基于ds18b20的多点测温.

基于ds18b20的多点测温.
基于ds18b20的多点测温.

基于DS18B20的单总线

多点测温系统

摘要:本文主要介绍了一个基于DS18B20单片机的测温系统,详细描述了传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为

其他主系统的辅助扩展。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

随着社会的进步和工业技术的发展,人们越来越重视温度因素,许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪器大都是单点测量,同时有温度传递不及时、精度不够的缺点,不利于工业控制者根据温度变化及时作出决定。在这样的形式下,开发一种能够同时测量多点,并且实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必要

关键词:DS18B20,AT89c51,多点测温

一、任务分工:

表1—1 任务分工表

二、功能描述:

1.使用前程序读取序列号,一次性写入代码中。此系统写入了三个传感器的序

列号。

2.上电,显示“welcome”开机画面。

3.按键1功能选择键,可以选择显示相应的节点,显示所有节点温度,显示平

均温度。

4.按键2确认键,按键1选择相应的界面后,按确认键,,同时对传感器进行

数据采集,并显示温度。

三、方案选择:

一)总线方案:

方案一:单端口单总线的多点测温

典型应用如图所示,所有DS18B20并联后其数据线连接到处理器的一个端口线上,显著特点是只占用单片机的一个端口。每个DS18B20内部均有一个唯一的64位序列号,在工作之前先将主系统与DS18B20逐个连接,分别读出

序列号并存储在单片机中,根据序列号就可以对同一总线上多个DS18B20进行识别控制,分别读取其温度。

图3—1 DS18B20单总线连接图

其主要设计思想是:当单片机需要对众多DS18B20中某一个进行操作,首先发出匹配命令,接着单片机把存储的64位序列号发送到总线,只有此序列号的DS18B20才接收相应的命令,之后的操作就是针对该DS18B20的。

设计优缺点:这种测温连接方法是电路连接简单,硬件开销小。缺点是该方案是由多个DS18B20并联连接在一起的,他们之间会有一定的相互影响。最重要的是,在这种方案中,多个器件串接在总线上,对所有器件的查询操作,需要一个一个分别识别,完成一次查询需要花费大量时间,降低了系统效率,对一些实时性要求较高的设计不大适用。

方案二:多端口并行法

各个DS18B20数据线分别连接到不同的端口,工作时,单片机同时对各个DS18B20进行统一的并行操作,对所有DS18B20而言,其命令的接收与数据的传送是同步进行的,所花费时间等同于操作单个DS18B20所用时间。

图3—2 DS18B20多端口连接图

这种方案最大好处是节省时间,能满足对实时性要求较高的温度测量系统设计需求,同时由于这种方法不涉及序列号问题节省了读取与匹配的操作过程。而其缺点也显而易见,占用的端口数较多,每个测试点需要一个连接线,硬件资源开销大

方案二:I2C总线

两线式串行总线,用于连接微控制器及其外围设备。是微电子通信控制领域广泛采用的一种总线标准。它是同步通信的一种特殊形式,具有接口线少,控制方式简单,器件封装形式小,通信速率较高等优点。

通过串行数据(SDA)线和串行时钟(SCL)线在连接到总线的器件间传递信息。每个器件都有一个唯一的地址识别(无论是微控制器——MCU、LCD 驱动器、存储器或键盘接口),而且都可以作为一个发送器或接收器(由器件的功能决定)。

而DS18B20只有一根数据线,I2C总线需要一根数据线与一根地址线,无法实现。

综上所述:为了更好的节省硬件资源,达到多点测控,我们选择方案二。二)液晶显示方案:

方案一:LCD1602

图3—3 LCD引脚图

1602液晶也叫1602字符型液晶,它是一种专门用来显示字母、数字、符号等的点阵型液晶模块。它由若干个5X7或者5X11等点阵字符位组成,每个点阵字符位都可以显示一个字符,每位之间有一个点距的间隔,每行之间也有间隔,起到了字符间距和行间距的作用,正因为如此所以它不能很好地显示图形。

方案二:LCD12864

带中文字库的128X64是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII 字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16点阵的汉字. 也可完成图形显示.低电压低功耗是其又一显著特点。

两者各自优点:1602是字符型液晶,显示字母和数字比较方便,控制简单,成本较低。1602采用并口传输,速度比12864串口快。

12864 顾名思义像素是128*64,能显示8*4个汉字,因型号不同,有的带汉字库,有的不带,能显示图像效果,功能比1602强大。

综上所述:1602是字符型液晶,显示字母和数字比较方便,控制简单,成本较低。1602采用并口传输,速度比12864串口快。

四、硬件设计:

一)系统框图:

图4—1 多点测温系统框图

温度传感器DS18B20检测到环境温度进行转换保存高速缓存RAM中,主控器STC89C51在发出命令后在读取数据进行处理,按键扫描再输出数据到LCD1602控制其显示的具体温度值。

图4—2 系统仿真图:

二)各部分硬件介绍:

