博弈论第四章

博弈论第四章
博弈论第四章

4 非完全信息动态博弈

4.1 精炼贝叶斯均衡概述

例简单的非完全信息动态博弈

参与人1的类型t为个人信息。

参与人2 不知道t,但知道t的概率分布。

博弈的时序:

(1)参与人1选择行动a1∈A1;

(2)参与人2观察a1,选择a2∈A2

博弈的收益:u1 (a1, a2, t ), u2 (a1, a2, t )

u1u1u1u1 u1u1u1u1

u2u2u2u2 u2u2u2u2例:

1 R

L M 1

3

p 2 1- p

L'R'L'R'

2 0 0 0

1 0 1 2

标准式表示

参与人2

L'R'

L2,10,0

参与人1 M0, 20, 1

R1, 31, 3

纯战略纳什均衡: (L,L'), (R,R')

均为子博弈精炼纳什均衡(无子博弈)。

但是(R, R')不可信。

排除不可信的纳什均衡:

要求1 参与人必须有一个推断(belief).

要求2 参与者的战略必须满足序贯理性(sequentially rational).

定义

处于均衡路径上(on the equilibrium path)的信息集: 在均衡战略下,博弈以正的概率到达该集.

处于均衡路径之外(off the equilibrium path)的信息集: 在均衡战略下,博弈不会到达此集.

要求 3 在处于均衡路径上的信息集上, 推断由贝叶斯法则和参与人的均衡战略决定。

例要求3的说明

参与人1的类型空间:{ t1,t2,t3,t4 }

行动空间:A= { L,R}

推断p i : 观察到L 后,参与人1的类型是t i 的概率。 推断q i : 观察到R 后,参与人1的类型是t i 的概率。 p 1 + p 2 + p 3 + p 4 = 1 q 1 + q 2 + q 3 + q 4= 1

如果参与人1的战略: t 1选 L ,t 2选 L , t 3选R ,t 4 选R 。 参与人2对p i 与 q i 的推断: p 1 =

3.02.02.0+= 0.4, p 2 = 3

.02.03

.0+= 0.6, p 3 = 0, p 4 =0;

q 1 = 0, q 2= 0, q 3 =3.02.02.0+= 0.4, q 4= 3

.02.03

.0+= 0.6,

要求 4 在处于均衡路径之外的信息集上, 可能情况下,推断由贝叶斯法则和参与人的均衡战略决定。

原文:At information sets off the equilibrium path, beliefs are determined by Bayes ’ rule and the players ’ equilibrium strategies

where possible.

精炼贝叶斯均衡(perfect Bayesian equilibrium):在一个非完全信息的动态博弈中,满足要求1 – 4 的战略与推断构成的均衡。

例不满足要求4的情形。

3个参与人的博弈。

1 A 2

D 0

2

L R

[p] [1 –p]

3

L'R'L'R'

1 3 0 0

2 3 1 1

1 3

2 1

子博弈精炼纳什均衡: (D, L, R')

另有战略(A, L, L')和推断p = 0:

----纳什均衡

----满足要求1-3.

----不是精炼贝叶斯均衡: 不满足要求4: p= 0 与2的战略不相容.

例要求4中“不可能”的情形。

1 A

D

2 A'

L R1-q1-q2

[q1] [q2]

3

L'R'L'R'

如果(A, A', L') 是均衡,则参与人3的战略要针对参与人2的L 或R。

参与人3的推断必须是p = q1/(q1 + q2)

但是参与人2选A',q1 + q2 =0, 因此无法计算p。

4.2 信号博弈

4.2.A 信号博弈中的精炼贝叶斯均衡

信号博弈的参与人:信号发送者S,接收者R。

信号博弈的时间顺序

自然按照概率分布为S产生一个t i∈T

S观察t,并选择m j∈M

R观察m并选择a k∈A

收益U S(t i,m j,a k)和U R(t i,m j,a k)

信号博弈的例

T = {t1, t2}, M = {m1, m2}, A = {a1, a2},

Pr{t 1} = p , Pr{t 2} = 1 - p 。

发送者战略: 在类型为t 1时发出的信号与t 2时发出的信号:

{m 1, m 1}, {m 1, m 2}, {m 2, m 1}, {m 2, m 2} 混同(pooling)战略: 所有的类型发出相同的信号:

{m 1, m 1}, {m 2, m 2}

分离(separating)战略:不同的类型发出不同的信号:

{m 1, m 2}, {m 2, m 1}

接收者战略: 在收到信号m 1时与信号m 2时选择的行动: { a 1, a 1}, {a 1, a 2}, {a 2, a 1}, {a 2, a 2}

1,

3,1

2,2,0 3,1,0

1,2,2

信号要求 1: 接收者在观察信号m j 后,必须对发送m j 的类型有一个推断

∑∈T

t i μ( t i ∣m j ) = 1

信号要求 2R : 对每一 m j , 接收者的行动 a *(m j ) 必须在给定推断 μ( t i | m j ) 后,最大化他的期望效用,

A

a k ∈max

∑∈T

t i μ( t i | m j ) U R (t i , m j , a k )

信号要求 2S : 对每一t i , 在给定a *(m j ) 后,发送者的信号 m *(t i )必须最大化他的效用

M

m j ∈max U S (t i , m j , a *(m j ))

信号要求 3: 对每一 m j , 如果存在 t i 使得 m *(t i ) = m j , 则接收者的推断:

μ( t i | m j ) =

∑)

()

(i i t p t p 精炼贝叶斯均衡: 战略 (m *(t i ), a *(m j ))和推断 μ(t i | m j ) 满足信号要求 (1), (2R), (2S),和 (3)。

为什么没有要求4?

例 T = {t 1, t 2, t 3, t 4}, M = {m 1, m 2, m 3} 如果在均衡中,发送者的战略:

m *(t 1) = m 1,m *(t 2) = m 1,m *(t 3) = m 2,m *(t 4) = m 2 则m 3处于均衡路径以外,若用贝叶斯公式,分母为0。

例 (Figure 4.2.2)

1, 2,1

4, 0,0 2, 1,0

0, 1,2

求精炼贝叶斯均衡:对4种情况逐一分析。 1. 混同于L ?

发送者: (L, L).

如果为均衡,p = 0.5

接收者收益分别为: 3.5(u),或0.5(d)。将选择u。

发送者收益分别为:1 (t1),2 (t2)

如果发送者发送R, 当

q + (1 –q)×0 ≤q×0 + (1 –q)×2

q≤ 2/3

接收者将选择d. 发送者收益为0(t1),和1(t2), 小于发送L时分别所得。

均衡: { (L, L), (u, d), p = 0.5, q≤ 2/3}

2. 混同于R?

发送者: (R, R)

如果是均衡,q = 0.5.

接收者的收益: 0.5 (u), 1 (d)。他选择d

发送者的收益分别为: 0 (t1), 1 (t2)

如果发送者在t1时发送L, 收益至少为1。

不是均衡。

3. 分离(L, R)?

