管线钢综述

管线钢综述
管线钢综述

管线钢综述

欧阳高凤

摘要:本文对管线钢的大概发展历程、成分冶金、显微组织、力学性能、轧制工艺、焊接性及焊接工艺进行了论述,从而能够了解管线钢的发展,为课题研究打下基础。

关键词:管线钢成分显微组织力学性能生产工艺焊接工艺发展

1 管线钢的大概发展历程

半个多世纪以来,随着石油和天然气的开发和需求量的增加,从而带动了管线钢的发展。由于管道运输具有经济、方便、安全等特点,进入二十一世纪以来,管线钢呈现蓬勃发展的趋势。我国管线钢的应用和起步较晚,过去已铺设的油、气管线大部分采用Q235和16Mn钢。我国开始按照API标准研制X60、X65管线钢,并成功地与进口钢管一起用于管线铺设。90年代初宝钢、武钢又相继开发了高强高韧性的X70管线钢,随后成功研制了X80管线钢,X70和X80管线钢已大量应用于油气管道运输中。近几年开发的高强韧的X100和X120管线钢还处在试验阶段,应用方面还比较少。

在我国,石油、天然气的运输基本上已经实现了管道运输。但是与世界上工业发达国家相比,国内的管道运输在质量上和数量上都存在很大差距。中国虽然为世界的主要石油出产国之一,但输油输气的管道不足世界管线总长度的百分之一,而且普遍存在输送压力低、管径小的缺点。随着我国油气资源的进一步开发利用,西气东输的工程实施,油气管线向长距离、大口径发展是必然趋势。下面从管线钢的冶金成分、显微组织、力学性能、生产工艺及焊接工艺等方面,进一步较详细的介绍管线钢的发展。

2 管线钢的冶金成分的发展

管线钢和其他的微合金钢一样,都是在传统的C-Mn钢的基础上加上合金元素。合金元素主要以Nb、Ti、V或少量的Mo、Cu、Ni、Cr及B为主,以这些合金元素来对管线钢进行合金设计,以达到不同的强度等级及性能要求。

管线钢的冶金成分的发展大致经历三个阶段。第一阶段为1950年以前,是以C-Mn和C-Mn-Si钢为主的普通碳钢,强度级别在X52以下。第二阶段为1950-1972年,在C-Mn钢的基础上引入微量的Nb、Ti、V,通过相应的热轧和轧后处理工艺,提高了钢的综合性能,生产出X60及X65级别的钢。第三阶段为1972年至今,这一阶段合金化的发展特点为微合金的多元化,相继又加入少量的Mo、Cu、Ni、Cr及B,结合控轧控冷的新工艺,生产出综合性能优异的管线钢,主要以X70和X80管线钢为主,X100和X120管线钢在试验研究阶段。

下面具体论述以下管线钢中这些合金元素或微合金元素的作用及添加量。2.1 碳

碳是最传统的合金元素、强化元素,而且也是最经济的元素,但它对钢的可焊性影响很大。碳是影响焊接性能最敏感的一个元素,所以20多年来管线钢的碳含量是逐步趋向于低碳或超低碳方向发展。而且随着含碳量的增加,韧性下降,偏析加剧,抗HIC和SSC的能力下降。因此,随着管线钢级别的提高,碳含量应逐渐降低。管线钢的含碳量从开始的1.0%左右逐步降低,最低可达到0.01%。

但含碳量也不能过低,因为碳含量的降低,会使钢的强度降低。过低的碳含量会给钢带来不利的影响,这是因为碳是以间隙元素存在于钢中,当碳含量低于0.01%时晶界的结合强度极低,这不仅降低了母材的韧性,同时使热影响区的晶界呈完全脆化状态。研究表明管线钢含碳量的理想范围是0.01%-0.05%。