1.STC89C51单片机

图4—3 STC STC89C51单片机引脚图

①电源引脚

Vcc(40脚):典型值+5V。

Vss(20脚):接低电平。

②外部晶振

X1、X2分别与晶体两端相连接。当采用外部时钟信号时,X2接振荡信号,X1接地。

③输入输出口引脚:

P0口:I/O双向口。作输入口时,应先软件置“ 1”。

P1口:I/O双向口。作输入口时,应先软件置“ 1”。

P2口:I/O双向口。作输入口时,应先软件置“ 1”。

P3口:I/O双向口。作输入口时,应先软件置“ 1”。

④控制引脚:

RST/Vpd、ALE/-PROG、-PSEN、-EA/Vpp组成了MSC-51的控制总线。RST/Vpd(9脚):复位信号输入端(高电平有效)。

第二功能:加+5V备用电源,可以实现掉电保护RAM信息不丢失。ALE/-PROG(30脚):地址锁存信号输出端。

第二功能:编程脉冲输入。

-PSEN(29脚):外部程序存储器读选通信号。

-EA/Vpp(31脚):外部程序存储器使能端。

第二功能:编程电压输入端(+21V)。

2.温度传感器DS18B20

图4—3 DS18B20引脚图

温度传感器电路直接采用DS18B20设计,相比于模拟温度传感器,这种设计方法可以节省电路连接。

DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出北侧温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20的性能特点如下:

1)独特的单线接口仅需一个端口引脚进行通讯

2)每个器件有唯一的64 位的序列号存储在内部存储器中

3)简单的多点分布式测温应用

4)无需外部器件

5)可通过数据线供电。供电范围为3.0V到5.5V

6)测温范围为-55~+125℃(-67~+257℉)

7)在-10~+85℃范围内精确度为±0.5℃

8)温度计分辨率可以被使用者选择为9~12位

9)最多在750ms 内将温度转换为12 位数字

10)用户可定义的非易失性温度报警设置

11)应用包括温度控制、工业系统、消费品、温度计或任何热感测系统

64位ROM的位结构如图3所示。开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。非易失性温度报警器触发器TH和TL,可通过软件写入户报警上下限。

图4—4 64位ROM结构图

DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。该字节各位的定义热图5所示。低5位一直为1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位被设置为0,用户不要改动,R1和R0决定温度转换得精度位数,即用来设置分辨率,定义方法见表1。

图4—6 配置寄存器

高速暂存RAM的第6,7,8字节保存未用,表现为逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1,2字节。单片机可以通过单线接口读出数据,读数据时低位在先,高位在后,数据格式以

0.0625℃/LSB形式表示。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。主机根据ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到ROM数据是否正确。

DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源供电方式,如图8所示.单片机端口接单线总线,为为保证有效DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。

图4—7 DS18B20采用寄生电源的电路图

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。采用寄生电源供电方式时VDD和GND端均接地。由于单线制只有一根线,因此发送接口必须是三态的。

3.显示器LCD1602

图4—8 LCD尺寸图

LCD1602 采用标准的 16 脚接口,其中:

第 1 脚:VSS 为地电源

第 2 脚:VDD 接 5V 正电源

第 3 脚:V0 为液晶显示器对比度调整端,接正电源时对比度最弱,接地电源时对比度最高,对比度过高时会产生“鬼影”,使用时可以通过一个10K 的电位器调整对比度

第 4 脚:RS 为寄存器选择,高电平时选择数据寄存器、低电平时选择指令寄存器。

第 5 脚:RW 为读写信号线,高电平时进行读操作,低电平时进行写操

作。当 RS 和 RW 共同为低电平时可以写入指令或者显示地址,当 RS 为低电平 RW 为高电平时可以读忙信号,当 RS 为高电平 RW 为低电平时可以写入数据。

第 6 脚:E 端为使能端,当 E 端由高电平跳变成低电平时,液晶模块执行命令。

第 7~14 脚:D0~D7 为 8 位双向数据线。

第 15~16 脚:空脚

三)仿真电路:

1)开机仿真图:

图4—9 开机仿真图

2)选择界面仿真图:

图4—10.1 选择界面仿真图

2)温度显示界面仿真图:

图4—10.1 温度显示界面仿真图

五、数据处理:

一) 程序变量说明:

1.序列号存储数组:SN[3][8]

将实现读取的序列号保存在此变量中,方便后续程序的读取调用。定义方式为:uchar SN[3][8]=

{

0x28,0x1a,0x10,0xaa,0x05,0x00,0x00,0x71,

0x28,0x9a,0x51,0xaa,0x05,0x00,0x00,0xbf,

0x28,0xb1,0x4d,0xaa,0x05,0x00,0x00,0xac,

};

2.字符串存取数组:dis[]、table1[]、table2[]、table3[]、

table4[]、choose1[]、choose2[]、choose3[]、chooseAl[]、chooseAv[]、enter[]