发送者: (L, R).

接收者推断:p = 1 , q = 0

接收者战略: (u, d)。

发送者的收益分别为:1 (t1), 1 (t2)

但是对t2, 如果发送者发送L, 接收者选择u, 发送者的收益将为2。发送者在t2时,将发送L。

不是均衡。

4. 分离(R, L)?

发送者: (R, L)。

接收者推断:p = 0, q = 1,战略:(u, u)

发送者的收益分别为:2(t1), 2 (t2)

如果发送者不这样, 收益将为1(t1发送L),和1(t2发送R)。

分离精炼贝叶斯均衡:

[(R, L), (u, u), p = 0, q = 1]

4.2.B就业市场的信号博弈。

1.自然决定工人的能力η,以概率q为高H,以概率1 –q为低L。

2.工人了解自己的能力,选择一个教育水平e≥ 0,教育的成本为c(H,e)或c( L,e)。

假设对于获得相同的教育,低能力工人的边际成本要高于高能力的工人的,即c e(L, e ) > c e ( H, e)

c e c e(L, e )

c e ( H, e)

e

3.企业观察e,决定工人的工资w。

工人的收益w–c( η,e)

工人的无差异曲线I(e, w) = w–c( η,e)

斜率 k = -//dI de

dI dw

= c e

w I L

I H

e

企业的收益 y ( η,e ) – w

假设企业是完全竞争的,即w = y ( η,e )

w

y (H , e )

w H *

y (L , e )

w L *

e L * e s e H *

具有能力η 的工人选择教育水平e 使得

e

max w – c (η, e )

s . t . y (η, e ) = w

最优解表示为e *(η),对应的工资w *(η) = y [η, e *(η)]

低能力工人不冒充高能力工人的情形,即

w *(L ) – c [L , e *(L )] > w *(H ) – c [L , e *(H )]

w

w H*

w L*

e L* e s e H*

在有冒充的情形,即

w*(H) –c[L, e*(H)] > w*(L) –c[L, e*(L)]

w

y(H, e s )

w H*

w L*

e L* e H* e s e' e

1.混同均衡

只有存在冒充时,才可能有混同均衡。

两种工人选择同一种教育水平e p,公司观察到e p后的判断为p(H|e p) = q

支付的工资为

w p = qy (H, e p) + (1 –q) y(L, e p) (4.2.2)对于不在均衡路径上的判断,可以是

p(H|e) = 0 e≠e p

工资支付为

w(e) = y(L,e) e≠e p

w

y(H, e s )

w L*

e L* e p e'e''e s e

其他的混同均衡:e0: e p < e0 < e',类似给出公司的判断及工资的支付,也构成完备贝叶斯均衡。

另一种混同均衡:e p,但公司对不在均衡路径上的判断不同。

0 e≤e"e≠e p

μ(H| e) = q e = e p

q e > e"

公司的工资支付为

y(L, e) e≤e"e≠e p

w(e) = w(e p ) e = e p

w(e) e > e"

2.分离均衡

(1)不存在冒充的时候

e(L) = e L*,e(H) = e H*,

公司的判断:

p(H| e) = 0,e < e H*

p(H| e) = 1,e≥e H*

公司支付工资

w (e) = y(L,e H*),e < e H*

w (e) = y(H,e L*),e≥e H*

这是完备贝叶斯均衡。

(2)存在冒充的时候

高能力工人选择e s > e*(H),低能力选择e = e*(L)

公司的判断及公司支付工资为:

μ (H| e) = 0,e < e s

μ (H| e) = 1,e≥e s

w (e) = y(L,e H*),e < e s

w (e) = y(H,e L*),e≥e s

可以构成分离均衡。

w

y(H, e s )

w H*

w L*

e L* e H* e s e' e

考虑e' > e s。

分离均衡: 高能力工人选择e',低能力工人选择e L*。

公司的判断及工资支付为

μ(H| e) = 0,e < e'

μ(H| e) = 1,e≥e'

w (e) = y(L,e L*),e < e'

w (e) = y(H,e),e≥e'

这是完备贝叶斯均衡。

混杂均衡。

一种工人以确定性选择一个教育水平,另一种随机选择前一种工人的教育水平或另一个教育水平。

考虑:高能力工人选择一个教育水平e h ,低能力工人以概率π 选择e h ,以概率(1 – π) 选择e L 。

公司观察到e h 和e L 后的判断

μ(H |e h ) =

(1)q

q q π

+-

μ (H |e L ) = 0

公司对混同教育水平的工资

w h =

(1)q q q π+-y (H , e h ) +(1)(1)q q q π

π

-+-y (L , e h ), e ≥ e h

w (e ) = y (H , e ), e < e h

w

w p

w L *

e L * e h e s e

低能力工人随机选择的混同策略e h ,应当是与e L *无差异的 w L * – c (L , e L *) = w h – c (L , e h ) 由此解出

w h = r y (H , e h ) + (1 – r ) y (L , e h )

r = (1)q

q q π

+-

4.2.C 公司投资和资本结构 一个企业家为一个新项目融资.

现存公司的利润: π = L ,prob = p ; π= H , prob = 1- p 新项目投资: I ,

投资的收益: R

R > I (1 + r )

博弈的时间顺序: 自然决定利润: L 或 H 企业家观察 π 和提出股份 s , 投资者观察 s ,并选择拒绝还是接受

企业家的收益: 被拒绝:π, 被接受:(1-s )(π+R ) 投资者的收益: 拒绝:I (1 + r ), 接受:s (π+R )

投资者对π= L 的推断: q

他将接受 s 当且仅当

s [qL + (1 – q )H + R ] ≥ I (1 + r )

企业家偏好外部融资,当且仅当 π < (1- s )(π+R ), 即

s ≤

R

R

+π 如果

R

H p pL r I +-++)1()

1( ≤ s ≤ R H R +

混同均衡存在。

当p 很小,上式满足。当p 接近 1 则需满足

R L r I ++)1( ≤ s ≤ R

H R

+ R – I (1+r ) ≥ R

H

r I )1(+ - L

分离均衡:

当 π= L , 企业家提出 s = R

L r I ++)

1(, 投资者接受. 当 π = H , 企业家提出 s <

R

H r I ++)

1(, 投资者拒绝.

为何不取等号?

企业家用债券D融资:

收益: 如果不破产,π + R–D, 如果破产则为0.

投资者的收益: 企业不破产D, 破产π + R

混同均衡:

企业家提出D= I(1+r),

投资者接受。

4. 3精炼贝叶斯均衡的其它应用

4. 3.A 空谈博弈(Cheap-talk)

发送者的信号是口头信息

----无成本,无约束,无核查。

口头信息能传递信息的必要条件

1.不同的发送者类型有不同的偏好;

2. 接收者对不同行动的偏好依赖于发送者的类型;

3. 接收者与发送者对行动的偏好不是完全对立的.

