天然气制氢装置开工方案要点

天然气制氢装置开工方案要点
天然气制氢装置开工方案要点

天然气制氢装置开工方案要点

1.1

1.1装置的检查

装置中交验收后,操作人员应进行一次全面检查,以确保正常开工

1.1.1工艺准备

1、外表有无缺陷,施工中有无碰损痕迹。

2、保温是否完整,油漆有无脱落或锈蚀现象。

3、基础有否缺陷,地角是否紧固。

4、内部构件有否缺漏,安装是否紧固。

5、螺栓垫片是否符合规定。

6、设备位号刷写是否正确,位置是否合适。

1.1.2管道及附件

1、管道是否规格、整齐,保温是否完整,油漆有无脱落现象

2、管架有无倾斜、塌陷、扭曲、断裂现象,基础和地脚是否完整紧固。

3、阀门、法兰、螺栓、垫片是否符合规格

4、管道是否按要求进行了涂色,流向标志是否正确清晰。

5、阀门位置是否合适,手轮方向是否有利于操作,盘根是否短缺。

6、放空点、导淋口安排是否合理,采样口有无缺陷。

1.1.3机泵

1外表有无缺陷,安装和施工有无敲、打、铲、咬痕迹;油漆有无脱落现象。

2零部件是否齐全,联轴节和飞轮是否安装了防护罩。

3基础及地脚有无缺陷

1.1.4仪表

1、感测元件、变送器、调节阀等安装位置和方向是否正确。

2、在CRT上检查全部组态数据是否完整正确。

3、做启动试验,检查调节阀对参数是否反应灵敏,有无卡滞现象,报警和联锁是否可靠。

1.1.5电气

1、检查绝缘、防爆和连接地是否符合要求

2、做送电试验

1.1.6安全设施

1、检查安全阀定压记录是否符合设计规定

2、消防设施和急救器材是否齐备。

2.1.1保温系统的改造,投运及装置的防冻防凝

根据内蒙古地区冬季寒冷的特点,保温尽量用0.8MPa以上的伴热蒸汽,针对本装置水多气多的特点加强伴热的合理设计和投运。由于要冬季开车这方面更应该注意。

1、装置内所有伴热线全部按要求用风吹通后方可集体投运,不允许着急开工部分投运。

2、现场蒸汽导淋要严加管理集中排送,防止装置内结冰。

3、伴热蒸汽线全部投用,并保持畅通。热凝结水界区总阀开。

4、工艺系统电伴热调试合格后投用。

5、1.0MPa蒸汽总管站隔站停用,并用氮气吹净管内存水(根据阀内漏无法停用者,视环境温度调整排气量大小)

6、汽提塔、除氧器的蒸汽线一经投用,关闭后均保持小流

量运行。

天然气制氢的基本原理及工业技术进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下:

1)可逆反应在一定的条件下,反应可以向右进行生成CO 和H2,称为正反应;随着生成物浓度的增加,反应也可以 向左进行,生成甲烷和水蒸气,称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO 和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以 生成一分子CO和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含 量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使 正反应进行的更快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的 参与的条件下,反应的速度缓慢。只有在找到了合适的催化 剂镍,才使得转化的反应实现工业化称为可能,因此转化反 应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速率对反应温度升高而加快,扩散

