圆锥曲线韦达定理和点差法运用(1)

圆锥曲线韦达定理和点差法运用(1)
圆锥曲线韦达定理和点差法运用(1)

例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________

(2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。

例2、F 是椭圆13

42

2=+y x 的右焦点,A(1,1)为椭圆内一定点,上一动点。

(1)PF PA +的最小值为 (2)PF PA 2+的最小值为

例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切,

例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5

3

sinA,求点A 的轨迹方程

例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。

例6、已知椭圆

)52(11

2

2≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A 、B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。

1.分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。

(2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。

解:(1)(2,2)

连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+)1(1

30

24---=

x y 即 y=22(x-1),代入y 2=4x 得P(2,22),

(注:另一交点为(2,21-),它为直线AF 与抛物线的另一交点,舍去)

(2)(

1,4

1

) 过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q 点的纵坐标为1,代入y 2=4x 得x=

41,∴Q(1,4

1) 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细

体会

2.分析:PF 为椭圆的一个焦半径,常需将另一焦半径F P '或准线作出来考虑问题。 解:(1)4-5

设另一焦点为F ',则F '(-1,0)连A F ',P F '

542)(22-='-≥-'-='-+=+F A a PA F P a F P a PA PF PA

当P 是F 'A 的延长线与椭圆的交点时, PF PA +取得最小值为4-5。 (2)3

作出右准线l ,作PH ⊥l 交于H ,因a 2=4,b 2=3,c 2=1, a=2,c=1,e=2

1

, ∴PH PF PH PF ==

2,2

1

即 ∴PH PA PF PA +=+2

当A 、P 、H 三点共线时,其和最小,最小值为3142

=-=-A x c

a

3.分析:作图时,要注意相切时的“图形特征”点共线(如图中的A 、M 、C 共线,B 、D 、M 共线)动圆的“半径等于半径”(如图中的MD MC =)。

解:如图,MD MC =,

∴26-=--=-MB MA DB MB MA AC 即 ∴8=+MB MA (*)

∴点M 的轨迹为椭圆,2a=8,a=4,c=1,b 2

=15点评:得到方程(*求解,即列出4)1()1(222

2=+-+

++y x y x 方程推导了一遍,较繁琐!

4.分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系。

解:sinC-sinB=

53sinA 2RsinC-2RsinB=53

·2RsinA ∴BC AC AB 5

3

=-

即6=-AC AB (*)

∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4

所求轨迹方程为

116

92

2=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 5.分析:(1)可直接利用抛物线设点,如设A(x 1,x 12),B(x 2,X 22),又设AB 中点为M(x 0y 0)用弦长公式及中点公式得出y 0关于x 0的函数表达式,再用函数思想求出最短距离。

(2)M 到x 轴的距离是一种“点线距离”,可先考虑M 到准线的距离,想到用定义法。

解法一:设A(x 1,x 12),B(x 2,x 22),AB 中点M(x 0,y 0)

则?????=+=+=-+-02

221

212

2221221229)()(y x x x x x x x x x 由①得(x 1-x 2)2[1+(x 1+x 2)2]=9

即[(x 1+x 2)2-4x 1x 2]·[1+(x 1+x 2)2]=9 ④ 由②、③得2x 1x 2=(2x 0)2-2y 0=4x 02-2y 0 代入④得 [(2x 0)2-(8x 02-4y 0)]·[1+(2x 0)2]=9

∴2

2

00419

44x x y +=

-, 11

49)14(49442

02

0202

00-+++=+

=x x x x y ≥,5192=- 4

5

0≥

y 当4x 02+1=3 即 220±

=x 时,45)(min 0=y 此时)4

5

,22(±M

法二:如图,32222=≥+=+=AB BF AF BB AA MM

∴232≥

MM , 即∴4

5

1≥

MM , 当∴M 到x 点评:① ② ③

轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A 、B 到准线的距离和,结合定义与三角形中两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB 是否能经过焦点F ,而且点M 的坐标也不能直接得出。