将需要显示的字符窜分别保存在响应的数组里,进行模块化封装,方便在主程序与子程序之间调用显示,例如:

uchar code dis[]=" Welcome!";

uchar code chooseAv[]=" DISPLAY AVERAGE";

3.键盘返回值num

每个按键对应一个返回值,本系统为了体现简介节约的理念,只设置了两个按键,按键1返回值1,按键2返回值2。返回值储存在num变量中,有利于按键符合功能的实现。

4.功能变量k

每一个k值对应一个功能,通过按键来判断k值的不同

二) 程序数据处理:

1.温度数据处理

DS18B20初始默认值11位,最后一位位符号位,正温度为正,负温度为负,精度为0.0625,实际温度:

tvalue[j]=d*0.625(为实际温度的10倍)

tvalue[j]—储存j节点的的实际温度

d—采集的前10位温度

符号位判断:

tvalue[j]<0x07ff tflag[j]=0

tvalue[j]>=0x07ff tflag[j]=1

tflag[j]—储存j节点的温度符号

2.显示数据处理:

disdata[0]=flagdat—显示符号位

disdata[1]=tvalue[0]%1000/100+0x30—显示十位

disdata[2]=tvalue[0]%100/10+0x30—显示个位

disdata[3]=0x2e—显示小数点

disdata[4]=tvalue[0]%10+0x30—显示小数一位

三) 人机界面设计:

初始界面,无任何操作,如图5—1:

图5—1 欢迎界面

功能选择界面(按键1选择),如图5—2、图5—3:

图5—2 功能界面,显示所有温度

图5—2 功能界面,显示平均温度温度显示界面(按键2选择),如图5—4、图5—5:

图5—4 温度显示界面,显示第二节点温度

图5—5 温度显示界面,显示所有节点温度

六、软件设计:

1.语言选择:程序选择C语言编写,语言的结构性更强,移植性更强。

2.资源配置:

3.程序流程图:

A. 主程序:

基于DS18B20的多点温度测量系统设计

一、绪论 1.1 课题来源 温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一,同时它也是一种最基本的环境参数。人民的生活与环境温度息息相关,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,在电力、化工、石油、冶金、机械制造、大型仓储室、实验室、农场塑料大棚甚至人们的居室里经常需要对环境温度进行检测,并根据实际的要求对环境温度进行控制。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行。炼油过程中,原油必须在不同的温度和压力条件下进行分流才能得到汽油、柴油、煤油等产品;没有合适的温度环境,许多电子设备不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。可见,研究温度的测量具有重要的理论意义和推广价值。 随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。本设计就是为了满足人们在生活生产中对温度测量系统方面的需求。 本设计要求系统测量的温度的点数为4个,测量精度为0.5℃,测温范围为-20℃~+80℃。采用液晶显示温度值和路数,显示格式为:温度的符号位,整数部分,小数部分,最后一位显示℃。显示数据每一秒刷新一次。 1.2 课题研究的意义 21世纪科学技术的发展日新月异,科技的进步带动了测量技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,测量技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。对于本次设计,其目的在于: (1)掌握数字温度传感器DS18B20的原理、性能、使用特点和方法,利用C51对系统进行编程。

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。 .

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为0.5摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越数字温度传感器的温度检测及显示的系统原理图如图DS1820限检测等。基于 图 2.1 基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实现,键盘用来设定报警上下限温度。 .. . 测温电路设计总体设计框图图3.11.控制模块 AT89S52单片机是美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含有8kb的可系统编程的Flash只读程序存储器,器件采用ATMEL公

基于DS18B20的温度测量系统设计

课程设计(论文) 题目名称基于DS18B20温度测量系统设计 课程名称单片机原理及应用 学生姓名尹彬涛 学号1341301075 系、专业电子信息工程 指导教师江世民 2015年 6 月12 日

摘要 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于STC89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与STC89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机; DS18B20; 温度传感器; 数字温度计; STC89C52

目录 摘要 (1) 引言 (3) 一、方案介绍 (3) 1、显示部分 (3) 2、温度采集 (5) 3、方案流程图 (5) 二、总体方案设计 (6) 1、硬件设计 (6) 1.1 温度采集设计 (6) 1.2温度显示设计 (6) 2、软件设计 (7) 2.1 DS18B20程序设计 (7) 2.2显示部分程序设计 (8) 三、实验调试过程 (10) 1、软件调试 (10) 1.1 显示部分调试........................................ . (10) 四、心得体会 (10) 五、致谢 (11) 六、参考文献 (12) 七、附录 (12) 附录一程序代码 (12) 附录二仿真电路图 (18)

基于DS18B20的多点温度测量系统(毕业设计)