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

刍议天然气制氢工艺现状及发展

刍议天然气制氢工艺现状及发展 发表时间:2018-10-17T16:12:02.377Z 来源:《电力设备》2018年第18期作者:毛祝斌沈念磊 [导读] 摘要:科学技术是第一生产力,随着我国科学技术水平的不断提升,大量先进工艺和技术涌现,在各个行业领域中应用,大大促进了社会进步和经济发展。 (新疆美克化工股份有限公司新疆维吾尔自治区巴音郭楞蒙古自治州 841000) 摘要:科学技术是第一生产力,随着我国科学技术水平的不断提升,大量先进工艺和技术涌现,在各个行业领域中应用,大大促进了社会进步和经济发展。天然气制氢工艺作为一种主流生产工艺,在一些天然气规模较大的区域应用,可以有效提升制氢水平,满足社会大量氢气需要。但是,天然气制氢工艺在实际应用中耗能高,燃料成本在总成本占比超过平52%,尤其是当前天然气价格持续升高,其中所存在的不足逐渐暴露出来,有待进一步改进和完善。本文就天然气制氢工艺发展现状进行分析,寻求合理措施予以改进。 关键词:天然气;制氢工艺;蒸汽;脱硫 天然气制氢工艺在实际应用中,可以借助大量的天然气制取氢气,取得了较为可观的工业化成果。我国现有的天然气制氢装置主要是以国外引进的技术为主,整齐转化工序仍然需要国外先进技术工艺支持,但是在PSA工艺技术方面,国内逐渐开发出相应具备工业化应用的条件。尤其是在加压蒸汽转化方面具备独特的优势,工艺经过长期发展和完善较为成熟,以其独特的优势得到了广泛应用。加强天然气制氢工艺的发展阐述,可以为后续工艺改进和完善提供参考。 一、传统天然气制氢工艺 (一)原料气处理单元 原料气处理单元是传统天然气制氢工艺的基础环节,直接决定着后续的天然气制氢质量和效果。在这个阶段,主要是以脱硫为主,通过应用适量的脱硫剂实现对天然气脱硫处理,但是由于原料气量较大,所以首先借助离心式压缩机进行压缩处理,然后对天然气整流处理,回炉前完成脱硫[1]。而新工艺的出现,主要是采用了新脱硫技术,原材料的消耗成本相较于传统工艺低一半的费用。尤其是蒸馏新技术的应用,实现催化剂加速反应,进一步提升整流效率和质量,实现热量二次回收,带来可观的经济效益同时,满足节能降耗要求,变换气工作顺利进行。 (二)蒸汽转化单元 蒸汽转化单元阶段处理过程较为复杂,水蒸气作为氧化剂,受到镍催化剂的作用影响,促使烃类物质发生转化,可以获取转化气。不同的转化炉结构和形式不同,在热补偿器和管道固定方式方面存在明显差异。在此阶段,通过高温转化与低水炭比工艺参数,可以实现资源的节能环保,带来更加可观的经济效益。 (三)CO变换单元 原料气中还有大量的CO,在转化过程中受到催化剂影响,有助于CO和水蒸汽产生反应,进而生成H2和CO2物质。在这个阶段,主要是在350℃~400℃高温环境和低于300℃~350℃中低温环境下进行。伴随着科学技术快速发展,在满足转化需要的同时,降低资源消耗和生产成本[2]。 (四)氢气提纯单元 在氢气提纯单元阶段,多数制氢工艺采用的变压吸附净化系统能耗较低,较之高能耗的脱碳净化系统而言资源消耗与生产成本更低,进一步优化生产流程,将富氢气切割到其他吸附塔中,在降低吸附塔生产压力和疲劳程度的同时,切实提升缓压速度,实现高浓度的氢气制取。这个阶段十分关键,直接关乎到制氢质量,需要严格控制。 二、天然气制氢工艺发展方向 (一)高温裂解制氢工艺 伴随着科学技术的快速发展和创新,天然气制氢工艺发生了不同程度上的改进发展,在高温裂变方面尤为突出。高温环境下,天然气裂变出氢和碳元素,生产期间并不会产生CO2,这个环节较为节能环保,协调经济效益和生态效益增长,呈现良好的发展前景[3]。 (二)自然重整制氢 在天然气制氢过程中,从外部供热转变到内部供热,可以实现资源的合理开发和利用,将反应产生的热量回收利用,被其他需要热量的生产环节所利用。此项技术在实际应用中,在耦合器中反应产生了大量热量,主要是天然气燃烧反应产生,实现水蒸汽的充分反应,满足反应自供热需要。需要注意的是,通过对自热重整反应器的强吸热反应和强放热反应分布进行,需要借助不锈钢管制作成的高端抗高温仪器在一定程度上增加了天然气制氢成本,影响到生产水平[4]。 (三)绝热转化制氢工艺 绝热转化制氢工艺水平较高,主要是将反应原料为部分氧化反应,可以实现对制氢环节的有效控制,提升天然气制氢水品的同时,实现制氢速度的有效控制。天然气制氢工艺主要是采用空气痒源,此种工艺流程短,操作便捷、安全,降低投资成本和制氢成本的同时,带来更大的经济效益和生态效益。 (四)天然气部分氧化制氢工艺 天然气部分氧化制氢工艺在实际应用,相较于传统的蒸汽重整工艺而言优势更为突出,可以有效降低能源消耗和生产成本。在这个过程中,采用的耐火材料较低,需要纯度较高的氧气支持,并借助高温无机陶瓷氧化器实现,在一定程度上增加了生产成本,提升生产效率,带来更大的经济效益。 三、天然气制氢工艺的价值分析 氢气是一种化工产品,在实际生产生活中应用较为广泛,不仅仅局限在轻工业领域,同时在重工业领域中应用。在当前可持续发展背景下,人们的环保意识不断提升,而氢气作为一种可再生的资源,应用领域包括电子、医药、电气和精细化工等行业。但是,传统制氢工艺成本高、生产效率低,还会对生态环境带来不同程度上的污染和破坏。借助天然气制氢工艺降低资源消耗的同时,提升生产效率,制取浓度更纯的氢气。 我国在制氢工艺过程中,加大型转化炉和配套的大型压缩机、大型PSA设备和耐用催化剂等方面较之国际水平存在很大差距,其中还有很多缺陷和不足有待进一步改进和完善。

天然气制氢

天然气制氢 1.制氢原理 1.天然气脱硫本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1?5%1 勺氢,在约400C高温 下发生下述反应: RSH+H 2=H2S+RH H 2S+MnO=MnS2+OH 经铁锰系脱硫剂初步转化吸收后,剩余勺硫化氢,再在采用勺氧化锌催化剂作用下发生下述脱硫反应而被吸收: H 2S+ZnO=ZnS+2OH C 2H5SH+ZnO=ZnS+2HC4+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至O.lppm以下,以满足蒸汽转化催化剂对硫的要求。 2蒸汽转化和变换原理原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃--- 蒸汽转化反应, 主要反应如下: CH 4+H3CO+3HQ ⑴ 一氧化碳产氢CO + H 2O CO2 + H 2 +Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积炭,氧化等。 在转化反应中,要使转化率高,残余甲烷少,氢纯度高,反应温度就要高。但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积炭,增加收率,要控制较大的水碳比。 3变换反应的反应方程式如下: CO+H 2O=CO2+H2+Q 这是一个可逆的放热反应,降低温度和增加过量的水蒸汽,均有利于变换反应向右侧进行,变换反应如果不借助于催化剂,其速度是非常慢的,催化剂能大大加速其反应速度。为使最终CO浓度降到低的程度,只有低变催化剂才能胜任。高低变串联不仅充分发挥了两种催化剂各自的特点,而且为生产过程中的废热利用创造了良好的条 4改良热钾碱法 改良热钾碱溶液中含碳酸钾,二乙醇胺及VO。碳酸钾做吸收剂、二乙醇胺做催化剂、它起着加快吸收和解吸的作用。VO5为缓蚀剂,可以使碳钢表面产生致密的保护膜,从而防止碳钢的腐蚀。KCO吸收CO的反应机理如下: K2CO+CO+H

天然气制氢装置技术方案

目录 一、原料/燃料气条件 (2) 二、产品及要求 (2) 三、工艺技术方案 (2) 1. 工艺流程示意图 (2) 2. 工艺原理 (3) 3. 装置国产化水平 (4) 四、消耗指标 (4) 1. 氢气产品 (4) 2. 消耗 (4) 五、制氢装置生产成本估算 (5) 六、装置投资 (5) 七、说明 (5) 八、附件 (5)