6.分析:此题初看很复杂,对f(m)的结构不知如何运算,因A 、B 来源于“不同系统”,A 在准线上,B 在椭圆上,同样C 在椭圆上,D “投影”到x 轴上,立即可得防

()(22)(2)()(D A B C D A B x x x x x x x m f ---=---= )()(2D A C B x x x x +-+=

)(2C B X x +=

此时问题已明朗化,只需用韦达定理即可。

解:(1)椭圆

11

2

2=-+m y m x 中,a 2=m ,b 2=m-1,c 2=1,左焦点则BC:y=x+1,代入椭圆方程即(m-1)x 2+my 2-m(m-1)=0 得(m-1)x 2+m(x+1)2-m 2+m=0 ∴(2m-1)x 2+2mx+2m-m 2=0

设B(x 1,y 1),C(x 2,y 2),则x 1+x 2=-

)52(1

22≤≤-m m m

1

2222)()(2)()(2)(2121-?

=+=+-+=---=-=m m x x x x x x x x x x CD AB m f C A C D A B

(2))1

21

1(2121122

)(-+=-+-=

m m m m f

∴当m=5时,92

10)(min =

m f 当m=2时,3

2

4)(max =

m f 点评:此题因最终需求C B x x +,而BC 斜率已知为1,故可也用“点差法”设BC 中点为M(x 0,y 0),通过将B 、C 坐标代入作差,得

01

00=?-+k m y

m x ,将y 0=x 0+1,k=1代入得01100=-++m x m x ,∴1

20--=m m x ,可见122--=+m m x x C B

当然,解本题的关键在于对CD AB m f -=)(的认识,通过线段在x 轴的“投影”发现C B x x m f +=)(是解此题的要点。

韦达定理在解析几何中的应用

韦达定理在解析几何中的应用 陈历强 一,求弦长 在有关解析几何的高考题型中不乏弦长问题以及直线与圆锥曲线相交的问题。求直线与圆锥曲线相交所截得的弦长,可以联立它们的方程,解方程组求出交点坐标,再利用两点间距离公式即可求出,但计算比较麻烦。能否另擗捷径呢?能!仔细观察弦长公式: ∣AB ∣=∣x 1-x 2∣21k +?=)1](4)[(221221k x x x x +-+ 或∣AB ∣=∣y 1-y 2∣2 11k + ? =) 11](4)[(2 21221k y y y y + -+ , 立刻发现里面藏着韦达定理(其中x 1、x 2分别表示弦的两个端点的横坐标,y 1、y 2分别表示弦的两个端点的纵坐标)。请看下面的例子: 例1,已知直线 L 的斜率为2,且过抛物线y 2=2px 的焦点,求直线 L 被抛物线截得的弦长。 解:易知直线的方程为y=2(x-2 p ). 联立方程组y 2=2px 和y=2(x- 2 p ) 消去x 得 y 2-py-p 2=0.∵△=5p 2>0,∴直线与抛物线有两个不同的交点。由韦达定理得y 1+y 2=p,y 1y 2=-p 2.故弦长d= 2 5p 例2,直线y=kx-2交椭圆x 2+4y 2=80交于不同的两点P 、Q ,若PQ 中点的横坐标为2,则∣PQ ∣等于___________. 分析:联立方程组y=kx-2和x 2+4y 2=80消去y 得(4k 2+1)x 2-16kx-64=0 设P(x 1,y 1),Q(x 2,y 2). 由韦达定理得 x 1+x 2= 1 4162 +k k = 4得k= 2 1.x 1x 2= -32∣PQ ∣=6 . 练习1:过抛物线 y 2=4x 的焦点作直线交抛物线A(x 1,y 1),B(x 2,y 2)两点,如果x 1+x 2=6, 那么|AB|=( ) (A)10 (B)8 (C)6 (D)4 (文尾有提示.下同) 二,判定曲线交点的个数