目录 中文摘要......................................................................................................... III 英文摘要......................................................................................................... I V 1 绪论. (1) 1.1课题来源 (1) 1.2课题研究的目的意义 (1) 1.3国内外现状及水平 (2) 1.4课题研究内容 (2) 2 系统方案设计 (3) 2.1基于模拟温度传感器设计方案 (3) 2.2基于数字温度传感器设计方案 (4) 2.3方案论证 (4) 3 电路设计 (6) 3.1工作原理 (6) 3.2DS18B20与单片机接口技术 (7) 3.3键盘电路设计 (14) 3.4显示电路设计 (15) 3.5报警电路设计 (16) 3.6电源电路设计 (17) 4 程序设计 (18) 4.1系统资源分配 (18) 4.2系统流程设计 (18) 4.3程序设计 (24) 5 系统仿真 (34) 5.1PROTEUS仿真环境介绍 (34) 5.2原理图绘制 (35) 5.3程序加载 (35) 5.4系统仿真 (36) 5.5仿真结果分析 ............................................................................................... 错误!未定义书签。 6 PCB板设计 (39) 6.1PCB板设计 (39)

DS18B20的测温原理

3.2.3 DS18B20的测温原理 DS18B20的测温原理如图3-2-2-6所示,图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃ 所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图2中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。 另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)→发ROM功能命令→发存储器操作命令→处理数据。各种操作的时序图与DS1820相同。 图3-2-3-1 DS18B20与处理器连接图 3.2.4 DS18B20与单片机的典型接口设计 以MCS51单片机为例,图3-2-3-1中采用寄生电源供电方式,P1 1口接

DS18B20中文资料

第一部分:DS18B20的封装和管脚定义 首先,我们来认识一下DS18B20这款芯片的外观和针脚定义,DS18B20芯片的常见封装为TO-92,也就是普通直插三极管的样子,当然也可以找到以SO(DS18B20Z)和μSOP(DS18B20U)形式封装的产品,下面为DS18B20各种封装的图示及引脚图。 了解了这些该芯片的封装形式,下面就要说到各个管脚的定义了,如下表即

为该芯片的管脚定义: 上面的表中提到了一个“奇怪”的词——“寄生电源”,那我有必要说明一下了,DS18B20芯片可以工作在“寄生电源模式”下,该模式允许DS18B20工作在无外部电源状态,当总线为高电平时,寄生电源由单总线通过VDD 引脚,此时DS18B20可以从总线“窃取”能量,并将“偷来”的能量储存到寄生电源储能电容(Cpp)中,当总线为低电平时释放能量供给器件工作使用。所以,当DS18B20工作在寄生电源模式时,VDD引脚必须接地。 第二部分:DS18B20的多种电路连接方式 如下面的两张图片所示,分别为外部供电模式下单只和多只DS18B20测温系统的典型电路连接图。 (1)外部供电模式下的单只DS18B20芯片的连接图

(2)外部供电模式下的多只DS18B20芯片的连接图 这里需要说明的是,DS18B20芯片通过达拉斯公司的单总线协议依靠一个单线端口通讯,当全部器件经由一个三态端口或者漏极开路端口与总线连接时,控制线需要连接一个弱上拉电阻。在多只DS18B20连接时,每个DS18B20都拥有一个全球唯一的64位序列号,在这个总线系统中,微处理器依靠每个器件独有的64位片序列号辨认总线上的器件和记录总线上的器件地址,从而允许多只DS18B20同时连接在一条单线总线上,因此,可以很轻松地利用一个微处理器去控制很多分布在不同区域的DS18B20,这一特性在环境控制、探测建

DS18B20温度检测

目录1引言1 2系统描述2 2.1系统功能2 2.2系统设计指标3 3系统的主要元件3 3.1单片机3 3.2温度传感元件4 3.3LCD显示屏7 4硬件电路8 4.1系统整体原理图8 4.2单片机晶振电路8 4.3温度传感器连接电路9 4.4LCD电路10 4.5报警和外部中断电路11

5结论12

温度监测系统硬件设计 摘要:利用DS18B20为代表的新型单总线数字式温度传感器实现温度的监测,可以 简化硬件电路,也可以实现单线的多点分布式温度监测,而不会浪费单片机接口,提供了单片机接口的利用率。同时提高了系统能够的抗干扰性,使系统更灵活、方 便。本系统主要实现温度的检测、显示以及高低温的报警。也可以通过单总线挂载 多个DS18B20实现多点温度的分布式监测。 关键词:DS18B20,单总线,温度,单片机 1引言 在科技广泛发展的今天,计算机的发展已经越来越快,它的应用已经越来越广泛。而单片机的发展和应用是其中的重要一方面。单片机在工业生产(机电、化工、轻纺、自控等等)和民用家电各方面有广泛的应用。其中,单片机在工业生产中的应用尤其广泛。 单片机具有集成度高,处理能力强,可靠性高,系统结构简单,价格低廉的优点,因此被广泛应用。在工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要测量参数。例如:在冶金工业、化工工业、电力工程、机械制造和食品加工等许多领域中,人们都需要对各类加热炉、热处理炉、反映炉和锅炉,尤其是热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中的温度进行测量,并经常会对其进行控制。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过A/D转换环节获得数字信号后才能够被单片机等微处理器接收处理,使得硬件电路结构复杂,制作成本较高。