一、原料气条件 原料气:天然气 温度:40℃ 压力:3.6MPa(G) 低热值:8795kcal/Nm3 组分: 组分含量%(体积) CH4 92.81 C2H6 4.255 C3 H8 0.783 iC4 H10 0.129 nC4 H10 0.129 iC5 H12 0.054 nC5 H12 0.024 C6+ 0.032 H2 0.02 N2+Ar 0.774 CO2 0.99 总S ≤20ppm ∑ 100.00 二、产品及要求 产品气:氢气 三、工艺技术方案 1. 工艺流程示意图 工艺流程示意图

2. 工艺原理 (1)烃类蒸汽转化 烃类的蒸汽转化是以水蒸汽为氧化剂,烃类物质与水蒸汽在镍催化剂的作用下进行反应,从而得到合成气。这一过程为吸热过程,需外供热量。一段转化炉转化所需的热量由转化管外的高温燃烧烟气提供。一段转化气进入二段转化炉后与适量的氧气混合,进行H 2与O 2的燃烧反应及CH 4部分氧化反应,所产生的热量供二段转化气中的甲烷进行深度转化。 在镍催化剂存在下烃类蒸汽转化反应为: 烃类蒸汽一段转化反应 CH 4+H 2O CO+3H 2-Q 6 C n H 2n+2+nH 2O nCO+(2n+1)H 2-Q 7 CO+H 2O H 2+CO 2+Q 8 二段转化反应 22291O H O()Q 2 H +=汽+ CH 4+2O 2 CO 2+2H 2+Q 2212 CO O CO Q +=+ 上述反应放出的反应热足以将二段转化炉炉头温度升至1200~1400℃,这就为二段炉内CH 4深度转化反应提供了足够的热源,发生如下转化反应: CH 4+H 2O CO+3H 2-Q CO+H 2O H 2+CO 2+Q (2)MDEA 脱碳 活化MDEA 法脱碳工艺原理简述如下: MDEA 化学名为N-甲基二乙醇胺,分子式C 5H 13NO 2,分子量119.17。 MDEA 与CO 2的反应如下: 2232323CO H O H HCO H R NCH R CH NH +- +++++= 上面二式相加为总反应: 2322233R NCH H O CO R CH NH HCO -++=++ CO 2和H 2O 的反应的速度很慢,为MDEA 吸收CO 2反应的控制步骤,加活化

天然气转化制氢工艺进展及其催化剂发展趋势

专论与综述 天然气转化制氢工艺进展及其催化剂发展趋势 催化剂厂谢建川 摘 要 介绍了以天然气为原料的转化制氢工艺技术的发展概况以及天然气蒸汽转化用催化剂的发展趋势。 关键词 天然气 转化 催化剂 自从20世纪中期天然气在美国得以发展,壳牌化学公司首次在世界上用天然气生产合成氨以来,转化制氢工艺在世界范围内迅速发展。天然气、油田伴生气、焦炉气、石脑油(国内称为轻油)、渣油、炼厂气和煤等成为了当今制氢、制氨原料的主流。就转化制氢制氨工艺而言,其发展主要是以节能、降耗、扩产、缩小装置尺寸、降低投资费用以及延长运转周期等为目标进行工艺改进。而在转化催化剂方面,国内外研究人员也进行了大量的研究开发工作,主要是围绕不同原料和不同工艺开发新型转化催化剂,并且还要保证开发的新催化剂在适合于不同原料和工艺的前提下,提高催化剂的活性、抗压强度、抗碳性和抗毒性等。 1 天然气转化制氢工艺进展 我国自20世纪70年代从国外引进大型合成氨装置,现已有14套以天然气或炼厂气为原料的大型合成氨装置。近年来国外推出了一系列节能型工艺,如美国Kellogg公司MEAP节能流程, Tops e公司低能耗流程;美国Braun低能耗深冷净化工艺,I CI的AMV节能工艺以及德国UHDE-I C I-AMV工艺等,主要从以下几方面达到节能降耗的目的。 (1)将传统流程转化炉的热效率从原有的85%提高到90%~92%,烟气排出温度降至120 ~125 ,增加燃烧空气预热器等。 (2)提高一段炉操作压力,由原来的2.8M Pa 提高到4.0~4.8MPa。 (3)降低一段炉出口温度,由原来的820 降到695~780 。 (4)转化炉管采用新型材料MANAUR I T E (25C r-35N-i Nb-T i),使管壁厚度降低,并使管壁中因温度梯度造成的热应力降低至接近内部压力的水平,与HK-40转化管相比,工作寿命更长,性能更稳定。 (5)降低水碳比,由原来的3.5降到2.5~ 2.7。 (6)增加二段炉燃烧空气量,提高燃烧空气温度至610~630 ,采用性能更好的二段燃烧器。 (7)降低一段炉负荷,增加预转化工艺,将一段炉负荷部分转移到二段炉。 预转化工艺是在一段炉前,在较低的水碳比下进行原料的预转化,主要用于以石脑油等高碳烃为原料的转化制氢工艺。但近年来为了降低一段炉负荷,达到增产节能,提高效益,以天然气为原料的装置,在新建和改造中也开始采用预转化工艺技术。国内锦西大化就率先采用了该技术。 Tops e公司首次在合成氨装置中采用预转化技术是在20世纪80年代,使现有制氢装置在增产节能方面取得了明显效果:减少了一段炉燃烧量,增加生产能力,延长了炉管使用周期,降低了工艺蒸汽使用量,减少了设备投资以及在装置改造中的所谓瓶颈问题。国外使用预转化工艺除了在制氢制氨厂使一部分甲烷转化成氢或使部分石脑油预转化为较低级的甲烷外;另一方面是用石脑油制取富甲烷气,可直接作城市煤气使用,也

