工作 在杜瓦瓶中装入室温水,按图连接路线并检查线路。热电偶调零:在测温热电偶为室温温度时开启记录仪开关,调量程为10mV,走纸温度为0,调节零旋纽使记录笔位于记录纸左边零线处。这时位置所指温度热电势为0,代表温度为室温。 2、测量 (1)加热试样: 置纯Sn样品坩埚于管式电炉中,置电热偶温度计于坩埚中细玻璃管内,并插入底部.调调压器使加热电压为150mV,加热至坩埚中细玻璃管能动则说明试样已 熔化,停止加热。 (2)测量步冷曲线 当发现记录笔开始向左移动(降温)时,放下记录笔,调走纸速度为4mm/min,开始测量。当平台出现后一会抬起记录笔并调节走纸速度为0。 同上步骤,依次测量含Bi 30%,58% 的混合物。 五、实验数据记录及处理 1.测纯Sn的各样品电势变化

金属材料及热处理第六版习题册答案解析

金属材料与热处理习题册答案 绪论 一、填空题 1、成分、组织、热处理、性能之间。 2、石器时代、青铜器时代、铁器时代、钢铁时代、 人工合成材料时代。3、成分、热处理、性能、性能。 二、选择题: 1、A 2、B 3、C 三、简答题 1、掌握金属材料与热处理的相关知识对机械加工有什么现实意义? 答:机械工人所使用的工具、刀夹、量具以及加工的零件大都是金属材料,所以了解金属材料与热处理后相关知识,对我们工作中正确合理地使用这些工具,根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺必能的方法都具有非常的现实意义。 2、如何学好《金属材料与热热处理》这门课程? 答:在学习过程中,只要认真掌握重要的概念和基本理论,按照材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途这一内在关系进行学习和记忆;注意理论联系实际,认真完成作业和实验等教学环节,是完全可以学好这门课程的。 第一章金属的结构和结晶 1-1金属的晶体结构 一、填空题 1、非晶体晶体晶体 2、体心立方面心立方密排立方体心立方面心立方密排立方 3、晶体缺陷点缺陷面缺陷 二、判断题 1、√ 2、√ 3、× 4、√ 三、选择题 1、A 2、C 3、C 四、名词解释 1、晶格与晶胞:P5 答:将原子简化为一个质点,再用假想的线将它们连接起来,这样就形成了一个能反映原子排列规律的空间格架,称为晶格;晶胞是能够完整地反映晶体晶格特征的最小几何单元。 3、单晶体与多晶体 答:只由一个晶粒组成称为单晶格,多晶格是由很多大小,外形和晶格排列方向均不相同的小晶格组成的。 五、简答题书P6 □ 1-2纯金属的结晶 一、填空题

金属共晶相图

5.3.2 二元共晶相图 ①共晶相图: 当两组元在液态能无限互溶,在固态只能有限互溶,并具有共晶转 变,这样的二元合金系所构成的相图称为二元共晶相图。 如Pb-Sn ,Pb-Sb ,Cu-Ag ,Al-Si 等合金的相图都属于共晶相图。Pb-Sn 合金相 图是典型的二元共晶相图,见图5.26, 下面以它为例进行讲解。首先分析相图中 的点,线和相区。 图5.26 铅锡相图 一、相图分析 1、点: t A ,t B 点分别是纯组元铅与锡的熔点,为327.5o C 和231.9o C 。 M 点:为锡在铅中的最大溶解度点。N 点:为铅在锡中的最大溶解度点。 E 点:为共晶点,具有该点成分的合金在恆温183℃时发生共晶转变L E →αM +β N 共晶转变:是具有一定成分的液相在恆温下同时转变为两个具有一定成分和结构的固相的过程。 F 点:为室温时锡在铅中的溶解度。G 点:为室温时铅在锡中的溶解度。 2、t A Et B 线:为液相线,其中t A E 线:为冷却时L →α的开始温度线,Et B 线:为 冷 却时L →β的开始温度线。 t A MENt B 线:为固相线,其中t A M 线:为冷却时L →α的终止温度线,t B N 线: 为冷却时L →β的终止温度线。 MEN 线:为共晶线,成分在M~N 之间的合金在恒温183℃时均发生共晶转 变L E →(αM +βN )形成两个固溶体所组成的机械混合物,通常称为共晶体 或共晶组织。 MF 线:是锡在铅中的溶解度曲线。NG 线:是铅在锡中的溶解度曲线。