圆锥曲线常见题型与答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值围为____ (答:11(3,)(,2)22---U ); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

(完整版)用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解,但运算量较大。若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。下面就如何用点差法计算举几个例子供大家参考。 一、 求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((21))((21212121=-+--+y y y y x x x x ∴22 121 =--=x x y y k AB 故直线)1(21:-=-x y AB

圆锥曲线非对称问题

圆锥曲线非对称问题 韦达定理是初中要求的基本知识,到了高中,他的作用日趋明显,在解析几何的解答题中,有着不可或缺的地位,对于直接运用韦达定理的运算,学生已非常熟练,但在有些问题中会遇到两根不对称的情形,一定要学会找关系,用性质 问题导入 已知椭圆C:的左右焦点分别是F1(-c,0),F2(c,0),M,N为左右顶点,直线l:x=ty+1与椭圆C交于两点A,B且当m=?√33时,A是椭圆C的点,且△AF1F2的周长为6. (1)求椭圆C的方程; (2)设点A在x轴上方,设AM,BN,交于一点T,求证点T的横坐标为定值 变式训练 已知椭圆C:的左右顶点为M,N,过定点p(-3,0)且斜率不为零的动直线与椭圆c交于A,B 两点,设A(x1,y1)B(x2,y2)从左往右依次为P,A,B (1)求x1x2+4x1+x2的值 (2)设直线AN与直线BM交于点E,求证点E的横坐标为定值

一,共线向量问题型 例1:如图所示,已知圆M A y x C ),0,1(,8)1(:2 2定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=?=的轨迹为曲线E. 1)求曲线E 的方程; 2)若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围. 例2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214 y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ= , 2MB BF λ= ,求证:1210λλ+=-. 例3设双曲线C :)0(1222>=-a y a x 与直线L :x+y=1相交于两个不同的点A 、B ,直线L 与y 轴交于点P ,且PA=PB 125,求a 的值

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

圆锥曲线点差法

圆锥曲线--- 点差法 1、椭圆14162 2=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程. 2、椭圆22 1369x y +=的一条弦被(4,2)A 平分,那么这条弦所在的直线方程是. 3、已知椭圆1222=+y x ,求过点?? ? ??2121,P 且被P 平分的弦所在的直线方程. 4、已知直线y =-x +1与椭圆)0(122 22>>=+b a b y a x 相交于A 、B 两点,且线段AB 的中点在直线02:=-y x l 上,求此椭圆的离心率. 5、已知椭圆C 的方程x y 22 43 1+=,试确定m 的取值范围,使得对于直线4y x m =+,椭圆C 上有不同两点关于该直线对称. 6、在抛物线24y x =上恒有两点关于直线y =kx +3对称,求k 的取值范围. 7、已知P 、Q 是椭圆C :1242 2=+y x 上的两个动点,)26,1(M 是椭圆上一定点, F 是其左焦点,且|PF |、|MF |、|QF |成等差数列. 求证:线段PQ 的垂直平分线经过一个定点A ; 8、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。 9、过点M (-2,0)的直线m 与12 22 =+y x 交于21,P P ,线段21P P 的中点为P ,设直线m 的斜率为),0(1 1≠k k 直线OP 的斜率为2k ,则21k k 的值为 10、椭圆122=+by ax 与直线x y -=1交于A 、B 两点,过原点与线段AB 中点的直线的斜率为 23,b a 的值为