天然气制氢成本

天然气制氢 一、装置概况 20万吨/年天然气制硝酸铵装置配套,10万吨/年合成氨装置,需要氢气量25625Nm3/h. 本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成,工艺路线及产品规格 该制氢装置已天然气为原料,采用干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换, PSA工艺制得产品氢气。 二、天然气制氢工艺原理 2.1 天然气脱硫 本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反应: RSH+H2=H2S+RH H2S+MnO=MnS+H2O 经铁锰系脱硫剂初步转化吸收后,剩余的硫化氢,再在采用的氧化锌催化剂作用下发生下述脱硫反应而被吸收: H2S+ZnO=ZnO+H2O C2H5SH+ZnS+C2H5+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。 2.2蒸汽转化和变换原理 原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反应,主要反应如下: CH4+H2O= CO+3H2-Q (1) 一氧化碳产氢 CO+H2O=CO2+H2+Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。 在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积碳,增加收率,要控制较大的水碳比。

天燃气制氢操作规程

天然气制氢 第一章天然气制氢岗位基本任务 以天燃气为原料的烃类和蒸汽转化,经脱硫、催化转化、中温变化,制得丰富含氢气的转化气,再送入变压吸附装置精制,最后制得纯度≥99.9%的氢气送至盐酸。 1.1工艺流程说明

由界区来的天然气压力为1.8~2.4MPa,经过稳压阀调节到1.8Mpa,进入原料分离器F0101后,经流量调节器调量后入蒸汽转化炉B0101对流段的原料气预热盘管预热至400℃左右,进入脱硫槽D0102,使原料气中的硫脱至0.2PPm以下,脱硫后的原料气与工艺蒸汽按水碳比约为3.5进行自动比值调节后进入混合气预热盘管,进一步预热到~590℃左右,经上集气总管及上猪尾管,均匀地进入转化管中,在催化剂层中,甲烷与水蒸汽反应生产CO和H2。甲烷转化所需热量由底部烧咀燃烧燃料混合气提供。转化气出转化炉的温度约650--850℃,残余甲烷含量约3.0%(干基),进入废热锅炉C0101的管程,C0101产生2.4MPa(A)的饱和蒸汽。出废热锅炉的转化气温度降至450℃左右,再进入转化冷却器C0102,进一步降至360℃左右,进入中温变换炉。转化气中含13.3%左右的CO,在催化剂的作用下与水蒸气反应生成CO2和H2,出中变炉的转化气再进入废热锅炉C0101的管程换热后,再经锅炉给水预热器C0103和水冷器C0104被冷至≤40℃,进入变换气分离器F0102分离出工艺冷凝液,工艺气体压力约为1.4MPa(G)。 燃料天然气和变压吸附装置来的尾气分别进入转化炉的分离烧嘴燃烧,向转化炉提供热量≤1100℃。 为回收烟气热量,在转化炉对流段内设有五组换热盘管:(由高温段至低温段)蒸汽-A原料混合气预热器, B 原料气预热器,C烟气废锅,D燃料气预热器, E尾气预热器 压力约为1.4的转化工艺气进入变化气缓冲罐,再进入PSA装置。采用5-1-3P,即(5个吸附塔,1个塔吸附同时3次均降)。常温中压下吸附,常温常压下解吸的工作方式。每个吸附塔在一次循环中均需经历;吸附A,→一均降E1D,→二均降E2D,→顺放PP,→三均降E3,→逆放D,→冲洗P,→三均升E3R,→二均升E2R,→一均升E1R,→终升FR,等十一个步骤。五个吸附塔在执行程序的设定时间相互错开,构成一个闭路循环,以保证转化工艺气连续输入和产品气不断输出。 1.2原料天然气组份表

天然气制氢装置工艺技术规范

天然气制氢装置工艺技术规程 1.1装置概况规模及任务 本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成 1.2工艺路线及产品规格 该制氢装置已天然气为原料,采纳干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换, PSA工艺制得产品氢气。 1.3消耗定额(1000Nm3氢气作为单位产品) 2.1工艺过程原料及工艺流程 2.1.1工艺原理 1.天然气脱硫 本装置采纳干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采纳铁锰系转化汲取型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400℃高温下发生下述反应:

RSH+H2=H2S+RH H2S+MnO=MnS+H2O 经铁锰系脱硫剂初步转化汲取后,剩余的硫化氢,再在采纳的氧化锌催化剂作用下发生下述脱硫反应而被汲取: H2S+ZnO=ZnO+H2O C2H5SH+ZnS+C2H5+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流淌方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。 2.蒸汽转化和变换原理 原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃—蒸汽转化反应,要紧反应如下: CH4+H2O= CO+3H2-Q (1) 一氧化碳产氢 CO+H2O=CO2+H2+Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。 在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能力和能耗,因此炉温不宜太高。为缓和

1500Nm3-h天然气转化制氢装置项目建议书

xxxx集团有限公司 1500Nm3/h天然气转化制氢装置 项目建议书 编号:xxxx-xxxx-1112

一、总论 1.1 装置名称及建设地点 装置名称:1500Nm3/h 天然气制氢装置 建设地点:xxxx 1.2 装置能力和年操作时间 装置能力: :1500Nm3/h; H 2 纯度: ≧99.99(V/V) 压力≧2.0 MPa(待定) 年操作时间:≧8000h 操作范围:40%-110% 1.3 原料 天然气(参考条件,请根据实际组分修改完善): 1.4 产品 氢气产品

1.5 公用工程规格 1.5.1 脱盐水 ●温度:常温 ●压力:0.05MPa(G) ●水质:电导率≤5μS/cm 溶解O2 ≤2 mg/kg 氯化物≤0.1 mg/kg 硅酸盐(以SiO2计) ≤0.2 mg/kg Fe ≤0.1 mg/kg 1.5.2 循环冷却水 ●供水温度:≤28℃ ●回水温度:≤40℃ ●供水压力:≥0.40MPa ●回水压力:≥0.25MPa ●氯离子≤25 mg/kg 1.5.3 电 ●交流电:相数/电压等级/频率 3 PH/380V/50Hz ●交流电:相数/电压等级/频率 1 PH/220V/50Hz ● UPS交流电:相数/电压等级/频率 1 PH/220V/50Hz 1.5.4 仪表空气 ●压力: 0.7MPa