3、相区 (1)单相区:在t A Et B 液相线以上,为单相的液相区用L表示,它是铅与锡组成的合金溶液。 t A MF线以左为单相α固溶体区,α相是Sn在Pb中的固溶体。 t B NG线以右为单相β固溶体区,β相是Pb在Sn中的固溶体。 (2)两相区:在t A EMt A 区为L+α相区,在t B ENt B 区为L+β相区。在FMENGF区为α+β相区。 (3)三相线:MEN线为L+α+β三相共存线。由相律可知三相平衡 共存时,f=2-3+1=0,只能在恒温下实现。 具有共晶相图的二元系合金,通常可以根据它们在相图中的位置不同,分为以下几类:①成分对应于共晶点(E)的合金称为共晶合金,如Pb-Sn相图中含Sn61.9%的合金。②成分位于共晶点(E)以左,M点以右的合金称为亚共晶合金,如含Sn19%~61.9%的合金都是亚共晶合金。③成分位于共晶点(E)以右,N点以左的合金称为过共晶合金。如含Sn61.9%~97.5%的合金都是过共晶合金。④成分位于M点以左,N点以右的合金称为端部固溶体合金。如含Sn小于19%和大于97.5%的合金都是端部固溶体合金。 二.共晶系典型合金的平衡凝固过程分析 1.端部固溶体合金(10%Sn-Pb合金) 由图5.26可以看出,合金①冷却到t 1 温度时开始发生匀晶转变从L→α。随着 温度的降低α量不断增加,L量不断减少,并且α相的成分沿固相线t A M变,L 相的成分沿液相线t A E变。当冷却到t 2 温度时L全部转变成α相,继续降低温度 α相自然冷却不发生成分和相的变化。当冷却到t3温度时,Sn在α固溶体中达到饱和状态,因此随着温度的降低,它处于过饱和状态,多余的Sn以β固溶体的形式从α固溶体中析出,这时α固溶体的平衡成分沿MF线变化,相对量逐渐减少,而析出的β固溶体的平衡成分沿NG线变化,相对量逐渐增加。通常将固溶体中析出另一种固相的过程称为脱溶转变,脱溶转变的产物一般称为次生相或二次相。次生相β固溶体用β Ⅱ 表示,以区别从液相中直接凝固出的β固溶体。由于次生相是从固相中析出的,而原子在固相中的扩散速度慢,所以次生相一般都较细小,并分布在晶界上或固溶体的晶粒内部。由上述分析可知该合金在室温 时的组织为α+β Ⅱ,见图5.27。图中黑色基体为α相,白色颗粒为β Ⅱ 相。图5.28为该合金的平衡凝固过程示意图。

合金相图实验报告

一.实验目的 1.用热分析法测绘Sn-Bi二元低共熔体系的相图 2.学习步冷曲线绘制相图的方法 二.实验原理 相图是多相体(二相或二相以上)处于相平衡状态时体系的某种物理性质对体系的某一自变量作图所得的图形(体系的其它自变量维持不变),二元和多元体系的相图常以组成为自变量,其物理性质则大多取温度。由于相图能反映出多相平衡体系在不同条件下的相平衡情况,因此研究相体系的性质,以及多相平衡情况的变化要用相图的知识。 AB表示两个组分的名称,纵坐标是温度T,横坐标 是B的百分含量abc线上,体系只有液相存在,ace 所围的面积中有固相A及液相存在,bcf所围的中 有B晶体和个液相共存,c点有三相(AB晶体和饱 和熔化物)。 测绘相图就是要将图中这些分离相区的线画出来, 常用的实验方法是热分析法。所观察的物理性质是 被研究体系的温度。将体系加热熔融成均匀液体,然后冷却,每隔一定时间记录温度一次,一温度对时间作图,得到步冷曲线。 当一定组成的熔化物冷却时,最初温度随时间逐渐下降达到相变温度时,一种组分开始析出,随着固体的析出而放出凝固潜热,使体系冷却速度变慢,步冷曲线的斜率发生变化而出现转折点,转折点的温度即是相变温度。继续冷却的过程中,某组分析出的量逐渐增多而残留溶液中的量则逐渐减少,直到低共熔温度时,液相达到低共熔组成,两种组分同时互相饱和,两种组分的晶体同时析出,这时继续冷却温度将保持不变,步冷曲线出现一水平部分,直到全部溶液变为固体后温度才开始降低,水平停顿温度为最低共熔点温度。 如果体系是纯组分,冷却过程中仅在其熔点出现温度停顿,步冷曲线的水平部分是纯物质的熔点,图中b是图1中组成为P体系的步冷曲线,点2,3分别相当于图1中的G,H。因此取一系列不同组成的体系,做出它们的步冷曲线求出其转折点,就能画出相图。但是在实验过程中有时会出现过冷现象,这时必须外推求得真正的转折点。