博弈的时间顺序

1. 自然按照概率分布产生S的一个状态t i∈T

2. S观察t i,选择m j∈M

3. R观察m j,选择a k∈A

4. 收益为U S(t i, a k) 和U R(t i, a k)

混同均衡总是存在:接收者忽略任何信号。 接收者的最优行动 a * 求

A

a k

∈max ∑∈T

t i p ( t i ) U R (t i , a k ) 例: 分离均衡

发送者两个类型: T = {t L , t H }, Prob(t L ) = p 接收者两个行动: A = {a L , a H } 收益表:第1个数字为发送者收益。

S

t L t H

a L x , 1 y , 0

R

a H z , 0 w , 1

不同的类型发送不同的信号,要求: 1.x 与z 的关系,与y 与w 的关系不同。 2。接收者的行动依赖于发送者类型。 3.x, z , w, y 的值与接收者的收益一致。 分离均衡存在: x ≥ z , w ≥ y

例 部分(partially )混同均衡 发送者的类型空间: T = [0, 1], 均匀分布 接收者的行动空间: A = [0, 1] 收益: U S (t , a ) = –[a – (t + b )]2

U R (t , a ) = – (a – t ) 2

考虑 n 个信号:

[0, x 1 ), [ x 1, x 2), …, [x n -1, 1]

n =2: [0, x ), [x , 1]

发送者: [0, x ) → 0

接收者的推断: t 为[0, x ]上的均匀分布 接收者选择行动 a :

Max E U R (t , a ) = Max E[ – (a – t ) 2]

E[ – (a – t ) 2

] =?--x

dt x t a 0

21)(=x

1[(a – x ) 3 – a 3]

解出 a = x /2

发送者: [x , 1] → x

接收者的推断: t 为[x , 1]上的均匀分布 接收者选择行动 a :

Max E U R (t , a ) = Max E[ – (a – t ) 2]

E U R (t , a ) =E[ – (a – t ) 2

] =?---1

2

11

)(x

dt x

t a =

x

-11

[(a – 1) 3 – (a – x )3] 解出 a = (1 + x )/2

0 t 0 x t 1 1

发送者的收益:

发送0: U S 0(t , a ) = –[2

x – (t + b )]2 发送1: U S 1(t , a ) = –[

21x

+– (t + b )]2

均衡结果,在 x :

U S 0(x , a ) = U S 1(x , a )

–[2

x – (x + b )]2= –[2

1x

+– (x + b )]2 x =

21

– 2b 必要条件: b < 1/4。

n > 2的情形: [0, x 1), [ x 1, x 2), …, [x n -1, 1] 考虑第k 个边界: [x k -1, x k ), [x k , x k +1) 发送者: [x k -1, x k ) → x k -1 接收者的推断: 1/( x k - x k -1) 他的行动:a = (x k + x k -1 )/2

发送者: [x k , x k +1)→ x k 接收者的推断: 1/( x k +1 - x k ) 他的行动 a = (x k +1 + x k )/2

均衡结果,在 x k :

U Sk -1(x k , a ) = U Sk (x k , a )

–[(x k + x k -1 )/2– (x k + b )]2= –[(x k +1 + x k )/2– (x k + b )]2

x k -1 t k -1 t k x k +1

可以解出

x k +1 - x k = x k - x k -1 + 4b

类似可以得到

x k - x k-1 = x k -1 - x k -2 + 4b 因此

x k +1 - x k = x k - x k -1 + 4b

= x k -1 - x k -2 + 2? 4b = …= x 1 + k ?4b 则

1 = (1 - x n -1) + (x n -1 - x n -

2 ) + …+ (x 1 – 0) = x 1 + (n – 1)?4b + x 1 + (n – 2)?4b + … + x 1 = nx 1 +

2

)

1(-n n ?4b

必要条件: 2

)

1(-n n ?4b < 1 解出 21( 1 -b /21+) < n < 2

1

( 1+ b /21+)

4. 3. B 不对称信息下的序贯谈判(Sequential bargaining )

一个企业和一个工会对工资谈判. 工会的保留工资: w r ,

企业的利润: π 为[πL ,πH ] 上的均匀分布. 简化:w r = πL = 0。

第1期,工会提出工资w 1,企业接受或拒绝。

如果企业拒绝,则第2期工会提出工资w 2,企业接受或拒绝。 如果企业拒绝,则结束。

基于博弈论的夫妻冲突分析

一个女人能有多美,通常是由与她相伴的男人来决定;一个男人能走多远,往往是由与他相随的女人来决定。夫妻之间的物质生活水平,通常是由收入较高的一方来决定;夫妇之间的精神生活水平,往往是由素质较低的一方来决定。 囚徒困境 在囚徒困境这个例子中,两个囚犯的上策都是坦白,因此最容易出现的结局也就是两人都被判5年。这个结局构成了一种博弈均衡状态,当对局者选择的都是上策的时候,这种均衡叫做上策均衡。在博弈论中,所谓均衡是指一种稳定的结局,当这种结局出现的时候,所有对局者都不想再改变他们所选择的策略。二.情侣冷战对峙 现将囚徒困境的报酬矩阵分析引入到一对情侣的冷战对峙中,见下图: H表示主动的一方感觉自己付出更多从而受到伤害,生出不平衡感;E代表不主动的一方有种优越成就感谈过恋爱的人都会对此有深刻的体会吧。闹矛盾有别扭之后,有时也可能两人都想主动了,但谁也不先迈出这一步,在不知道对方策略和想法的情况下,一权衡一算计就总害怕自己亏了,又或者碍于情面拉不下面子,不肯服个软。于是乎,秋水望穿了,花瓣也掰完了,最后是怎样呢?在这个矩阵中我们需要考虑的是,或者说我们的假设前提是,双方都是完全理性的,是完全以利己目的和最大化利益为原则行事的人。上策均衡显然并非最好的结局,但却是博弈双方经过反复权衡后所采取的认为对自己最有利的选择。但我们知道,所谓的爱情是没有理性可言的,它是一种激情,一旦斤斤计较反复权衡利弊得失,那就不叫爱。所以非常有意思的是,这个矩阵中出现的上策均衡(O,O——OVER),即双方都不主动从而导致感情破裂爱情失败的结局,正说明了爱情只要一权衡一算计,俩人都矜持和自私的话,那么最终铁定玩完。 三、夫妻关系的博弈分析 感情,爱情,亲情夫妻关系尴尬的了现实的活动中,夫妻关系既有和谐、融洽的一面,也存在冲突、矛盾的一面。每5对佳侣新婚燕尔之时,就有一对夫妻分道扬镳。 无论是丈夫还是妻子,双方都有自己的利益追求和价值取向,而家庭生活成为他们博弈的载体和工具。