●温度:常温 ●露点: -55 ℃ ●含尘量: <1mg/m3,含尘颗粒直径小于3μm。 ●含油量:油份含量控制在1ppm以下 1.5.5 氮气 ●压力: 0.6MPa ●温度: 40℃ ●需求量:在装置建成初次置换使用,总量约为5000 Nm3 正常生产时不用 1.6 公用工程及原材料消耗 注:电耗与原料天然气压力有关。

天然气制氢工艺与技术

天然气制氢工艺与技术 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。 天然气制氢就是众多天然气产品中的一种,辽河油田作为全国第三大油气田,本身就具有丰富的天然气资源,特别是从事油气集中处理企业,我们在油气生产过程中,能够生产出相当规模的伴生干气,对于天然气深加工具有得天独厚的条件,对于推进天然气制氢工艺的开发推广具有更为广泛的实际意义。 1 天然气制氢的选择理论分析 氢作为一种二次化工产品,在医药、精细化工、电子电气等行业具有广泛的用途。特别是氢作为燃料电池的首选燃料,在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将占有越来越重要的位置。采用传统制氢的方法,如轻烃水蒸气转化制氢、水电解制氢、甲醇裂解制氢、煤汽化制氢、氨分解制氢等,技术相对成熟,但是,存在成本高、产出率低、人工效率低等“一高两低”的问题。辽河油田在油气生产过程中,有干气、石脑油等烃类资源伴生,采用此类方法生产氢,可以实现资源的利用率最大化,而且伴生天然气的主要成分是甲烷,利用烃类蒸汽转化即可制成氢,且生产纯度高,生产效率高。 2 天然气制氢工艺原理 天然气的主要加工过程包括常减压蒸馏、催化裂化、催化重整和芳烃生产。同时,包括天然气开采、集输和净化。在一定的压力和一定的高温及催化剂作用下,天然气中烷烃和水蒸气发生化学反应。转化气经过费锅换热、进入变换炉使CO变换成H2和CO2。再经过换热、冷凝、汽水分离,通过程序控制将气体依序通过装有三种特定吸附剂的吸附塔,由变压吸附(PSA)升压吸附N2、CO、CH4、CO2提取产品氢气。降压解析放出杂质并使吸附剂得到再生. 反应式:CH4+H2O→CO+3H2-Q CO+H2O→CO2+H2+Q 主要技术指标。压力: 1.0-2.5MPa;天然气单耗: 0.5-0.56Nm3/ Nm3氢气;电耗: 0.8-1.5/ Nm3氢气;规模: 1000 Nm3/h ~100000 Nm3/h;纯度: 符合工业氢、纯氢(GB/T7445-1995);年运行时间: 大于8000h。 3、天然气水蒸汽重整制氢需解决的关键问题

天然气制氢技术的不同方法

几种天然气制氢技术的介绍 1、天然气部分氧化制氢技术 天然气氧化制氢技术和传统的蒸汽重整方法相比,其能耗相比较而言是低的,主要采用比较低廉的耐火材料堆砌反应,但是这个过程也需要纯度比较高的氧气,这也无形中增加了制氧成本和设备成本,天然气催化部分的氧化器主要是采用了高温无机陶瓷,这样能够将廉价制氧和制氢相结合。 2、自热重整制氢 这个工艺流程转变了由外部供热到内部自己提供热源,对能源利用比较合理,这个过程主要是在反应产生的热量能够被其他反应需要热量所利用,实现自身供热。这个技术的工作原理就是在反应器中耦合了一些热量,这些热量主要是天然气燃烧反应所产生,同时还可以天然气水蒸气进行反应,能够实现反应的自供热。另外,由于自热重整反应器中强放热反应和强吸热反应分步进行,这个过程仍然需要一些高端抗高温的仪器,这些仪器主要有不锈钢管,在也就增加了天然气制氢的成本,同时还有生产力低下等一下缺点。 3、高温裂解制氢技术 天然气高温裂解制氢是天然气经高温催化分解为氢和碳该过程由于不产生 二氧化碳,被认为是连接化石燃料和可再生能源之间的过渡工艺过程。辽河油田对于天然气高温催化裂解制氢,广泛开展了大量研究工作,所产生的碳能够具有特定的重要用途和广阔的市场前景。 4、绝热转化制氢技术 绝热转化制氢技术在当前比较先进,这种技术最大的特点就是其反应原料为部分氧化反应,能够提高天然气制氢装置的能力,可以更好地控制速度步骤。天然气转化制氢工艺主要采用的是空气痒源,设计的含有氧分布器的反应器可解决催化剂床层热点问题及能量的合理分配,催化材料的反应稳定性也因床层热点降低而得到较大提高,天然气绝热转化制氢在加氢站小规模现场制氢更能体现其生产能力强的特点,并且该新工艺具有流程短和操作单元简单的优点,通过该工艺能够降低投资成本和制氢成本,能够提高企业的经济效益。