DS18B20测温

DS18B20原理与分析 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 美国Dallas半导体公司的数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器,在其内部使用了在板(ON-BOARD)专利技术。全部传感器元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而经济的特点,使用户可轻松的组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小,更经济,更灵活。使你可以发挥“一线总线”的优点。 在传统的模拟信号远距离温度测量系统中,需要很好地解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器DS18B20体积小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 DS18B20的主要特征:(1)全数字温度转换及输出。(2)先进的单总线数据通信。(3)最高12位分辨率,精度可达土0.5摄氏度。(4) 12位分辨率时的最大工作周期为750毫秒。(5)可选择寄生工作方式。6)检测温度范围为–55°C ~+125°C (–67°F ~+257°F) (7)内置EEPROM,限温报警功能。 (8)64位光刻ROM,内置产品序列号,方便多机挂接。(9)多样封装形式,适应不同硬件系统。 DS18B20引脚定义: (1) DQ为数字信号输入/输出端;(2) GND为电源地; (3) VDD为外接供电电源输入端(在寄生电源接线方式时接地)。

基于CC2430和DS18B20的无线测温系统设计

基于CC2430和DS18B20的无线测温系统设计 关键字: CC2430 DS18B20 无线测温系统 目前,很多场合的测温系统采用的还是有线测温设备,由温度传感器、分线器、测温机和监控机等组成,各部件之间采用电缆连接进行数据传输。这种系统布线复杂、维护困难、成本高,可采用无线方案解决这些问题。无线测温系统是一种集温度信号采集、大容量存储、无线射频发送、LED(或LCD)动态显示、控制与通信等功能于一体的新型系统。 本文从低功耗、小体积、使用简单等方面考虑,基于射频SoC CC2430和数字温度传感器DS18B20设计了一个无线测温系统,整个系统由多个无线节点和1个基站组成。无线节点工作在各个测温地点,进行温度数据采集和无线发送。基站与多个节点进行无线通信,并通过数码管将数据显示出来,同时可以通过RS-232串口将数据发送给PC。 CC2430简介 CC2430是TI/ChipconAs公司最新推出的符合2.4G IEEE802.15.4标准的射频收发器.利用此芯片开发的无线通信设备支持数据传输率高达250 kbit/s可以实现多点对多点的快速组网。CC2430的主要性能参数如下: (1)工作频带范围:2.400~2.483 5 GHz;(2)采用IEEE802.15.4规范要求的直接序列扩频方式; (3)数据速率达250 kbit/s码片速率达2 MChip/s; (4)采用o-QPSK调制方式; (5)超低电流消耗(RX:19.7mA,TX:17.4mA)高接收灵敏度(-99 dBm); (6)抗邻频道干扰能力强(39 dB); (7)内部集成有VCO、LNA、PA以及电源整流器采用低电压供电(2.1~3.6V); (8)输出功率编程可控; (9)IEEE802.15.4 MAC层硬件可支持自动帧格式生成、同步插入与检测、16bit CRC 校验、电源检测、完全自动MAC层安全保护(CTR,CBC-MAC,CCM); (10)与控制微处理器的接口配置容易(4总线SPI接口); (11)采用QLP-48封装,外形尺寸只有7×7mm。CC2430只需要极少的外围元器件,其典型应用电路如图2所示。它的外围电路包括晶振时钟电路、射频输入/输出匹配电路和微控制器接口电路3个部分。

智能温度报警系统:DS18B20 构成测温系统---论文篇

[实验任务] 用一片DS18B20 构成测温系统,测量的温度精度达到0.1 度,测量的温度的范围在-20度到+50度之间,用4位数码管显示出来。 [硬件电路图] [实验原理] DS18B20 数字温度计是DALLAS 公司生产的1-Wire,即单总线器件,具有线 路简单,体积小的特点。因此用它来组成一个测温系统,具有线路简单,在一根通信线,可以挂很多这样的数字温度计。DS18B20 产品的特点(1)、只要求一个 I/O口即可实现通信。(2)、在DS18B20中的每个器件上都有独一无二的序列号。(3)、实际应用中不需要外部任何元器件即可实现测温。(4)、测量温度范围在-55。C到+125。C之间。(5)、数字温度计的分辨率用户可以从9位到12位选择。(6)、内部有温度上、下限告警设置。 DS18B20详细引脚功能描述1 GND地信号;2 DQ数据输入/输出引脚。开漏单总线接口引脚。当被用着在寄生电源下,也可以向器件提供电源;3 VDD可选择 的VDD引脚。当工作于寄生电源时,此引脚必须接地。 DS18B20的使用方法。由于DS18B20采用的是1-Wire总线协议方式,即在一根 数据线实现数据的双向传输,而对AT89S51单片机来说,我们必须采用软件的方 法来模拟单总线的协议时序来完成对DS18B20芯片的访问。由于DS18B20是在一 根I/O线上读写数据,因此,对读写的数据位有着严格的时序要求。DS18B20有 严格的通信协议来保证各位数据传输的正确性和完整性。该协议定义了几种信号的时序:初始化时序、读时序、写时序。所有时序都是将主机作为主设备,单总线器件作为从设备。而每一次命令和数据的传输都是从主机主动启动写时序开始,如果要求单总线器件回送数据,在进行写命令后,主机需启动读时序完成数据接收。数据和命令的传输都是低位在先。