(完整word版)经典的博弈论分析案例——“海盗分金”问题

经典的博弈论分析案例一一“海盗分金”问题 5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。 “海盗分金”其实是一个高度简化和抽象的模型,体现了博弈的思想。在“海盗分金”模型中,任何“分配者”想让自己的方案获得通过的关键是事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢 “挑战者”分配方案中最不得意的人们。 假设前提 假定“每个海盗都是绝顶聪明且很理智”,那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化?” 推理过程 从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。 3号知道这一点,就会提出(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。 不过,2号推知3号的方案,就会提出(98,0,1,1)的方案,即放弃3 号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。 同样,2号的方案也会被1号所洞悉,1号并将提出(97, 0,1, 2, 0)或(97, 0,1, 0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。分配方案可写成(97, 0, 1, 2, 0)或(97, 0, 1, 0, 2)。分析 1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。这不正是全球化过程中先进国家的先发优势吗?而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利,却因不得不看别人脸色行事而只能分得一小杯羹。 不过,模型任意改变一个假设条件,最终结果都不一样。而现实世界远比模型复杂。 首先,现实中肯定不会是人人都“绝对理性”。回到“海盗分金”的模型中,只要3号、4号或5号中有一个人偏离了绝对聪明的假设,海盗1号无论怎么分都可能会被扔到海里去了。所以,1号首先要考虑的就是他的海盗兄弟们的聪明和理性究竟靠得住靠不住,否则先分者倒霉。 如果某人偏好看同伙被扔进海里喂鲨鱼。果真如此,1号自以为得意的方 案岂不成了自掘坟墓! 再就是俗话所说的“人心隔肚皮”。由于信息不对称,谎言和虚假承诺就_ 大有用武之地,而阴谋也会像杂草般疯长,并借机获益。如果2号对3、4、5 号大放烟幕弹,宣称对于1号所提出任何分配方案,他一定会再多加上一个金币给他们。这样,结果又当如何? 通常,现实中人人都有自认的公平标准,因而时常会嘟嚷:“谁动了我的奶

基于博弈论的恋爱模型

《数学建模》 课程考核论文 姓名:王湘衡齐久坤张程勇 学号:08100225 08100217 08100232 班级:08信息2班 2011年5 月10日

基于博弈论的恋爱数学模型 摘要 本文用数学建模的方法研究博弈论中的问题,从不完全信息静态博弈建立模型建立模型,并利用纳什均衡原理程序来确定纳什均衡点,对不同均衡点进行分析,从而来确定最佳策略。然后通过海萨尼转换将不完全信息静态博弈转换成不完全信息动态博弈,来模拟现实社会中的恋爱,再利用恋爱者不同类型的分布概率,求出恋爱者的期望,最终来决策恋爱者自己下一步的策略。 关键词:恋爱模型博弈论贝叶斯纳什均衡

1、问题重述 随着社会的进步和发展,现在恋爱问题越来越成为生们关注的热门话题,那么如何利用数学知识来确定恋爱中双方能找到适合自己的恋人,成为现在数学建模中研究的一个重要领域。恋爱模型可以用博弈论来确定双方的合适恋人,这其中将恋爱双方都理想化,这样将给我们研究恋爱问题和建立数学模型带来方便,使我们能将恋爱模型数学化,从而确定恋爱者的进一步决定。 2.模型假设及符号说明 模型假设: 1、恋爱双方都有自己明确的恋爱目标 2、恋爱双方从始至终都保持着自己的理性 3、恋爱双方都有自己喜欢类型的人,并且不会随时间变化 4、恋爱的男女通过对方的行为能够明确的判断出对方为哪种类型的人 5、恋爱的参与生都选择的是均衡战略 符号说明: 3. 问题分析与模型建立 3.1 问题分析 谈恋爱作为一个日常生活中最常见的现象要模型化却也并不简单。我们不妨

这样来看,谈恋爱的男女双方,各有不同类型,我们简单将其分为为了寻找真正爱情的人和为了骗财骗色的人。虽然这样不免有所武断,但我们分析的是一般现象,寻求的是一般解释。有了这样的分类便有了不同的组合,有了我们这个世界的爱恨情仇。我们的分析中有现代版的陈世美,却不会让他得逞,原因是理性经济人的假设。有人说这一点说不通,我不这样认为,经济学说所有人都是理性的并不影响不理性家伙们的存在,能解释一切的理论只能是没有内容的套套逻辑。一个理论的解释力只不过是它一般化的程度罢了。 简单的博弈理论己深入人心,显然上面的问题是不完全信息博弈,无论是男追女还是女追男,信息的不完全或是不对称是显而易见的,用博弈论的话说是对对方的了解不够精确。因此,我们依据博弈论理论可以将其分为静态博弈和动态博弈。静态分析是找出其静态均衡,动态分析是揭示现实中生的行为。 3.2 模型的建立 3.2.1不完全信息静态博弈模型 所谓静态是指所有参与生都同时行动,不会以别人行动的信息来更改自己的行动。我们以最常见的男追女为例,一个男生追求一个女生,在此情况下女生最苦恼的是不知男生是A类型的人还是B类型的人,虽然自己可以从各种渠道了解男生,但知生知面不知心,风险还是存在的。在这种情况下女生所遇到的就是不确定性条件下的选择问题,因为女生不仅不知道男生的类型(A还是B),而且还不知道不同类型的分布概率,但她对自己所属的类型是清楚的,这是她的私人信息。同理男生也是这样。 下面来设定支付函数的权值,以便求出纳什均衡点,设男A类追求者,只要他追求A类女生就得到10,他不追求A类女生就得到-10,A类女生接受得到10,拒绝得到-10;男B类追求者,他追求A类女生得到10,不追求得到-10,A类女生接受得到-10,拒绝得到10;男A类追求者,他追求B类女生得到-10,不追求得到10,B类女生接受得到10,拒绝得到-10;男B类追求者,他追求B类女生得到10,不追求得到0,B类女生接受得到10,拒绝得到0;他们的支付函数的权值依赖追求者的类型。这里用下面四张表说明:

博弈论经典案例分析

博弈论经典案例分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

博弈论第七章习题

第七章习题 一、判断下列表述是否正确,并作简单分析 (1)海萨尼转换可以把不完全信息静态博弈转换为不完美信息博弈,说明有了海萨尼转换,不完全信息静态博弈和一般的不完美信息动态博弈是等同的,不需要另外发展分析不完全信息静态博弈的专门分析方法和均衡概念。 答:错误。即使海萨尼转换把不完全信息静态博弈转换为不完美信息动态博弈,也是一种特殊的有两个阶段同时选择的不完美信息动态博弈,对这种博弈的分析进行专门讨论和定义专门均衡的概念有利于提高分析的效率。 (2)完全信息静态博弈中的混合策略可以被解释成不完全信息博弈的纯策略贝叶斯纳什均衡。 答:正确。完全信息静态博弈中的混合策略博弈几乎总是可以解释成一个有少量不完全信息的近似博弈的一个纯策略Bayes—Nash均衡。夫妻之争的混合策略Nash均衡可以用不完全信息夫妻之争博弈的Bayes—Nash均衡表示就是一个例证。 (3)证券交易所中的集合竞价交易方式本质上就是一种双方报价拍卖。 答:正确。我国证券交易中运用的集合竞价确定开盘价的方式就是一种双方报价拍卖。与一般双方报价拍卖的区别只是交易对象,标的不是一件而是有许多件。 (4)静态贝叶斯博弈中之所以博弈方需要针对自己的所有可能类型,都设定行为选择,而不是只针对实际类型设定行为选择,是因为能够迷惑其他博弈方,从而可以获得对自己更有利的均衡。