制氢装置

天然气制氢 天然气制氢 由天然气蒸汽转化制转化气和变压吸附(PSA)提纯氢气两部分组成。压缩并脱硫后天然气与水蒸汽混合后,在镍催化剂的作用下于高温下将天然气烷烃转化为氢气、一氧化碳和二氧化碳的转化气,转化气可以通过变换将一氧化碳变换为氢气,成为变换气,然后,转化气或者变换气通过变压吸附过程,得到高纯度的氢气。 1.1.1.1 工艺原理 1)原料气脱硫 原料天然气经转化炉对流段加热到300~380℃后,原料气通过加氢催化剂, 完成烯烃加氢饱和,同时将有机硫转化成无机硫;原料经过加氢饱和及有机硫转 化后,再通过氧化锌脱硫剂,将原料气中的H2S脱至0.1PPm以下,以满足镍 系蒸汽转化催化剂对硫的要求,其主要反应(以硫醇和噻酚为例)如下: RSH+H2→H2S+RH C4H4S+4H2→H2S+C4H10 H2S+ZnO→ZnS+H2O 2)烃类的蒸汽转化 天然气硫脱至0.1PPm以下后与工艺蒸汽按3.2~3.8比例混合,进入混合 气预热盘管进一步预热至530~580℃进入转化管,在催化剂床层中,甲烷与水 蒸汽反应生成H2和CO,CO继续与水蒸汽反应生成CO2。甲烷转化所需热量 是由燃烧燃料混合气提供。在镍催化剂存在下其主要反应如下: CH4+H20(汽) = CO +3H2-49200Kcal/Kmol(转化反应) CO+H20(汽) = CO2 +H2+9840Kcal/Kmol (变换反应) 高级烷烃的裂解反应(400~600℃) CnH2n+2+nH2O(蒸汽) =(2n+1) H2 + n CO 3)一氧化碳变换反应 转化气经废热锅炉回收热量后,温度降至360℃左右进入中温变换炉,在铁

天然气制氢

天然气制氢 利用天然气制氢,存在成本低,规模效应显著等优点,研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证。天然气作为优质、洁净的工业能源,在我国能源发展过程中具有重要的战略意义。因为天然气不仅是人们日常生活的重要燃料,同时也是众多化工次产品的基础性原料。 天然气制氢就是众多天然气产品中的一种,辽河油田作为全国第三大油气田,本身就具有丰富的天然气资源,特别是从事油气集中处理企业,我们在油气生产过程中,能够生产出相当规模的伴生干气,对于天然气深加工具有得天独厚的条件,对于推进天然气制氢工艺的开发推广具有更为广泛的实际意义。 1 天然气制氢的选择理论分析 氢作为一种二次化工产品,在医药、精细化工、电子电气等行业具有广泛的用途。特别是氢作为燃料电池的首选燃料,在未来交通和发电领域将具有广阔的市场前景,在未来能源结构中将占有越来越重要的位置。采用传统制氢的方法,如轻烃水蒸气转化制氢、水电解制氢、甲醇裂解制氢、煤汽化制氢、氨分解制氢等,技术相对成熟,但是,存在成本高、产出率低、人工效率低等“一高两低”的问题。辽河油田在油气生产过程中,有干气、石脑油等烃类资源伴生,采用此类方法生产氢,可以实现资源的利用率最大化,而且伴生天然气的主要成分是甲烷,利用烃类蒸汽转化即可制成氢,且生产纯度高,生产效率高。 2 天然气制氢工艺原理 天然气的主要加工过程包括常减压蒸馏、催化裂化、催化重整和芳烃生产。同时,包括天然气开采、集输和净化。在一定的压力和一定的高温及催化剂作用下,天然气中烷烃和水蒸气发生化学反应。转化气经过费锅换热、进入变换炉使CO变换成H2和CO2。再经过换热、冷凝、汽水分离,通过程序控制将气体依序通过装有三种特定吸附剂的吸附塔,由变压吸附(PSA)升压吸附N2、CO、CH4、CO2提取产品氢气。降压解析放出杂质并使吸附剂得到再生. 反应式:CH4+H2O→CO+3H2-Q CO+H2O→CO2+H2+Q 主要技术指标。压力:1.0-2.5MPa;天然气单耗: 0.5-0.56Nm3/ Nm3氢气;电耗: 0.8-1.5/ Nm3氢气;规模: 1000 Nm3/h ~100000 Nm3/h;纯度: 符合工业氢、纯氢(GB/T7445-1995);年运行时间: 大于8000h。 3、天然气水蒸汽重整制氢需解决的关键问题 天然气水蒸汽重整制氢需吸收大量的热,制氢过程能耗高,燃料成本占生产成本的50-70%。辽河油田在该领域进行了大量有成效的研究工作,在油气集输企业建有大批工业生产装置,考虑到氢在炼厂和未来能源领域的应用,天然气水蒸气转化工艺技术不能满足未能满足大规模制氢的要求。因此研究和开发更为先进的天然气制氢新工艺技术是解决廉价氢源的重要保证,新工艺技术应在降低生产装置投资和减少生产成本方面应有明显的突破。 4、天然气制氢新工艺和新技术分析 天然气绝热转化制氢。该技术最突出的特色是大部分原料反应本质为部分氧化反应,控速步骤已成为快速部分氧化反应,较大幅度地提高了天然气制氢装置的生产能力。天然气绝热转化制氢工艺采用廉价的空气做氧源,设计的含有氧分布器的反应器可解决催化剂床层热点问题及能量的合理分配,催化材料的反应稳定性也因床层热点降低而得到较大提