基于DS18B20的智能温度检测系统

基于DS18B20的智能温度检测系统

电子系统综合设计 题目基于DS18B20的智能温度检测系统学号 姓名 所属系机械工程学院 专业电子信息工程 班级10级电信本一班 指导教师 摘要

DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。本文结合实际使用经验,介绍了DS18B20数字温度传感器在单片机下的硬件连接及软件编程,并给出了软件流程图。 在此次设计中,我们采用LED显示温度,实现并焊接制作一个具有多种I/O接口的综合性功能电路,温度的测量值要精确到小数点的后1位,并采用单片机编程的方式使其使用方便、精度高。另外还通过protues软件对设计的数字钟进行了有效的仿真,使得设计的电子产品更具有实用性,该系统可应用于仓库测温、楼宇空调控制和生产过程监控等领域。 关键字:温度测量;LED;数字温度传感器;单片机

Abstract As a kind of high-accuracy digital net temperature sensor,DS18 B20 can be used building a sensor net easily. It can also make the net simple and reliable with it's special 1-wire interfa ce .This paper introduces the application of DS18B20 with singl e chip processor. The system is constituted by two parts the temperature measure d part and displayed part. The temperature measured part has a RS232 interface. It used AT89C51 of ATMEL company and DS18B20 of DALLAS company .The displayed part uses PC .Th is system is applied in such domains as warehouse detecting te mperature;air-conditioner controlling system in building and su pervisory productive process etc. Key words:temperature measure;LED;digital thermometer;si ngle chip processor

DS18B20温度传感器课程设计报告

单片机课程设计报告 设计题目: DS18B20温度传感器 班级: 09电信(2)班 姓名: xxx 学号: xxx 指导教师: xxx 调试地点: xxx

目录 一、概述 .................................................... 错误!未定义书签。 二、内容 .................................................... 错误!未定义书签。 1、课程设计题目.......................................... 错误!未定义书签。 2、课程设计目的.......................................... 错误!未定义书签。 3、设计任务和要求........................................ 错误!未定义书签。 4、正文 ................................................. 错误!未定义书签。 (一)、方案选择与论证................................ 错误!未定义书签。 三、系统的具体设计与实现..................................... 错误!未定义书签。 (1)、系统的总体设计方案................................. 错误!未定义书签。 (2)、硬件电路设计....................................... 错误!未定义书签。 a、单片机控制模块.................................... 错误!未定义书签。 b、温度传感器模块.................................... 错误!未定义书签。 四、软件设计 ................................................ 错误!未定义书签。 1、主程序............................................. 错误!未定义书签。 2、读出温度子程序..................................... 错误!未定义书签。 3、温度转换命令子程序................................. 错误!未定义书签。 4、计算温度子程序........................................ 错误!未定义书签。 五、完整程序如下: .......................................... 错误!未定义书签。 六、设计体会 ................................................ 错误!未定义书签。 七、参考文献 ................................................ 错误!未定义书签。

(完整word版)基于单片机的DS18B20设计实验报告

第1章引言 在日常生活及工农业生产中经常要涉及到温度的检测及控制,传统的测温元件有热点偶,热敏电阻还有一些输出模拟信号得温度传感器,而这些测温元件一般都需要比较多的外部硬件支持。其硬件电路复杂,软件调试繁琐,制作成本高,阻碍了其使用性。因此美国DALLAS半导体公司又推出了一款改进型智能温度传感器——DS18B20。本设计就是用DS18B20数字温度传感器作为测温元件来设计数字温度计。 本设计所介绍的数字温度计与传统温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于测温比较准确得场所,或科研实验室使用。该设计控制器使用单片机STC89C51,测温传感器使用DS18B20,显示器使用LED.

第2章任务与要求 2.1测量范围-50~110°C,精确到0.5°C; 2.2利用数字温度传感器DS18B20测量温度信号; 2.3所测得温度采用数字显示,计算后在液晶显示器上显示相应得温度值;