答:错误。不是因为能够迷惑其他博弈方,而是其他博弈方必然会考虑这些行为选择并作为他们行为选择的依据。因为只根据实际类型考虑行为选择就无法判断其他博弈方的策略,从而也就无法找出自己的最优策略。其实,在这种博弈中一个博弈方即使自己不设定针对自己所有类型的行为选择,其他博弈方也会替他考虑。因为设定自己所有类型下的行为,实际上是要弄清楚其他博弈方对自己策略的判断。 (5)“鼓励—响应”的直接机制能保证博弈方都按他们的真实类型行为并获得理想的结果。 答:错误。“鼓励—响应”机制也就是说真话的直接机制,实际上只保证博弈方揭示,也就是说出自己的真实类型。 博弈方不直接选择行为,也不保证根据真实类型行为,更谈不上一定能实现最理想的结果。因为直接机制的结果常常是带有随机选择机制的,并不一定理想。实际上对所有博弈方都理想的结果在静态贝叶斯博弈中本身不一定存在。 二、双寡头古诺模型,倒转的需求函数为 ()P Q a Q =-, 其中12Q q q =+为市场总需求,但a 有h a 和l a 两种可能的情况,并且厂商1知道a 究竟是h a 还是l a , 而厂商2只知道h a a =的概率是θ, l a a =的概率是1θ-,这种信息不对称情况双方都是了解的。双方的总成本仍然是i i i c q cq =。如果两厂商同时选择产量,问双方的策略空间是什么?本博弈的贝叶斯纳什均衡是什么? 解:设厂商1已知h a a =时的产量为11()h q a q =,已知l a a =时的产量是11()l q a q =;再假设厂商2的产量是 2q ,这两个函数关系就是两个厂商的策略空间。 11211()h h h h h a q q q cq π=---

博弈论经典例子

博弈论经典例子 篇一:《博弈论三大经典案例》 经典的囚徒困境 1950年,由就职于兰德公司的梅里尔弗拉德(MerrillFlood)和梅尔文德雷希尔(MelvinDresher)拟定出相关困境的理论,后来由顾问阿尔伯特塔克(AlbertTucker)以囚徒方式阐述,并命名为"囚徒困境"。经典的囚徒困境如下: 警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双方提供以下相同的选择: 若一人认罪并作证检举对方(相关术语称"背叛"对方),而对方保持沉默,此人将即时获释,沉默者将判监xx年。若二人都保持沉默(相关术语称互相"合作"),则二人同样判监半年。若二人都互相检举(互相"背叛"),则二人同样判监2年。 用表格概述如下: 甲沉默(合作) 乙沉默(合作)二人同服刑半年甲认罪(背叛)甲即时获释;乙服刑xx 年乙认罪(背叛)甲服刑xx年;乙即时获释二人同服刑2年 如同博弈论的其他例证,囚徒困境假定每个参与者(即"囚徒")都是利己的,即都寻求最大自身利益,而不关心另一参与者的利益。参与者某一策略所得利益,如果在任何情况下都比其他策略要低的话,此策略称为"严格劣势",理性的参与者绝不会选择。另外,没有任何

其他力量干预个人决策,参与者可完全按照自己意愿选择策略。 囚徒到底应该选择哪一项策略,才能将自己个人的刑期缩至最短?两名囚徒由于隔绝监禁,并不知道对方选择;而即使他们能交谈,还是未必能够尽信对方不会反口。就个人的理性选择而言,检举背叛对方所得刑期,总比沉默要来得低。试设想困境中两名理性囚徒会如何作出选择: 若对方沉默、背叛会让我获释,所以会选择背叛。若对方背叛指控我,我也要指控对方才能得到较低的刑期,所以也是会选择背叛。 二人面对的情况一样,所以二人的理性思考都会得出相同的结论选择背叛。背叛是两种策略之中的支配性策略。因此,这场博弈中唯一可能达到的纳什均衡,就是双方参与者都背叛对方,结果二人同样服刑2年。 这场博弈的纳什均衡,显然不是顾及团体利益的帕累托最优解决方案。以全体利益而言,如果两个参与者都合作保持沉默,两人都只会被判刑半年,总体利益更高,结果也比两人背叛对方、判刑2年的情况较佳。但根据以上假设,二人均为理性的个人,且只追求自己个人利益。均衡状况会是两个囚徒都选择背叛,结果二人判决均比合作为高,总体利益较合作为低。这就是"困境"所在。例子漂亮地证明了:非零和博弈中,帕累托最优和纳什均衡是相冲突的。由囚徒困境可以写出类似的员工困境: 一名经理,数名员工;前提,经理比较苛刻; 如果所有员工都听从经理吩咐,则奖金等待遇一样,不过所有人

(数学建模教材)7第七章对策论

第七章 对策论 §1 引言 社会及经济的发展带来了人与人之间或团体之间的竞争及矛盾,应用科学的方法来 解决这样的问题开始于 17 世纪的科学家,如 C.,Huygens 和 W.,Leibnitz 等。现代对 策论起源于 1944 年 J.,V on Neumann 和 O.,Morgenstern 的著作《Theory of Games and Economic Behavior 》。 对策论亦称竞赛论或博弈论。是研究具有斗争或竞争性质现象的数学理论和方法。 一般认为,它既是现代数学的一个新分支,也是运筹学中的一个重要学科。对策论发展 的历史并不长,但由于它所研究的现象与人们的政治、经济、军事活动乃至一般的日常 生活等有着密切的联系,并且处理问题的方法又有明显特色。所以日益引起广泛的注意。 在日常生活中,经常看到一些具有相互之间斗争或竞争性质的行为。具有竞争或对 抗性质的行为称为对策行为。在这类行为中。参加斗争或竞争的各方各自具有不同的目 标和利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并 力图选取对自己最为有利或最为合理的方案。对策论就是研究对策行为中斗争各方是否 存在着最合理的行动方案,以及如何找到这个合理的行动方案的数学理论和方法。 §2 对策问题 对策问题的特征是参与者为利益相互冲突的各方,其结局不取决于其中任意一方的 努力而是各方所采取的策略的综合结果。 先考察一个实际例子。 例 1(囚徒的困境) 警察同时逮捕了两人并分开关押,逮捕的原因是他们持有大 量伪币,警方怀疑他们伪造钱币,但没有找到充分证据,希望他们能自己供认,这两个 人都知道:如果他们双方都不供认,将被以持有大量伪币罪被各判刑 18 个月;如果双 方都供认伪造了钱币,将各被判刑 3 年;如果一方供认另一方不供认,则供认方将被从 宽处理而免刑,但另一方面将被判刑 7 年。将嫌疑犯 A 、 B 被判刑的几种可能情况列 于表 1。 表 1 表 1 中每对数字表示嫌疑犯 A 、B 被判刑的年数。如果两名疑犯均担心对方供认并希 望受到最轻的惩罚,最保险的办法自然是承认制造了伪币。 从这一简单实例中可以看出对策现象中包含有的几个基本要素。 2.1 对策的基本要素 (i )局中人 在一个对策行为(或一局对策)中,有权决定自己行动方案的对策参加者,称为局 中人。通常用 I 表示局中人的集合.如果有 n 个局中人,则 I = {1,2,L , n }。一般要求 一个对策中至少要有两个局中人。在例 1 中,局中人是 A 、B 两名疑犯。 (ii )策略集 一局对策中,可供局中人选择的一个实际可行的完整的行动方案称为一个策略。参 加对策的每一局中人 i , i ∈ I ,都有自己的策略集 S i 。一般,每一局中人的策略集中 至少应包括两个策略。 -154- 嫌疑犯 B 供认 不供认 嫌疑犯 A 供认 不供认 (3,3) (0,7) (7,0) (1.5,1.5)