2.2 锰

钢中碳含量的降低会导致其屈服强度下降,可以使用其他强化机制给以补偿,其中最常用的是在降C的同时,以Mn代C。目前Mn作为管线钢中的主要合金元素而被采用。锰可以起到固溶强化的作用,在提高强度同时也提高韧性,降低钢的脆性转变温度,并能够起到脱硫的作用,防止热裂。锰还能降低相变温度,使铁素体的晶粒细化。但是锰含量过高会加速控轧钢板的中心偏析,从而引起钢板力学性能的各向异性,且导致抗HIC性能降低。在管线钢中锰含量通常不超过1.5%。近年来的研究工作表明,锰含量在2.0%以下,钢的强度随锰含量增加而提高,而冲击韧性下降的趋势甚小,且不影响其脆性转变温度。因此根据管线钢板厚和强度的不同要求,钢中Mn的质量分数一般为1.1%--2.0%。

2.3 铌、钒、钛

铌、钒、钛这三种元素是作为提高低碳锰钢强度的微合金化元素加入到钢中,它们在钢中的作用是各不相同的,但就目前管线钢的生产工艺条件下,都是通过晶粒细化和沉淀硬化(包括应变诱导析出)来影响钢的性能。

微合金钢最主要的,也是最基本的强化机制是晶粒细化机制。对于控轧控冷工艺来说,在进入精轧之前坯料应具有尽可能细的奥氏体晶粒,然后在不发生再结晶的条件下精轧,从而保证相变后的铁素体晶粒的细化。研究表明,从细化铁素体晶粒的效果来看,Nb最为明显,Ti次之,V最差。Nb、V 、Ti的含量分别为0. 09% , 0. 08%和0. 06%较合适。含量再增加,则细化铁素体晶粒的效果并不会进一步增大。

铌是管线钢中重要的微合金元素。微量的铌可以显著提高奥氏体的再结品温度,为非再结品区提供更加宽的温度空间,能够有效阻止形变奥氏体的回复和再结晶,有利于奥氏体形变量的积累。在高温区,固溶的铌原子了对晶界的迁移起到拖拽作用;在低温奥氏体区,应变诱导析出的Nb(C, N)粒了起到了钉扎位错的作用。

钒在针状铁素体中主要以V(C, N)作为低温析出的沉淀强化相来提高钢的强度。

降低钢中的固溶氮含量,通常均采用微钛处理,使钢中的氮被钛固定。由于TiN的溶解温度较铌或钒的氮化物高得多,它可以更有效地阻止奥氏体晶粒在加热过程中长大以保证坯料具有较细的初始奥氏体晶粒和防止焊接热影响区晶粒的长大,从而显著改善焊接热影响区的韧性,提高钢的焊接性。

铌、钒、钛在微合金钢中的另一个重要作用是沉淀强化效应。它们与碳、氮都有较强的亲和力,可以生成碳化物、氮化物或碳氮化物。钛在管线钢中的加入量一般都不超过0.03%。钛在钢中几乎都以TiN存在,难以再形成TiC,因此管线钢中的沉淀硬化主要取决于铌和钒的存在。

2.4 钼

研究表明,钼可扩大奥氏体相区,推迟先共析铁素体和珠光体的转变,降低过冷奥氏体的相变温度,抑制多边形铁素体的形成,促进针状铁素体转变。同时,在含Nb管线钢中,Mo可提高Nb(C,N)在奥氏体中的固溶度,降低Nb( C,N)的析出温度,使更多的Nb( C ,N)在低温铁素体中析出,从而提高Nb(C,N)的沉淀强

化效果。

2.5 铜、镍、铬

在管线钢中添加Cu、Ni、Cr等合金元素,在其表面形成钝化膜,减少氢气的入侵,因而阻止了氢致裂纹的产生。同时还能够非常有效地提高抗大气腐蚀

能力。另外,这些元素还具有强化基体的作用。

2.6 硼

硼元素过去一直用来提高合金结构钢的淬透性,然而近来也用于微合金高强度钢,以降低碳当量和获得高的焊接性能。研究表明,硼含量在0.001%时就可使钢的显微组织全部转变为贝氏体,而且硼在含铌或钛的钢中可以进一步提高奥氏体的再结晶温度,并降低奥氏体的转变温度,更有利于晶粒的细化和组织的强化。过量的硼可以较显著地提高强度,但却降低韧性,特别是对脆性转变温度的影响更大。另外有文献指出,含硼管线钢的碳含量是一个需要注意的问题,含碳量过高会导致钢的屈服强度和韧性的降低。因此,含硼管线钢的碳含量必严格控制在0.05%以下。