第3章方案设计及论证 3.1温度检测模块的设计及论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,其中还涉及到电阻与温度的对应值的计算,感温电路比较麻烦。而且在对采集的信号进行放大时容易受温度的影响出现较大的偏差。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,电路简单,精度高,软硬件都以实现,而且使用单片机的接口便于系统的再扩展,满足设计要求。 3.2显示模块的设计及论证 LED是发光二极管Light Emitting Diode 的英文缩写。LED显示屏是由发光二极管排列组成的一显示器件。它采用低电压扫描驱动,具有如下优点:1、耗电省、2、使用寿命长、3、成本低、4、亮度高、5、视角大、6、可视距离远、7、规格品种多。 3.3控制器模块的设计及论证 单片机是指一个集成在一块电路芯片上的完整计算机系统。尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:中央处理单元CPU、存储器/RAMROM和各种/IO接口,目前大部分还会具有外部存储扩展。采用STC89C52单片机。它是一种带8K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8的微处理器。该器件采用ATMEL高密度非易失存储器技术制造,与工业标准51MCS指令集和输出管脚相兼容。属于51单片机系列,是C51单片机向下完全兼容51全部系列产品。该款单片机片内含8k Bytes ISP(I-system programmable)可反复擦写1000次的Flash只读存储器,可以通过串口进行程序的烧写,内带2k Bytes EEPROM存储空间,4个8位的可编程并行I/O口(P0口,P1口,P2口,P3口),一个全双工串口,5个中断源,2级中断优先权,3个16位的定时器/计数器),具有四种工作方式以及

温度传感器DS18B20测温系统的设计

课程设计报告 题目:温度传感器DS18B20测温系统的设计 姓名:李彬 专业:电子信息工程B 班级号:08212 学号:08212025 2010/12/1

目录 温度传感器DS18B20测温系统的设计 (3) 摘要 (3) 关键词 (3) 一. 引言 (3) 二.元器件资料 (4) 1.DS18B20 (4) 2. STC80C52单片机芯片引脚功能介绍 (6) 3. LCD1602 (7) 三. 方案论证 (10) 采用数字温度芯片DS18B20 (10) 四.总体设计 (10) 1.硬件设计 (10) 1设计思路 (10) 2总体设计方框图 (11) 3.原理图 (11) 2.软件设计 (12) 1主程序 (12) 2读出温度子程序 (13) 3温度转换命令子程序 (13) 4计算温度子程序 (14) 5显示数据刷新子程序 (14) 6 温度数据的计算处理方法 (14) 五.总结与体会 (14) 附录一:程序 (15) 附录二:实物图 (20)

温度传感器DS18B20测温系统的设计 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于 STC89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测 温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实 现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与STC89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机;温度检测;STC89C52;DS18B20; 一. 引言 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和 信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段: ①传统的分立式温度传感器 ②模拟集成温度传感器 ③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,STC89C51单片机为控制器构成的数字温度 测量装置的工作原理及程序设计作了详细的介绍。与传统的温度计相比,其具有读数方便,测温范围广,测温准确,输出温度采用数字显示,主要用于对测温要求比较准确的场所,或科研实验室使用。该设计控制器使用STC公司的STC89C52

DS18B20测温教程

DS18B20 一、DS18B20背景介绍 美国Dallas半导体公司的数字化温度传感器DS18B20是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(O N-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。 二、DS18B20主要特性 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。因此,DS18B20具有以下特性: 1.适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 2.独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯 3.DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温 4.DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内 5.温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃ 6.可编程的分辨率为9~12位,对应的可分辨温度分别为0.

5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温 7.在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快8.测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力9.负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。 三、DS18B20的外形和内部结构 1、DS18B20的外形结构如下图所示: DS18B20引脚定义: (1)DQ为数字信号输入/输出端; (2)GND为电源地; (3)VDD为外接供电电源输入端。

基于DS18B20STC89C52单片机LCD1602液晶显示测温系统C程序完整版

基于ds18b20 STC89c52单片机测温系统LCD1602液晶显示 (C程序完整版) 温度传感器的种类众多,在应用与高精度、高可靠性的场合时 DALLAS (达拉斯)公司生产的 DS18B20 温度传感器当仁不让。超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得 DS18B20 更受欢迎。对于我们普通的电子爱好者来说,DS18B20 的优势更是我们学习单片机技术和开发温度相关的小产品的不二选择。了解其工作原理和应用可以拓宽您对单片机开发的思路。如果要更全的资料请搜索“完整的ds18b20中文资料.pdf “。 DS18B20 的主要特征: …全数字温度转换及输出。 …先进的单总线数据通信。 …最高 12 位分辨率,精度可达土 0.5摄氏度。 … 12 位分辨率时的最大工作周期为 750 毫秒。 …可选择寄生工作方式。 …检测温度范围为–55°C ~+125°C (–67°F ~+257°F) …内置 EEPROM,限温报警功能。 … 64 位光刻 ROM,内置产品序列号,方便多机挂接。 …多样封装形式,适应不同硬件系统。

DS18B20 引脚功能: ·GND 电压地·DQ单数据总线·VDD电 源电压·NC空引脚 DS18B20 工作原理及应用: DS18B20 的温度检测与数字数据输出全集成于一个芯片之上,从而抗干扰力更强。其一个工作周期可分为两个部分,即温度检测和数据处理。在讲解其工作流程之前我们有必要了解 18B20的内部存储器资源。18B20 共有2种形态的存储器资源,它们分别是: 1> ROM 只读存储器,用于存放 DS18B20ID 编码,其前 8 位是单线系列编码(DS18B20 的编码是19H),后面48 位是芯片唯一的序列号,最后 8位是以上 56的位的 CRC码(冗余校验)。数据在出产时设置不由用户更改。DS18B20 共 64 位 ROM。