天然气制氢(静设备)操作规程一

第一章概述 一、简介 神华煤制油天然气制氢装置为搬迁项目,主要利用巴陵石化洞庭氮肥厂日产1100吨合成氨装置中的脱硫造气、中低变和脱碳工序的设备、管道以及钢结构等,新增PSA制氢工序。 巴陵石化洞庭氮肥厂合成氨装置是七十年代初从美国凯洛格公司引进的、以石脑油为原料日产850吨合成氨的“气改油”装置。为了扩大生产能力与降低能耗,先后在1988年、1996年对合成氨装置进行了两次改造,最终达到日产1100吨合成氨的生产能力。2004年装置停车。 原巴陵石化洞庭氮肥厂天然气制氢,绝大部分设备为从国外引进的设备。本次神华煤制油天然气制氢装置为巴陵石化洞庭氮肥厂天然气制氢整体搬迁。设备型式包括:转化炉、塔、换热器、反应器、废热锅炉、罐、分离器、储槽、过滤器、离心式压缩机、往复式压缩机、螺杆式压缩机、离心泵、隔膜泵、天车等。机泵驱动方式主要以蒸汽透平、水力透平为主,辅以电机。 二、工艺流程简述 来自界区的天然气经天然气过滤器(0101-LM)除尘后,进入原料气压缩吸入罐(116-F)分离掉其中的液体,分为两股,一股作为燃料气与来自PSA制氢工序的尾气在燃料气混合器(0103-FM)混合后去对流段预热;一股作为原料天然气,配入来自脱碳工序的返氢气后,进入原料气压缩机(0102-J)压缩至4.2MPaA,在对流段预热至400℃,依次进入加氢转化器(101-D)、氧化锌脱硫槽(108-DA/B)脱硫,使天然气中的硫含量降低至0.1ppm以下。脱硫后的天然气按3.5的水碳比配入工艺蒸汽,混合气经一段转化炉对流段的混合气盘管预热到510℃后进入一段转化炉辐射段转化管,在镍触媒的作用下进行蒸汽转化反应生成氢气和一氧化碳。转化反应需要的热量靠一段转化炉辐射段燃烧燃料天然气提供。一段炉出口的转化气温度约813℃,甲烷含量约9.7%(干基),经输气管

天然气制氢装置催化剂装填及使用

天然气制氢装置催化剂装填及使用 1.1加氢和脱硫催化剂装填及使用 铁锰脱硫剂和氧化锌脱硫剂的装填 脱硫剂的装填,请严格按照催化剂厂商的说明书进行,以下装填方法仅供参考。 1、脱硫剂装填所需设备 (1)具有翻板阀的漏斗,用一根长度适当的帆布软管接在阀的底部。 (2)木塔板 (3)安全灯、空气源等 2、检查及准备 (1)先在底部装大直径耐火球,装至高标线100mm处,然后再装较小直径耐火球至标线并在其上放好筛网。 (2)用帆布筒将催化剂装入设备内,注意催化剂落下高度不超过1.5米,人站在放在催化剂上的木塔板上,边装边扒平催化剂,直到标线处为止。 (3)做好整个装填过程的记录

1.2转化催化剂的装填及使用 a、装填所需设备 (1)催化剂计量桶 (2)磅秤>50Kg。三个细帆布装料袋。 (3)桶子,每个10升,三个。 (4)装料漏斗二个,漏斗直径最大处为20mm,漏斗嘴内径50mm,外径<60mm (5)真空卸触媒设备 (6)振荡器、压力表及专用测压装置 (7)带有刻度的测深尺或尺杆,长度最短为12米。 (8)空气源,压力为0.7MPa左右,5.5m3/min (9)空气压差测试装置 (10)有铁丝网保护罩的吊灯或防爆型吊灯及电线 (11)检查催化剂用的筛网 (12)8倍左右的望远镜 为确保无杂物遗留在管内或催化剂托盘上,可采用真空卸触媒装置吸净异物,卸触媒的软管()放入每根炉管底部,

同时使用真空装置,就能保证把掉在里面的松散东西吸出。然后把吊灯放到每根转化管中去,建议使用8倍左右的望远镜来帮助检查。 C、检查催化剂 用一个孔眼为3mm的筛网过滤催化剂,除去触媒碎片并检查有无异物。 d、炉管的测量 用测深游标尺进行测量,装填前先测定总装填高度,确定每次装填高度,每装填一次后要测定剩下高度,经振荡后再测量,做好记录,并作为永久性记录保存,对于同一转化管分装两种催化剂时应先测量并记下底层触媒要求的深度。 e、装催化剂 每根转化炉管的催化剂装填量是按装满的计量桶来计算的,每一次装填桶数应做好记录。 用漏斗将催化剂倒入帆布筒内,再将帆布筒伸入到转化管内使其底部接近装填起始位置,布袋操作的关键是将布袋下端折叠200mm,只要把伸入到炉管的布袋轻轻一提,触媒

天然气制氢成本

精品文档 天然气制氢 一、装置概况 20 万吨/年天然气制硝酸铵装置配套,10万吨/年合成氨装置,需要氢气量25625Nn3/h. 本制氢装置由脱硫造气工序、变换工序、PSA制氢工序组成,工艺路线及产品规格 该制氢装置已天然气为原料,采用干法脱硫、3.8MPa压力下的蒸汽转化,一氧化碳中温变换,PSA工艺制得产品氢气。 二、天然气制氢工艺原理 2.1天然气脱硫 本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1-5%的氢,在约400C高温下发生下述反应:RSH+H2=H2S+RH H2S+M nO=Mn S+H2O 经铁锰系脱硫剂初步转化吸收后,剩余的硫化氢,再在采用的氧化锌催化剂作用下发生下述脱硫反应而被吸收: H2S+ZnO=ZnO+H2O C2H5SH+ZnS+C2H5+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至0.1ppm以下,以满足蒸汽转化催化剂对硫的要求。 2.2蒸汽转化和变换原理 原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃一蒸汽转化反应,主要反应如 下: CH4+H2O= CO+3H2-Q ⑴ 一氧化碳产氢 CO+H2O=CO2+H2+Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积碳,氧化等。 在转化反应中,要使转换率高,残余甲烷少,氢纯度高,反应温度要高,但要考虑设备承受能

煤制油天然气制氢装置项目概述

煤制油天然气制氢装置项目概述 一、简介 神华煤制油天然气制氢装置为搬迁项目,主要利用巴陵石化洞庭氮肥厂日产1100吨合成氨装置中的脱硫造气、中低变和脱碳工序的设备、管道以及钢结构等,新增PSA制氢工序。 巴陵石化洞庭氮肥厂合成氨装置是七十年代初从美国凯洛格公司引进的、以石脑油为原料日产850吨合成氨的“气改油”装置。为了扩大生产能力与降低能耗,先后在1988年、1996年对合成氨装置进行了两次改造,最终达到日产1100吨合成氨的生产能力。2004年装置停车。 原巴陵石化洞庭氮肥厂天然气制氢,绝大部分设备为从国外引进的设备。本次神华煤制油天然气制氢装置为巴陵石化洞庭氮肥厂天然气制氢整体搬迁。设备型式包括:转化炉、塔、换热器、反应器、废热锅炉、罐、分离器、储槽、过滤器、离心式压缩机、往复式压缩机、螺杆式压缩机、离心泵、隔膜泵、天车等。机泵驱动方式主要以蒸汽透平、水力透平