3. 显微组织的演变及其相应的力学性能

60年代以前,管线钢的基本组织形态为铁素体和珠光体。X52和低于这种强度级别的管线钢均属于铁素体--珠光体钢,这种钢的基本成分是C-Mn,一般采用热轧和正火热处理。通常认为,铁素体--珠光体管线钢具有晶粒尺寸约为7μm的多边形铁素体(体积分数约70% )。随着珠光体的含量增加,钢的强度提高,但会导致钢的韧脆转变温度升高,焊接性变差。

为避免珠光体对管线钢韧性的损害,60年代末出现了以X56、X60和X65为代表的少珠光体钢。少珠光体钢含碳量一般小于0.1%,Nb、V、Ti的总含量小于0.1 %。这类钢突破了传统铁素体一珠光体钢热轧正火的生产工艺,进入了微合金化钢控轧的生产阶段。特别是Nb、V、Ti等碳化物可细化晶粒,提高强度和韧性。通常认为,少珠光体管线钢应具有晶粒尺寸约为5μm的多边形铁素体,且珠光体的体积分数约10%。一般认为,在保证高韧性和良好焊接条件下,少珠光体钢强度的极限水平为500--500M Pa。

为进一步提高管线钢的强韧性,研究开发了针状铁素体钢。针状铁素体管线钢的研究始于20世纪60年代末,并于20世纪70年代初投入实际工业生产。在锰铌系基础上发展起来了低碳锰-钼-铌系微合金管线钢,一般碳含量小于0.06%。通过钼的加入,降低了相变温度以抑制块状铁素体的形成,促进针状铁素体的转变,并能提高碳氮化铌的沉淀强化效果,因而在提高钢强度的同时,降低韧脆转变温度。针状铁素体是在冷却过程中,在稍高于上贝氏体温度范围,通过切变相变形成的具有高密度位错的非等轴贝体铁素体。针状铁素体钢通过微合金化和控制轧制与控制冷却,综合利用晶粒细化、微合金化元素的析出相与位错亚结构的强化效应,可使钢的屈服强度达到650M Pa,—60℃的冲击韧性达80J。

为适应开发北极和近海能源的需要,在针状铁素体研究的基础上,于80年代初开发研究出超低碳贝氏体钢。超低碳贝氏体钢在成分设计上选择了C、Mn、Nb、Mo、B、Ti的最佳配合,从而在较宽广的冷却范围内都能形成完全的贝氏体组织。在保证优良的低温韧性和焊接性的前提下,通过适当提高合金元素的含量和进一步完善控轧与控冷工艺,超低碳贝氏体钢的屈服强度可达到700--800M Pa,因而超低碳贝氏体钢被誉为21世纪的控轧钢。

目前,X70和X 80管线钢的金相组织主要为针状铁素体型组织。这种钢的

焊接性能、断裂韧性、抗硫化氢应力腐蚀抗氢致开裂等方而的性能比铁素体一珠光体型管线钢好得多。对于X100管线钢来说,基体为粒状贝氏体并分布着一定量的MA组元,但是要求高强度下仍具有合适的UWTT韧性。此外,X100管线钢的可焊性及止裂性能也是X100管线钢开发的研究重点。

4. 管线钢的主要生产工艺

管线钢在进入微合金化钢的控轧生产阶段之前,传统的铁素体--珠光体钢主要是热轧、正火工艺。现在生产管线钢的主要工艺是控制轧制和控制冷却技术。

控制轧制和控制冷却技术TMCP( themol-mechanical controlled process)是20世纪60 --70年代发展起来的热机械处理或形变热处理技术。控轧控冷技术代表了高强度低合金钢的发展方向。控轧控冷是一种定量的按预定程序控制热轧钢形变温度压下量(形变量)、形变道次、形变间歇停留时间、终轧温度以及终轧后的冷却速率、终冷温度卷取温度等参数的轧制工艺。TM CP以取得最佳细化晶粒和组织状态,通过多种强韧化机制改善钢的性能为根本目标。