基于博弈论的爱情浅析

基于经济学的爱情攻略浅析 摘要 随着市场经济的发展,人们对事物认知态度的变化,经济学的应用范围进一步扩大,人们的行事原则越来越趋向于经济学上的“理性”。就现状而言,经济学的分析不仅局限于某些领域,只要存在人类的社会活动,就存在经济,就存在资源合理配置问题,也就有经济分析的必要。谈恋爱是校园中的一个普遍现象,本文从经济学的视野中透视,爱情中的微观经济学问题,包括从预算线角度分析择偶以及爱情中的博弈关系,并试图以经济学的理论提出缓解和解决有关爱情现象问题的建议。 关键词:微观经济学;爱情;预算线;博弈论

Analysis based on the economics of love Raiders 【Abstract】:With the development of market economy, people's attitudes change perception of things, to further expand the scope of application of economics. More and more people tend to act on the principle of "rational" economics. On the current situation, the analysis is not limited to certain areas of economics. As long as the existence of human social activities, there is the economy. There is a reasonable allocation of resources, there is need for economic analysis. Love is a common phenomenon in the campus. This paper is from the perspective of economy. The love of microeconomics issues, including the budget line from the perspective of the relationship between mate and love the game, and tried to ease the economic theory proposed and recommendations to address issues related to the phenomenon of love. 【Key words】:Game theory; microeconomics; love; budget line

博弈论中的几个经典问题

几个博弈论中的经典问题 博弈论(Game Theory),亦名“对策论”、“赛局理论”,属应用数学的一个分支,博弈论已经成为经济学的标准分析工具之一。目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。博弈论主要研究公式化了的激励结构间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。生物学家使用博弈理论来理解和预测进化论的某些结果。 几个重要的概念 1、策略(strategies):一局博弈中,每个局中人都有选择实际可行的完整的行动方案, 即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。如果在一个博弈中局中人都总共有有限个策略,则称为“有限博弈”,否则称为“无限博弈”。 2、得失(payoffs):一局博弈结局时的结果称为得失。每个局中人在一局博弈结束时 的得失,不仅与该局中人自身所选择的策略有关,而且与全局中人所取定的一组策略有关。所以,一局博弈结束时每个局中人的“得失”是全体局中人所取定的一组策略的函数,通常称为支付(payoff)函数。 3、次序(orders):各博弈方的决策有先后之分,且一个博弈方要作不止一次的决策 选择,就出现了次序问题;其他要素相同次序不同,博弈就不同。 4、博弈涉及到均衡:均衡是平衡的意思,在经济学中,均衡意即相关量处于稳定值。 在供求关系中,某一商品市场如果在某一价格下,想以此价格买此商品的人均能买到,而想卖的人均能卖出,此时我们就说,该商品的供求达到了均衡。 5、纳什均衡(Nash Equilibrium):在一策略组合中,所有的参与者面临这样一种情况, 当其他人不改变策略时,他此时的策略是最好的。也就是说,此时如果他改变策略他的支付将会降低。在纳什均衡点上,每一个理性的参与者都不会有单独改变策略的冲动。纳什均衡点存在性证明的前提是“博弈均衡偶”概念的提出。所谓“均衡偶”是在二人零和博弈中,当局中人A采取其最优策略a*,局中人B也采取其最优策略b*,如果局中人B仍采取b*,而局中人A却采取另一种策略a,那么局中人A 的支付不会超过他采取原来的策略a*的支付。这一结果对局中人B亦是如此。 经典的博弈问题 1、“囚徒困境” “囚徒困境”是博弈论里最经典的例子之一。讲的是两个嫌疑犯(A和B)作案后被警察抓住,隔离审讯;警方的政策是"坦白从宽,抗拒从严",如果两人都坦白则各判8年;如果一人坦白另一人不坦白,坦白的放出去,不坦白的判10年;如果都不坦白则因证据不足各判1年。 在这个例子里,博弈的参加者就是两个嫌疑犯A和B,他们每个人都有两个策略即坦白和不坦白,判刑的年数就是他们的支付。可能出现的四种情况:A和B均坦白或均不坦白、A坦白B不坦白或者B坦白A不坦白,是博弈的结果。A和B均坦白是这个博弈的纳什均衡。这是因为,假定A选择坦白的话,B最好是选择坦白,因为B坦白判8年而抵赖却要判十年;假定A选择抵赖的话,B最好还是选择坦白,因为B坦白判不被判刑而抵赖确要被判刑1年。即是说,不管A坦白或抵赖,B的最佳选择都是坦白。反过来,同样地,不管B是坦白还是抵赖,A的最佳选择也是坦白。结果,两个人都选择了坦白,各判刑8年。在(坦白、坦白)这个组合中,A和B都不能通过单方面的改变行动增加自己的收益,于是谁也没有动力游离这个组合,因此这个组合是纳什均衡。