11、过椭圆14 92 2=+y x 内一点M (2,0)引椭圆的动弦AB ,则弦AB 的中点N 的轨迹方程是 12、点P (8,1)平分双曲线4422=-y x 的一条弦,则这条弦所在的直线方程 13、已知椭圆2222=+y x 及椭圆外一点(0,2),过这点任意引直线与椭圆交于点A 、B ,求弦AB 的中点P 的轨迹方程。 14、求k 的取值范围,使抛物线02:2=-+kx y y C )0(≠k 上存在关于直线1:-=x y l 对称的两点。 15、已知直线l 与椭圆164:22=+y x C 交于21,P P ,线段21P P 的中点为P ,设直线 l 的斜率为k )0(≠k ,直线OP 的斜率为 'k 。求证:'kk 是一个定值。 16、已知双曲线12 122=-y x ,过点B(1,1)是否存在直线l ,使l 与双曲线交于P 、Q 两点,且B 是线段PQ 的中点,若存在,求直线方程;若不存在,说明理由。 17、在双曲线113 122 2=-x y 的一支上不同三点,A 、B (6,26)、C 与焦点F(0,5)的距离成等差数列,求证:线段AC 的垂直平分线l 经过一定点。

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

圆锥曲线(韦达定理的使用)

圆锥曲线中韦达定理的使用 例:已知椭圆 116 252 2=+y x ,过左焦点1F 作一条直线交椭圆于A 、B 两点,D (,0)a 为1F 右侧一点,连AD 、BD 分别交椭圆左准线于M 、N 。若以MN 为直径的圆恰过1F ,求 a 的值。 解: 25 小结:解析几何综合题中最典型的直线与曲线交于两点,考查二次方程韦达定理的应用。一般地解题的框架为: 1、直线方程代入曲线方程,准备好韦达定理; 2、主要目标分析,合理转化; 3、韦达定理代入,整理求解。

练习题: 1、已知不过原点的直线L 与椭圆14 22 =+y x 交于点A 、B ,且直线OA 、AB 、OB 的斜率依次成等比数列,求△OAB 的面积的取值范围。 解:设直线AB :()0≠+=m m kx y ,代入14 22 =+y x 整理得 直线OA 、AB 、OB 的斜率依次成等比数列=??2 2 11x y x y 韦达定理代入: 解得 =?= ?d AB S AOB 2 1 2、直线1y kx =+与双曲线221x y -=的左支交于A 、B 两点,直线l 经过点(2,0)-和AB 的中点,求直线l 在y 轴的截距b 的取值范围. 解:将直线1y kx =+代入2 2 1x y -=化简得 由“与左支交于两点”得 AB 的中点为 直线l 方程为 ,其在y 轴的截距b = 所以b 的取值范围是 。 3、过椭圆222 2=+y x 的右焦点F 作弦PQ ,A (0,1),直线AP 、AQ 分别交直线0 2=--y x 于点M 、N ,求当|MN|最小时直线PQ 的方程。 4、椭圆222 2 =+y x 的左、右焦点为F 1、F 2,弦AB 的中点在直线012=+x 上, 求B F A F 22?的取值范围。

圆锥曲线弦长公式

圆锥曲线弦长公式 关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。解:连结,设,由椭圆定义得,由余弦定理得 ,整理可得,同理可求得,则弦长 同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距) 结论:椭圆过焦点弦长公式: 二

. 双曲线的焦点弦长 设双曲线,其中两焦点坐标为 ,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。 。 解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得 整理可得,同理,则可求得弦长

(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得, 整理可得,则 因此焦点在x轴的焦点弦长为 同理可得焦点在y轴上的焦点弦长公式 三

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。. 抛物线的焦点弦长 若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|(图4) 解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得 即 则 同理的焦点弦长为

的焦点弦长为,所以抛物线的焦点弦长为 由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。 一

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

用点差法解圆锥曲线问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆 14 16 2 2 =+ y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线 的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642 12 1=+y x ,1642 22 2=+y x 两式相减得0)(4)(2 2212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 12 44) (421212 121- =?- =++-=--y y x x x x y y 即2 1- =AB k ,故所求直线的方程为)2(2 11-- =-x y ,即042=-+y x 。 例2、已知双曲线12 2 2 =- y x , 经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设 的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 12 2 12 1=- y x ,1 2 2 22 2=- y x