控制轧制与普通轧制不同,其主要差别在控轧不仅通过热加工使钢材达到所规定的形状和尺寸,而且通过钢的形变强化充分细化钢材的晶粒和改善组织。控轧实际上是高温形变热处理的一种派生形式。控制轧制的主要目的在于在相变过程中,通过控制热轧条件而在奥氏体基体中引入高密度的铁素体形核点,包括奥氏体晶粒边界、由热变形而激发的孪晶界而和变形带,从而细化相变后钢的组织。

4.1 控扎的阶段划分

通常将控制轧制分为3个阶段:

(1)奥氏体再结晶阶段(>1 000℃)。在这一温度范围内,奥氏体变形和再结晶同时进行,因再结晶而获得的细小奥氏体晶粒,将导致铁素体晶粒的细化。

(2)奥氏体非再结晶阶段(950℃--A r3)。在这一温度范围内,形变使奥氏体晶粒被拉长,在伸长而未再结晶的奥氏体内形成高密度形变孪晶和形变带,同时微合金碳氮化物因应变诱导析出,因而增加了铁素体的形核位置,细化了铁素体晶粒。

(3) (γ+α)两相区轧制阶段(A r3-- A r1)。在这一温度范围内,奥氏体和铁素体均发生变形,形成亚结构。亚晶强化使强度进一步提高。实践表明,非再结晶区变形突破了再结晶区所能达到的奥氏体晶粒尺寸极限,在一定的变形量下,非再结晶的晶粒细化也会达某一极限,这一极限只有通过两相区变形才能突破。

4.2 控扎的工艺参数

板坯轧制之前的再热温度通常比普通碳锰钢再热温度低。这是因为再热温度低可以提高粗轧最后阶段的再结晶晶粒尺寸的细化程度和均匀性,因而可改善中厚管线钢的低温韧性和强度水平。同时,降低板坯再热温度,还可缩短轧制工程中的待温时间,从而提高轧制生产能力。

奥氏体再结晶区一般采用大的道次形变量,以增加奥氏体再结晶数量,阻止应变诱发晶界迁移,从而细化晶粒。

降低终轧温度可使晶粒细化从而使屈服强度和韧脆转变能力改善。降低终轧温度改善强韧性的倾向对其他化学成分的管线钢也有普遍性。然而,随终轧温度的降低,钢的变形抗力提高,轧机的轧制力和轧制力矩也增加。

4.3 控制冷却

在管线钢控制轧制和控制冷却的诸多工艺参数中,冷却速率和终冷温度至为重要。随着高强度管线钢的开发,高的冷却速率和低的终冷温度已成为管线钢控

制冷却中的关键技术。通过高的冷却速率和低的终冷温度的实施,可使管线钢获得细小的针状铁素体或贝氏体组织,从而达到高强韧的目的。在加速冷却中较高的冷却速率不仅有利于通过相变强化获得高强度,而且有利于通过细化相变的显微组织获得高韧性,因而可采用合金含量较低的材料达到高的强韧要求。

5. 焊接工艺

焊接工艺参数中主要包括预热温度和焊接线能量。管线钢焊接前采用合适的预热温度可焊接裂纹的产生,有利于钢的韧性的提高。焊接线能量是焊接工艺参数中最重要的参数。焊接线能量不仅影响粗晶区的焊接热循环的峰值温度,还影响粗晶区的加热速度、高温停留时间和冷却时间,这一切都影响到在奥氏体晶粒长大区间的持续时间,在此区间停留时间越长,奥氏体晶粒越粗大。因此,线能量的大小不仅影响晶粒尺寸,而且影响组织结构,也即影响了粗晶区的韧性。