博弈论谢识予第四五章参考标准答案

博弈论谢识予第四五章参考答案

————————————————————————————————作者:————————————————————————————————日期: 2

第四章参考答案 2、火车站和机场餐饮商业服务的顾客往往都是一次性的,回头客、常客比较少,这些经济交易具有一次性博弈的特征,它们的价格总是较高而质量又会差一些,顾客也会尽量不在这些地方购买商品和消费。在一般商业区和居民区的餐饮商业服务则回头客和常客较多,有明显的重复博弈特征,在居民区购买商品和消费的老顾客一般能得到比较公平、优惠的价格,还能得到较好的服务,甚至有些还可以信用消费(赊账),因此消费者一般会比较放心地消费。这就是现实生活中重复博弈和一次性博弈效率不同的典型例子之一。 3、从研究对象和问题特征看,有限次重复博弈研究的主要是有明确结束时间的(合作、竞争等)关系,无限次重复博弈研究的主要是没有明确结果时间,或者较长期的关系。 从分析方法的角度,动态博弈和重复博弈分析中常用的逆推归纳法在无限次 16 重复博弈中无法直接运用,因为没有最后一次重复。因此无限次重复博弈分析的主要方法是构造法,即根据特定效率意义等构造了博弈完美纳什均衡。此外,也可以运用某些技巧解决问题,如教材中利用三阶段讨价还价博弈分析无限阶段讨价还价博弈的技巧。 从博弈的结果看,无限次重复博弈的效率往往高于有限次重复博弈,有些在有限次重复博弈中无法实现的效率较高的结果,在无限次重复博弈中有可能实现。例如囚徒的困境型博弈的无限次重复博弈和有限次重复博弈就体现了这种差别。两类重复博弈民间定理的差异也说明了这一点。 最后,在重复次数不多的有限次重复博弈中不一定要考虑得益贴现问题,在我限次重复博弈问题中这是必须考虑的。 上述区别在理论方面最主要的启发是重视有限次和无限次重复博弈的区别,区分研究这两类博弈问题是非常重要的,在实践方面的主要启发是促进和保持经济关系的长期稳定性,对于提高社会经济效率等常常有非常重要的意义。6、用画线法容易找出该博弈的两个纯策略纳什均衡(T,L)和(M,R)。这两个纳什均衡的得益都帕累托劣于(B,S)。一次性博弈中效率较高的(B,S)不可能实现。但该博弈的结构表明存在双方合作的利益,在两次重复博弈中也有构造惩罚机制的条件,因此我会考虑运用试探合作的触发策略争取部分实现(B,S),提高博弈的效率。 我作为博弈方1会采用这样的触发策略:第一次重复采用B;第二次重复时,如果前一次的结果是(B,S),则采用M,如果前一次的结果是其他,则采用T。 如果另一个博弈方有同样的分析能力,或者比较有经验,那么他(或她)也会采用相似的触发策略:在第一次重复时采用S;第二次重复时,如果前一次的结果是(B,S),则采用R,否则采用L。 双方采用上述触发策略构成一个子博弈完美纳什均衡,因此是稳定的。这时候前一次重复实现了(B,S),提高了博弈的效率。 当然,上述触发策略也是有风险的,因为当另一个博弈方不理解和没有采用上述策略时,我的得益会较低。当然如果考虑到人们具有学习进步的能力,而且缺乏分析和学习能力,采用效率较低策略的博弈方长期中会逐步被淘汰掉,那么采用上述触发策略的合理性就得到了进一步的支持。

博弈论经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A来说,囚徒B有坦白和不坦白两种可能的选择,假设囚徒B的选择是不坦白,则对囚徒A来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B选择的是坦白,则囚徒A不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B采取何种策略囚徒A的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 嫌疑犯乙

案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 价格战 案例:假设市场中仅有A 、B 两家企业,每家企业可采取的定价策略都是10元或15元,我们可以得出得益矩阵如下: 分析:无论对企业A 还是企业B 来说,低价都是他们的占优战略。从表可见,企业A 的占优战略是10元,因为无论B 采取什么战略,企业A 都能获取比定价15元更多的利润。 如果企业B 定价10元,企业A 定价10元能够获利80万元,而定价15元只能获得30万元;如果企业B 定价15元,企业A 定价10元可获利170万元,而定价15元却只能获利120万元。同样地,企业B 的占优战略也是定价10元的策略。 企业B 男

博弈论的读书笔记

博弈论的读书笔记 【篇一:博弈论读书笔记】 博弈论读书笔 博弈论 :亦名“对策论”、“赛局理论”,属应用数学的一个分支,主要研究公式化了的激励结构间的相互作用。是研究决策主体的行 为发生直接相互作用时候的决策以及这种决策的均衡问题,具有斗 争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优 化策略。 博弈论的目的在于巧妙的策略,而不是解法。我们学习博弈论的目的,不是为了享受博弈分析的过程,而在于赢得更好的结局。博弈 的思想既然来自现实生活,它就可以高度抽象化地用数学工具来表述,也可以用日常事例来说明,并运用到生活中去。没有高深的数 学知识,我们同样通过博弈论的学习成为生活中的策略高手。孙膑 没有学过高等数学,但是这并不影响他通过运行策略来帮助田忌赢 得赛马。 博弈时时存在,它就在你的身边。本书就是试图通过日常生活中常 见的例子,来介绍博弈论的基本思想及运用,并且寻求用种智慧来 指导生活决策的方法。 在李凌、王翔的《论博弈论中的策略思维》中,作者从博弈论的起 源谈起,回顾了博弈论在诺贝尔经济学奖上所取得的成就,把博弈 论中的经典案例同生活中的实际例子联系起来进行分析,从合作、 模仿、创新、拍卖、战争和群居等实例表明博弈论中的策略思维是 如何影响人们的行为的, 又是如何使得博弈达到均衡的。最后,围 绕演进博弈论的基础理论与实例案例来分析对传统博弈论的冲击, 及其使博弈论的发展上升到了一个新的阶段和深度。

! 以下是对这篇文章中的囚徒困境、智猪博弈和演进博弈论的简述和分析: 一、囚徒困境—合作还是不合作 在这个模型中,合作还是不合作问题得到了很好的解释,纳什均衡解就是都选择坦白,也就是跟对方囚徒不合作,但这个解对两个囚徒来说并不是帕累托最优解,囚徒困境反映了集体理性和个人理性的矛盾。联系到实际生活中的例子政府提供公共物品,如果让使用资源者自愿承担费用,则会由于搭便车现象的出现,而无法实现共同提供公共物品的目标,所以需要政府通过纳税的方式来提供,以实现帕累托最优,达到资源的有效配置。囚徒困境有限次重复博弈中,当一次性违约的收益大于失信所必须付出的代价时, 企业就存在偏离合同规 定行事的激励,这种内生的激励表明,“损人利己”也是行为人的理性选择。在无限次重复博弈中,如果企业之间致力于长期合作, 就应当设法改变合作机制, 降低合作企业发生机会主义行为的概率。除了健全社会诚信体系之外, 一种行之有效的方法便是提高失信成本。然而在实际生活中的局中人可能受各种外部环境因素或者市场地位的影响,并非是完全理性的,所以在合作方面还存在着一定的风险,这就需要订立合作契约,将这种风险最小化,从现实经济利益的角度提高失信成本,使失约威胁实现真正的可置信。 二、智猪博弈—创新还是模仿 在智猪博弈中,在理性人的假设下,大猪和小猪的支付矩阵决定了大猪选择按,小猪选择等待。类似的,在股票市场中,大户是大猪, 他们进行技术分析, 收集信息、预测股价走势, 所付出的成本高,而相应得到的收益也比较高,而大量散户就是小猪, 他们几乎不花成本去进行技术分析, 而是跟着大户的投资策略进行股票买卖, 这就是股票市场上著名的“散户跟大户”现象。在股份公司中, 大股东是大猪, 他们收集信息、监督经理, 拥有决定经理任免的投票权,