圆锥曲线联立及韦达定理

圆锥曲线联立及韦达定理 1、圆锥曲线与直线的关系 椭圆与双曲线与给定直线的关系通过联立方程所得解的情况来判定: 椭圆:22 221x y a b +=(0)a b 双曲线:22 221x y a b -=(0)a b 、 直线:y kx m =+ (PS :这里并没有讨论椭圆的焦点在y 轴、双曲线的焦点在y 轴及直线斜率不存的情况,做题需要补充) (1)椭圆与双曲线联立: 2 2 2222212()10k km m x x a b b b +++-= (PS :联立时选择不通分,原因?看完就知道了) 类一元二次方程:2 0Ax Bx C ++= 2 221()k A a b =+,所以0A ,即方程为一元二次方程。 判别式:24B AC ?=- 22 2222221()4()(1)km k m b a b b ?=-+- 化解得:22 222214()k m a b a b ?=+- 1) 当0?,方程无实根,直线与椭圆没有交点; 2) 当0?=,方程有两个相同的根,直线与椭圆相切; (相切是因为重根,而不是只有一个根) 3) 当0? ,方程有两个不同的实根,直线与椭圆相交.

(2)双曲线与直线联立: 2 2 2222212()10k km m x x a b b b ----= 类一元二次方程中,2221()k A a b =-,22()km B b =- 22 222214()k m a b a b ?=-+ 1) 当0,0A B ==时,方程为10-=,无解,直线与双曲线相离;(此时为渐近线) 2) 当0,0A B =≠时,方程为一元一次方程,只有一个解,直线与双曲线只有一个交点(此时为渐近线 的平行线) 3) 当0,0A ≠?时,一元二次方程无实数解,直线与双曲线相离; 4) 当0,0A ≠?=时,一元二次方程有两个相同实数解,直线与双曲线相切; 5) 当0,0A ≠? 时,一元二次方程有两个不同实数解,直线与双曲线相交. PS :注意双曲线与直线联立和椭圆与直线联立的方程及最后判定的异同!