金属材料的基本知识

一金属材料的基本知识 现代生产中,特别是机械行业中,大量使用各种金属材料,为了合理选择和使用金属材料,充分发挥金属材料的性能潜力,必须了解金属材料的性能。 金属材料的性能,一般可以分为两类:一类是使用性能,包括力学(机械)性能、物理性能、化学性能等,作为结构材料首先要考虑的是金属材料使用过程中在外力作用下所表现出来的特性;另一类是工艺性能,它包括铸造性能、切削性能、焊接性能、热处理性能等,它反映金属材料在制造加工过程中所表现出来的各种特性。 一、金属材料的力学性能 金属材料的力学性能是指金属材料在外力作用下所表现出来的特性,如:强度、塑性、弹性、硬度、韧性、疲劳、蠕变等。机械性能指标反映了金属材料在各种形式外力作用下抵抗变形或破坏的能力,是设计金属制件时选材和进行强度计算的主要依据。 1.强度 金属材料在静载荷作用下抵抗永久塑性变形和断裂的能力,称为强度。下面简要介绍拉伸曲线及由此得出的材料性能指标。 2.塑性 塑性是指金属材料在载荷作用下产生塑性变形而不破坏的能力。常用的塑性指标是延伸率δ和断面收缩率ψ,两个指标均为百分率(%)表示。 塑性指标在工程技术中具有重要的实际意义。塑性好的材料,适宜于各种压力加工,如:冲压、挤压、冷拔、热轧及锻造等;制成零件在使用时,万一超载,也能由于塑性变形使材料强度提高而避免突然断裂。 3.硬度 硬度是指材料抵抗其他硬物压入其表面的能力,它反映了材料抵抗局部塑性变形的能力。 常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 4.冲击韧性 冲击韧性是指金属材料抵抗冲击力而不破坏的能力。许多零件和工具在工作过程中,往往受到冲击载荷的作用,如冲床的冲头、锻锤的锤杆、内燃机的活塞箱、连杆及风动工具等,这些零件不仅要求具有足够的静载荷强度,而且要具有足够的抵抗冲击载荷的能力。冲击韧性用αk表示。 5.疲劳强度 许多机械零件,如轴、齿轮、弹簧等在交变应力下工作,虽然它们所承受的应力通常低于材料的屈服点,但在交变应力的长期作用下,材料在不发生明显的塑性变形、事前无察觉的情况下突然断裂,该现象称疲劳。由于疲劳断裂是突发性的,因此具有很大的危险性。 钢和铸铁是现代化工业中应用最广泛的金属材料,形成钢和铸铁的主要元素是铁和碳,故又称铁碳合金。不同成分的铁碳合金具有不同的组织和性能。若要了解铁碳合金成分、组织和性能之间的关系,必须研究铁碳合金相图。 二、铁碳合金相图 1、铁碳合金的基本组织 铁碳合金的基本组织有:铁素体、奥氏体、渗碳体、珠光体和莱氏体。 铁素体(F):碳溶于α-Fe中形成的间隙固溶体 1.晶格类型:体心立方晶格

金属材料相图及物理性能计算软件--JMatPro V8_0简介

金属材料相图及物理性能计算软件 JMatPro V8.0

JMatPro包含的合金类型 JMatPro软件包含一系列宽范围的合金类型,目前可以计算的合金类型包含铝合金、镁合金、铸铁、不锈钢、高中低合金钢、钴合金、镍基合金、镍铁基合金、镍基单晶超合金、钛合金、锆合金、焊料合金(锡焊)、铜合金; JMatPro 的主要特点 独一无二性 可以毫不夸张的说,JMatPro是金属材料性能计算方面的独一无二的软件。在美国能源部的National Energy Technology Laboratory决定采用此软件时,软件采购负责人R. Mohn 写到: “This purchase order is being issued to Sente Software Inc because there is no alternative since they are the manufacturer of JMatPro and, as such, is the only source of this software. No other vendor can supply this software. This software is the only reliable, commercially available software available to make calculations for stable and metastable phase equibria; solidification behavior and properties; thermo-physical and physical properties; phase transformations; chemical properties; and mechanical properties for number of nickel-based and iron-based superalloys…” 快速和正确的计算能力 JMatPro是以强大而稳定的热力学模型、热力学数据为核心技术和计算基础的,所有物理模型的建立都经过了广泛的验证,以确保材料性能计算的准确性。JMatPro的计算速度非常快,通常情况下都能在一分钟之内完成。快速运算的最直接的优势是,用户可以快速实验自己的材料配方,并在自己的电脑前完成想要的计算。JMatPro采用硬件加密的形式,这样多个用户可以购买单机版的软件轮流进行计算。 人性化的使用体验 JMatPro使用方便的图形化用户界面,是一款非常简单的软件,任何工程师或者科学家即使没有高深的材料热力学、相图计算的知识,也能非常容易的使用此软件。一般情况下经过不到半个小时的学习就可以完全自主使用了。用户可以很方便的存储自己的计算结果,图形,表格或数据。 JMatPro支持Windows NT4、Windows 2000、Windows XP 、Windows Vista、Windows 7(32/64位)操作系统,如果您使用其他操作系统,请及时与我们联系。

相关文档
最新文档