博弈论经典模型全解析

博弈论经典模型全解析(入门级) 1. 囚徒困境这是博弈论中最最经典的案例了——囚徒困境,非常耐人寻味。“囚徒困境”说的是两个囚犯的故事。这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。但他们不得不仔细考虑对方可能采取什么选择。A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不

会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。这种想法的诱惑力实在太大了。但他也意识到,他的同伙也不是傻子,也会这样来设想他。所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。企业在信息化过程中需要与咨询企业、软件供应商打交道的。在与这些企业打交道的过程中,我们不可避免地也会遇到类似的两难境地,这个时候需要相互之间有足够的了解与信任,没有起码的信任做基础,切不可贸然合作。在对对方有了足够的信任之后,诚意也是必不可少的,如果没有诚意或者太过贪婪,就可能闹到双方都没有好处的糟糕情况,造成企业之间的双输。 2. 智猪博弈在博弈论(Game Theory)经济学中,“智猪博弈”是一个着名的纳什均衡的例子。假设猪圈里有一头大猪、一头小猪。猪圈的一头有猪食槽,另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是谁按按钮就会首先付出2个单位的成本,若大猪先到槽边,大小猪吃到食物的收益比是9∶1;同时到槽边,收益比是

博弈论的经典案例与分析

博弈论的经典案例与分析 囚徒困境 案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。 分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白; 假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。同样的道理,囚徒B 的唯一的选择也是坦白。 所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。 其支付矩阵如下: 性格大战 案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。当然两个人都不愿意分开活动。不同的选择给他们带给他们不同的满足。 分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。 在这样的一个对局中,男的和女的都没有占优战略。他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。 1,1 8, 0 不坦白 0,8 5,5 坦白 嫌疑犯乙 不坦白 坦白 嫌疑犯甲 1,2 -1, -1 时装 0,0 2,1 足球 男 时装 足球 女

博弈论谢识予第四五章参考答案

第四章参考答案 2、火车站和机场餐饮商业服务的顾客往往都是一次性的,回头客、常客比较少,这些经济交易具有一次性博弈的特征,它们的价格总是较高而质量又会差一些,顾客也会尽量不在这些地方购买商品和消费。在一般商业区和居民区的餐饮商业服务则回头客和常客较多,有明显的重复博弈特征,在居民区购买商品和消费的老顾客一般能得到比较公平、优惠的价格,还能得到较好的服务,甚至有些还可以信用消费(赊账),因此消费者一般会比较放心地消费。这就是现实生活中重复博弈和一次性博弈效率不同的典型例子之一。 3、从研究对象和问题特征看,有限次重复博弈研究的主要是有明确结束时间的(合作、竞争等)关系,无限次重复博弈研究的主要是没有明确结果时间,或者较长期的关系。 从分析方法的角度,动态博弈和重复博弈分析中常用的逆推归纳法在无限次 16 重复博弈中无法直接运用,因为没有最后一次重复。因此无限次重复博弈分析的主要方法是构造法,即根据特定效率意义等构造了博弈完美纳什均衡。此外,也可以运用某些技巧解决问题,如教材中利用三阶段讨价还价博弈分析无限阶段讨价还价博弈的技巧。 从博弈的结果看,无限次重复博弈的效率往往高于有限次重复博弈,有些在有限次重复博弈中无法实现的效率较高的结果,在无限次重复博弈中有可能实现。例如囚徒的困境型博弈的无限次重复博弈和有限次重复博弈就体现了这种差别。两类重复博弈民间定理的差异也说明了这一点。 最后,在重复次数不多的有限次重复博弈中不一定要考虑得益贴现问题,在我限次重复博弈问题中这是必须考虑的。 上述区别在理论方面最主要的启发是重视有限次和无限次重复博弈的区别,区分研究这两类博弈问题是非常重要的,在实践方面的主要启发是促进和保持经济关系的长期稳定性,对于提高社会经济效率等常常有非常重要的意义。 6、用画线法容易找出该博弈的两个纯策略纳什均衡(T,L)和(M,R)。这两个纳什均衡的得益都帕累托劣于(B,S)。一次性博弈中效率较高的(B,S)不可能实现。但该博弈的结构表明存在双方合作的利益,在两次重复博弈中也有构造惩罚机制的条件,因此我会考虑运用试探合作的触发策略争取部分实现(B,S),提高博弈的效率。 我作为博弈方1会采用这样的触发策略:第一次重复采用B;第二次重复时,如果前一次的结果是(B,S),则采用M,如果前一次的结果是其他,则采用T。如果另一个博弈方有同样的分析能力,或者比较有经验,那么他(或她)也会采用相似的触发策略:在第一次重复时采用S;第二次重复时,如果前一次的结果是(B,S),则采用R,否则采用L。 双方采用上述触发策略构成一个子博弈完美纳什均衡,因此是稳定的。这时候前一次重复实现了(B,S),提高了博弈的效率。 当然,上述触发策略也是有风险的,因为当另一个博弈方不理解和没有采用上述策略时,我的得益会较低。当然如果考虑到人们具有学习进步的能力,而且缺乏分析和学习能力,采用效率较低策略的博弈方长期中会逐步被淘汰掉,那么采用上述触发策略的合理性就得到了进一步的支持。

博弈论经典案例《智猪博弈》

在经济学中,在经济学中,智猪博弈”(PigS ' PayoffS(BoXed PigS) 是一个著名博弈论例子。 这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。 那么,两只猪各会采取什么策略?答案是:小猪将选择搭 便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。 原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。 小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之 间的距离。 如果改变一下核心指标,猪圈里还会出现同样的小猪躺着 大猪跑”的景象吗?试试看。 改变方案一:减量方案。投食仅原来的一半分量。结果是小 猪大猪都不去踩踏板了。小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。谁去踩踏板,就意味着为对方贡

献食物,所以谁也不会有踩踏板的动力了。 如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然 是失败的。 改变方案二:增量方案。投食为原来的一倍分量。结果是小 猪、大猪都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小猪和大猪相当于生活在物质相对丰富的 共产主义”社会,所以竞争意识却不会很强。 对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效 果并不好。 改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小猪和大猪都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费 宀 完。 对于游戏设计者,这是一个最好的方案。成本不高,但收获最 大。 原版的智猪博弈”故事给了竞争中的弱者(小猪)以等待为最佳策略的启发。但是对于社会而言,因为小猪未能参与竞争,小猪搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规 则的设计者是不愿看见有人搭便车的,政府如此,公 司的老板也是如此。而能否完全杜绝搭便车”现象,就要看游戏 规则的核心指标设置是否合适了。

相关文档
最新文档