利用韦达定理及对称解决圆锥曲线大题

1. 已知动圆P 过定点A(-3,0),并且在定圆B(x-3)2+y 2=64的内部与之相切,求动圆圆心P 的轨迹方程. 答案: 22 1167x y += 2. 已知:点A(4,0),点B 在2 2 4x y +=上运动,求线段AB 的中点P 的轨迹方程. 答案:2 2 (2)1x y -+= 3. 已知椭圆C:22 143x y +=.确定m 的取值范围,使得对于直线4y x m =+,C 上有两个两个不同的点关于该直线对称. 答案: 213213 1313m - ≤≤ 4. 设曲线C :13 22 =+y x 与直线m kx y +=相交于不同的两点M 、N ,又点A (0,-1),当||||AN AM =时,求实数m 的取值范围. 答案:(0.5,2) 5. 椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12,F F ,点P 在椭圆C 上,且112PF F F ⊥,12414,33 PF PF ==。 (Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过圆2 2 420x y x y ++-=的圆心M ,交椭圆C 于A 、B 两点,且A 、B 关于点M 对称,求直线l 的方程. 解法一: (1)因为点P 在椭圆C 上,所以6221=+=|PF ||PF |a ,.a 3= 在Rt △21F PF 中,522 12221=-=|PF ||PF ||F F |,故椭圆的半焦距,c 5= 从而42 22=-=c a b ,所以椭圆C 的方程为14 922=+y x (2)设A , B 的坐标分别为)y ,x (),y ,x (2211. 已知圆的方程为5122 2 =-++)y ()x (,所以圆心M 的坐标为),(12- 从而可设直线l 的方程为12++=)x (k y 代入椭圆C 的方程得02736361836942 222=-+++++k k x )k k (x )k ( 因为A,B 关于点M 对称 所以29491822 221-=++-=+k k k x x 解得98= k ,所以直线l 的方程为=y 129 8 ++)x (,即02598=+=y x 6.已知椭圆C 的左、右焦点坐标分别是(2,0)-,(2,0),离心率是6 3 ,直线y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。 (Ⅰ)求椭圆C 的方程; (Ⅱ)若圆P 与x 轴相切,求圆心P 的坐标; 解:(Ⅰ)因为 63 c a = ,且2c =,所以22 3,1a b a c ==-= 所以椭圆C 的方程为2 213 x y += (Ⅱ)由题意知(0,)(11)p t t -<< 由22 13 y t x y =???+=?? 得2 3(1)x t =±- 所以圆P 的半径为2 3(1)t - 解得32t =± 所以点P 的坐标是(0,32 ±) 7. 已知O :2 2 1x y +=和定点(2,1)A ,由O 外一点(,)P a b 向O 引切线PQ ,切点为Q ,且满足||||PQ PA =. (Ⅰ) 求实数a b 、间满足的等量关系; (Ⅱ) 求线段PQ 长的最小值; (Ⅲ) 若以P 为圆心所作的P 与O 有公共点,试求半径取最小值时的P 方程. 答案:(Ⅰ)连,OP Q 为切点,PQ OQ ⊥,由勾股定理有222 PQ OP OQ =- 又由已知PQ PA =,故22PQ PA =.即:22222()1(2)(1)a b a b +-=-+-. 化简得实数a 、b 间满足的等量关系为:230a b +-=. (Ⅱ)由230a b +-=,得23b a =-+. 22221(23)1PQ a b a a =+-=+-+-2 5128a a =-+=2645()55 a -+. 故当6 5 a = 时,min 2 5.5PQ =即线段PQ 长的最小值为2 5.5 (Ⅲ)设 P 的半径为R , P 与 O 有公共点, O 的半径为1, 1 1.R OP R ∴-≤≤+即1R OP ≥-且1R OP ≤+. 而222226 9(23)5()55 OP a b a a a =+=+-+=-+, 故当6 5a = 时,min 3 5.5 OP =此时, 3235b a =-+=,min 3515R =-.

韦达定理在圆锥曲线中的应用叫叫

韦达定理在解析几何中的应用 韦达定理步骤 1、 设直线0Ax By C ++=与曲线交于两点1122(,),(,)A x y B x y ,既设而不求。 2、 直线与曲线方程联立方程组。 3、 消去x, 得到关于或y 的一元二次方程. 4、 结合具体问题与韦达定理建立联系, 如求弦长等。 韦达定理注意与向量的联系 一,求弦长 .直线与圆锥曲线相交的弦长计算:(1)连结圆锥曲线上两点的线段称为圆锥曲线的弦;(2)易求出弦端点坐标时用距离公式求弦长;(3)一般情况下,解由直线方程和圆锥曲线方程组成的方程组,得到关于x(或y)的一元二次方程,利用方程组的解与端点坐标的关系,结合韦达定理得到弦长公式 ∣AB ∣=∣x 1-x 2∣2 1k +?=)1](4)[(2 212 21k x x x x +-+ 或∣AB ∣=∣y 1-y 2∣211k + ? =)11](4)[(2212 21k y y y y +-+ , 1.设直线21y x =-交曲线C 于1122(,),(,)A x y B x y 两点。 (1 )若12||x x -=||AB = (2 )12||y y -=||AB = 2.斜率为1的直线经过抛物线2 4y x =的焦点,与抛物线相交于,A B 两点,则||AB = 3、抛物线 y 2 =4x 的焦点作直线交抛物线A(x 1,y 1),B(x 2,y 2)两点,如果x 1+x 2=6, 那么 |AB|=( ) (A)10 (B)8 (C)6 (D)4 4、y=kx-2交椭圆x 2+4y 2 =80交于不同的两点P 、Q ,若PQ 中点的横坐标为2,则∣ PQ ∣等于___________. 例1,已知直线 L 的斜率为2,且过抛物线y 2=2px 的焦点,求直线 L 被抛物线 截得的弦长。已知向量()()()() m x n m x n y 1122201101====,,,,,,,(其中x ,y 是实数) ,又设向量1221m m n m ==u r u u r u r r u u r r ,,且m n ∥,点()P x y ,的轨迹为曲线C 。 (I )求曲线C 的方程; (II )设曲线C 与y 轴的正半轴的交点为M ,过点M 作一条直线l 与曲线C 交于另一点N ,当MN =42 3 时,求直线l 的方程。