DS18B20温度传感器设计报告

传感器课程设计 ---数字温度计专业:计算机控制技术 年级:2011 级 姓名:樊益明 学号: 20113042 指导教师:刘德春 阿坝师专电子信息工程系

1.引言 1.1.设计意义 在日常生活及工农业生产中,经常要用到温度的检测及控制,传统的测温元件有热电偶和热电阻。而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比较多的外部硬件支持。其缺点如下: ●硬件电路复杂; ●软件调试复杂; ●制作成本高。 本数字温度计设计采用美国DALLAS半导体公司继DS1820之后推出的一种改进型智能温度传感器DS18B20作为检测元件,测温范围为-55~125℃,最高分辨率可达0.0625℃。 DS18B20可以直接读出被测温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的热点。 2 设计要求 2.1基本要求 1) 用LCD12232实现实时温度显示温度和自己的学号。 2) 采用LED数码管直接读显示。 2.2扩展功能 温度报警,能任意设定温度范围实现铃声报警; 3资料准备 3.1单片机89C52模块 单片机89C52是本设计中的控制核心,是一个40管脚的集成芯片构成。引脚部分:单片机引脚基本电路部分与普通设计无异,40脚接Vcc+5V,20脚接地。X1,X2两脚接12MHZ的晶振,可得单片机机器周期为1微秒。RST脚外延一个RST复位键,一端通过10K电阻接Vcc,一端通过10K电阻接地。AT89S52是一种低功耗、高性能的8位CMOS微控制器,具有8K的可编程Flash 存储器。使

用高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8位CPU和在线系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。AT89S52具有以下标准功能:8K字节Flash,256字节RAM,32位I/O 口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。P 0口接一个470的上拉电阻。P0口0~8脚接4位共阳数码管的段选,P2口0~4脚接4位共阳数码管的位选,P3.7接DS18B20采集信号。 3.2 DS18B20简介 DALLAS最新单线数字温度传感器DS18B20简介新的“一线器件”体积更小、适用电压更宽、更经济Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 “一线总线”数字化温度传感器同DS1820一样,DS18B20也支持“一线总线”接口,测量温度范围为-55°C~+125°C,在 -10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。DS18B20、DS1822 的特性DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己 的经济的测温系统。3.3 温度传感器的工作原理 DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。DS18B20测温原理:低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉

DS18B20供电方式

5、DS18B20的应用电路 DS18B20测温系统具有测温系统简单、测温精度高、连接方便、占用口线少等优点。下面就是DS18B20几个不同应用方式下的测温电路图: 5.1、DS18B20寄生电源供电方式电路图 如下面图4所示,在寄生电源供电方式下,DS18B20从单线信号线上汲取能量:在信号线DQ处于高电平期间把能量储存在内部电容里,在信号线处于低电平期间消耗电容上的电能工作,直到高电平到来再给寄生电源(电容)充电。 独特的寄生电源方式有三个好处: 1)进行远距离测温时,无需本地电源 2)可以在没有常规电源的条件下读取ROM 3)电路更加简洁,仅用一根I/O口实现测温 要想使DS18B20进行精确的温度转换,I/O线必须保证在温度转换期间提供足够的能量,由于每个DS18B20在温度转换期间工作电流达到1mA,当几个温度传感器挂在同一根I/O线上进行多点测温时,只靠4.7K上拉电阻就无法提供足够的能量,会造成无法转换温度或温度误差极大。 因此,图4电路只适应于单一温度传感器测温情况下使用,不适宜采用电池供电系统中。并且工作电源VCC必须保证在5V,当电源电压下降时,寄生电源能够汲取的能量也降低,会使温度误差变大。 注:站长曾经就此电路做过实验,在实验中,降低电源电压VCC,当低于4.5V

时,测出的温度值比实际的温度高,误差较大。。。当电源电压降为4V时,温度误差有3℃之多,这就应该是因为寄生电源汲取能量不够造成的吧,因此,站长建议大家在开发测温系统时不要使用此电路。 图4 5.2、DS18B20寄生电源强上拉供电方式电路图 改进的寄生电源供电方式如下面图5所示,为了使DS18B20在动态转换周期中获得足够的电流供应,当进行温度转换或拷贝到E2存储器操作时,用MOSFET 把I/O线直接拉到VCC就可提供足够的电流,在发出任何涉及到拷贝到E2存储器或启动温度转换的指令后,必须在最多10μS内把I/O线转换到强上拉状态。在强上拉方式下可以解决电流供应不走的问题,因此也适合于多点测温应用,缺点就是要多占用一根I/O口线进行强上拉切换。

相关主题
相关文档
最新文档