为主,辅以电机。 二、工艺流程简述 来自界区的天然气经天然气过滤器(0101-LM)除尘后,进入原料气压缩吸入罐(116-F)分离掉其中的液体,分为两股,一股作为燃料气与来自PSA制氢工序的尾气在燃料气混合器(0103-FM)混合后去对流段预热;一股作为原料天然气,配入来自脱碳工序的返氢气后,进入原料气压缩机(0102-J)压缩至4.2MPaA,在对流段预热至400℃,依次进入加氢转化器(101-D)、氧化锌脱硫槽(108-DA/B)脱硫,使天然气中的硫含量降低至0.1ppm以下。脱硫后的天然气按3.5的水碳比配入工艺蒸汽,混合气经一段转化炉对流段的混合气盘管预热到510℃后进入一段转化炉辐射段转化管,在镍触媒的作用下进行蒸汽转化反应生成氢气和一氧化碳。转化反应需要的热量靠一段转化炉辐射段燃烧燃料天然气提供。一段炉出口的转化气温度约813℃,甲烷含量约9.7%(干基),经输气管(107-D)进入二段转化炉(103-D),

天然气制氢

天然气制氢工艺常见事故的处理 前言: 氢气是自然界中较为丰富的物资,也是应用最广泛的物资之一。氢气主要用于炼油工业中加氢裂化,加氢精制,合成氨、甲醇、燃料油等。制氢装置的生产流程复杂,生产过程伴随高温高压,产品及原料都是易燃易爆的危险化学品,如果发生泄漏,极易发生着火爆炸事故。装置内所用催化剂品种繁多,操作条件苛刻,稍有不慎便会造成设备及催化剂的损坏。 实验部分: 1 天然气制氢原理 天然气制氢包括以下两个过程的主反应: (1)天然气和水在1000℃高温和氧化镍催化剂的条件下反应生成一氧化碳和氢气。 反应式如下: CH4+H2O→CO+H2 +Q (2)一氧化碳和水在430℃高温和三氧化二铁催化剂的条件下反应生成二氧化碳和氢气。 反应式如下: CO+H2O→CO2+H2 +Q 2 天然气制氢工艺流程 外界天然气经减压阀调节至0.5Mpa后,在经天然气分离器缓冲并由压缩机压缩到2.7Mpa,后经流量调节器调量后入蒸汽转化炉对流段预热至390℃,进入脱硫槽,使原料气中的硫脱至0.2ppm以下。脱硫后的原料气与工艺蒸汽按水碳比3.5:1的比值混合后进入混合预热管进一步预热至550~600℃,经上支尾管均匀的进入56根转化管中。在催化剂床层中,甲烷与水反应生成一氧化碳二氧化碳和氢气。甲烷转化所需的热量由顶部烧嘴燃烧燃料混合气提供。转化气出转化炉温度约830℃,残余甲烷含量约为3%~4%,进入废热锅炉换热至350℃,进入中变炉,在中变炉中转化气中的一氧化碳和水反应生成二氧化碳和氢气形成变换气。变换气经中变气换热器、锅炉给水预热器、中变气脱盐水换热器和水冷器换

热至40℃后进入中变气气液分离器分理处工艺冷凝液,工艺气体压力降至1.9Mpa送至PSA进行提纯。 3 制氢常见的工艺事故及解决 制氢的工艺事故,主要是操作、设备、催化剂、原料或公用工程等原因所引起的工艺参数超标、生产波动或停工等事故。 3.1 造气系统工艺常见事故处理 造气系统工艺是氢气产生的主要流程,也是事故多发段,其产氢的质量直接影响到氢气的提纯。 3.1.1 脱硫气质量不合格 脱硫气质量不合格,主要指脱硫气中硫含量超标。原料中的硫元素对转化及低变催化剂有极大的危害,脱硫气含硫量超过0.2ppb,将会使转化剂中毒,低变进料中含硫量超过0.2ppb,对低变催化剂的活性有较大影响。 生产中,脱硫气质量不合格时脱硫反应器床层和氢反应器床层出现热点,脱硫反应器出口气体含硫量过高等现象。天然气作为制氢原料,含硫量超过加氢转化能力和脱硫剂吸附能力容易造成脱硫气质量不合格,在操作中,脱硫反应器温度低,进料量大,配氢小也是造成脱硫气不合格的主要原因。 当脱硫气不合格时,分析原因,如果是原料超标所致,立即切除原料。操作人员提高操作质量,保持反应器温度,控制好配氢量,保证硫的转化和吸收。 3.1.2 转化催化剂硫中毒 转化剂中毒主要是指转化催化剂在长期运行中由于原料脱硫不合格造成硫的积累而使催化剂失活。 转化催化剂硫中毒后,其活性下降,上部催化剂由于没有发生吸热反应而使炉管温度异常升高,转化出口甲烷也快速升高;中毒严重会发生芳烃穿透,上部首先出现红管现象而逐渐向下部延伸,炉进出口压差增大。 当催化剂发生轻微中毒时,可已通过降低生产负荷、改换干净原料在高水碳比的条件下运行一段时间,如果上部炉管温度下降,转化出口甲烷逐渐降低,说明放流措施有效;效果不好即切除原料,催化剂在还原气氛中运行一段时间,以达脱硫再生目的。如果中毒比较严重,可通过氧化还原的处理方法,如下:

相关文档
最新文档