直线与圆锥曲线位置关系之韦达定理的使用

直线与圆锥曲线位置关系之韦达定理的使用 【例1】已知椭圆22+197x y =的长轴两端点为双曲线E 的焦点,且双曲线E 的离心率为32 . (1)求双曲线E 的标准方程; (2)若斜率为1的直线l 交双曲线E 于,A B 两点,线段AB 的中点的横坐标为线l 的方程. 【例2】已知双曲线C : 22 221x y a b -=(0,0a b >>4. (1)求双曲线的标准方程; (2)过点()0,1,倾斜角为045的直线l 与双曲线C 相交于,A B 两点, O 为坐标原点,求

【例3】已知椭圆C:()22 2210x y a b a b +=>>的左右焦点分别为12,F F ,离心率为; 圆M :2220x y Dx +--=过椭圆C 的三个顶点.过点2F 且斜率不为0的直线与椭圆C 交于P ,Q 两点. (Ⅰ)求椭圆的标准方程; ,使得AP AQ 为定值;并求出该定点的坐标 . 【例4】的椭圆C 的一个焦点坐标为() . (1)求椭圆C 的标准方程; (2)过点() 0,2P 的直线l 与轨迹C 交于不同的两点E F 、,求PE PF ?的取值范围.

【例5】已知抛物线2:2C y x =和直线:1l y kx =+, O 为坐标原点. (1)求证: l 与C 必有两交点; OA 和OB 斜率之和为1,求k 的值. 【例6】已知椭圆C : 22221(0,0)x y a b a b +=>>,右焦点为,0). (1)求椭圆C 的方程; ,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为)

【例7】已知椭圆()22 22:10x y C a b a b +=>> ,且椭圆上任意一点到左焦点的最大距离为1 1. (1)求椭圆的方程; (2)过点10,3S ??- ??? 的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的

圆锥曲线韦达定理和点差法运用(1)

例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。 例2、F 是椭圆13 42 2=+y x 的右焦点,A(1,1)为椭圆内一定点,上一动点。 (1)PF PA +的最小值为 (2)PF PA 2+的最小值为 例3、动圆M 与圆C 1:(x+1)2+y 2=36内切,与圆C 2:(x-1)2+y 2=4外切, 例4、△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5 3 sinA,求点A 的轨迹方程

例5、定长为3的线段AB 的两个端点在y=x 2上移动,AB 中点为M ,求点M 到x 轴的最短距离。 例6、已知椭圆 )52(11 2 2≤≤=-+m m y m x 过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A 、B 、C 、D 、设f(m)=CD AB -,(1)求f(m),(2)求f(m)的最值。

1.分析:(1)A 在抛物线外,如图,连PF ,则PF PH =当A 、P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 距离和最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+)1(1 30 24---= x y 即 y=22(x-1),代入y 2=4x 得P(2,22), (注:另一交点为(2,21-),它为直线AF 与抛物线的另一交点,舍去) (2)( 1,4 1 ) 过Q 作QR ⊥l 交于R ,当B 、Q 、R 三点共线时,QR BQ QF BQ +=+最小,此时Q 点的纵坐标为1,代入y 2=4x 得x= 41,∴Q(1,4 1) 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细 体会 2.分析:PF 为椭圆的一个焦半径,常需将另一焦半径F P '或准线作出来考虑问题。 解:(1)4-5 设另一焦点为F ',则F '(-1,0)连A F ',P F ' 542)(22-='-≥-'-='-+=+F A a PA F P a F P a PA PF PA 当P 是F 'A 的延长线与椭圆的交点时, PF PA +取得最小值为4-5。 (2)3 作出右准线l ,作PH ⊥l 交于H ,因a 2=4,b 2=3,c 2=1, a=2,c=1,e=2 1 , ∴PH PF PH PF == 2,2 1 即 ∴PH PA PF PA +=+2 当A 、P 、H 三点共线时,其和最小,最小值为3142 =-=-A x c a

点差法在圆锥曲线的应用

中点弦与点差法在圆锥曲线的应用 【考情分析】 1、高考要求 (1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用; (2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率); (3)了解双曲线的定义、结合图形和标准方程、知道它的简单几何性质(范围、对称性、顶点、离心率、渐近线); (4)了解曲线与方程的对应关系; (5)理解数形结合的思想; (6)了解圆锥曲线的简单应用。 从全国卷考试说明,全国卷椭圆和抛物线要求比较高,都是“掌握”和“理解”,而对双曲线要求大大降低,是“了解”;直线与圆锥曲线、曲线与方程的要求都是“了解”。 【复习本专题的意义】 解析几何是高考的重点,也是难点。一轮复习应该在注重知识面广的同时,要根据文科数学的特点加强思想方法的渗透,总结一些源于教材而高于教材的重要结论和解题规律,做到基础扎实、结论熟练、思路清晰、方法准确、讲练得体,并引导学生充分结合考试说明和命题规律,学会整理知识要点、解题方法、解题技巧,分类收集典型考例,深入浅出,自然实现重点突出,难点的突破,在能力提升同时也为二轮复习打下前站,为二轮复习的飞跃打下坚实的基础。 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。涉及到解决圆锥曲线中点弦的问题,常采用“点差法”来求解。“点差法”是利用直线和圆锥曲线的两个交点,把交点代入圆锥曲线的方程,得到两个等式,两式相减,可以得到一个与弦的斜率及中点相关的式子(也称中点和斜率结合公式),再结合已知条件,运用学过的知识使问题得到解决。当题目涉及弦的中点、斜率时,一般都可以用点差法来解。与韦达定理法复杂繁琐的计算相比,点差法可以大大减少运算量,优化解题过程,达到“设而不求”的目的。 本微专题将从求弦的斜率与弦的中点问题、求弦中点轨迹、求弦的中点坐标、弦的垂直平分线问题和求曲线的方程等方面引导学生自主学习、合作探究,使一轮复习备考落实到实处,为2019年高考取胜作充分准备。 【教学内容】 直线与二次曲线相交,特别是直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。 一、求中点弦所在直线方程问题

非涉及韦达定理圆锥曲线大题精选

非涉及韦达定理圆锥曲线大题精选 1.(本题满分14分) 已知椭圆E :()222210x y a b a b +=>>的一个交点为() 13,0F -,而且过点13,2H ? ? ?? ?. (Ⅰ)求椭圆E 的方程; (Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.

已知椭圆)0(122 22>>=+b a b y a x 的左、右焦点分别是)0,(1c F -、)0,(2c F , 离心率为1 2 ,椭圆上的动点P 到直线2:a l x c =的最小距离为2, 延长2F P 至Q 使得22F Q a =u u u u r ,线段1F Q 上存在异于1F 的点T 满足10PT TF ?=u u u r u u u r . (1) 求椭圆的方程; (2) 求点T 的轨迹C 的方程; (3) 求证:过直线2 :a l x c =上任意一点必可以作两条直线 与T 的轨迹C 相切,并且过两切点的直线经过定点.

已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合. (1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程; (2)若曲线22251 :24025 G x ax y y a -+-++=与点D 有公共点,试求a 的最小值.

相关文档
最新文档