在中等线能量下,具有较高的韧性;过小的线能量和过大的线能量都会引起韧性恶化。管材焊接粗晶区的晶粒大小随线能量的增加而增加。焊接线能量对粗晶区的冲击韧性影响最为显著。研究表明,对于X80管线钢而言,当采用8 kJ/cm 的线能量和60℃的预热温度时,粗晶区的晶粒较细,组织由板条贝氏体和一定量的粒状贝氏体组成,由于粒状贝氏体对板条贝氏体的分割作用,使板条贝氏体的长度较小,方向性差,表现的韧性最优越。因此在X80管线钢的焊接中为使粗晶区获得较高的韧性,应采用较小的线能量和合适的预热温度。

6. 结语

管线钢的发展已半个世纪多,管线钢的成分、显微组织、力学性能、生产工艺及焊接工艺也在随着实际应用中对管线钢的性能要求的不断提高而发展变化。

(1) 从方面来讲,管线钢的含碳量逐渐降低,合金多元化,添加的合金元素以锰、钼为主,微合金化元素主要有铌、钒、钛、铜、镍、铬、硼等,硫、磷等有害元素已控制在很低的含量。现在管线钢的含碳量主要在0.02%--0.06%范围内,锰含量在1.1%--2.0%,铌、钒、钛的总含量在1.0%--2.0%,硼的含量控制在0.05%以下。

(2) 显微组织的演变与管线钢的成分的变化和轧制工艺的发展有紧密的关系,也就是管线钢的成分和生产工艺决定了其纤维组织。显微组织的大致演变过程为铁素体珠光体---针状铁素体---超低碳贝氏体。其性能的变化是强韧性不断提高,焊接性有所改善。

(3) 管线钢最初始的生产工艺主要是热轧、正火,而进入微合金化阶段后,主要以控轧控冷技术为主。控轧控冷工艺中采用比普通碳锰钢较低的再热温度,大的道次变形量,较低的终扎温度以及高的冷却速率和低的终冷温度,以期取得最佳细化晶粒和组织状态和较高的强韧性。

(4) 焊接工艺参数中,焊接线能量最为重要。在中等线能量下,具有较高的韧性;过小的线能量和过大的线能量都会引起韧性恶化。管材焊接粗晶区的晶粒大小随线能量的增加而增加。焊接线能量对粗晶区的冲击韧性影响最为显著。管线钢的焊接中为使粗晶区获得较高的韧性,应采用较小的线能量和合适的预热温度。

玻璃钢管道施工方案

主要施工方法和技术要求 1 施工工艺流程 测量放样→沟槽开挖→基础处理→管道敷设及装配→接口严密性试验→固定支墩→管道回填→系统严密性试验→系统冲洗消毒 2 操作要点 测量放样 开工前应校测与本工程衔接的已建管道、构筑物等平面位置和高程。测量时先测量管道系统中心线和检查井、阀门井位置,在管道转弯、分支处设置施工控制桩并撒出石灰线以便开挖,在机械开挖施工时架设水准仪进行跟踪测量。 沟槽开挖 1、沟槽开挖前,应根据施工需要进行调查,掌握管道沿线的现场地形、地貌、建筑物、各种管线和其他设施的情况以及工程地质、水文地质资料、排水条件,并编制排水方案。施工排水系统排出的水,应输送至抽水影响半径范围以外,不得影响交通和破坏道路、农田、河岸及其它构筑物。当管道未具备抗浮条件时,严禁停止排水。 2、沟槽开挖过程及时控制开挖深度,防止超挖;沟槽开挖后应及时恢复沟槽中心线和控制高程,采用设置坡度板来进行高程、中心线控制,随时检查坡度板设置位置和高程是否准确,确保沟槽中心线、坡度及附属构筑物位置正确。 3、沟槽的宽度应便于管道铺设、安装,以及夯实机具操作和地下水排出。沟槽的最小宽度应按下式计算确定: b≥D1+2S ()

式中 b――沟槽的最小宽度(mm); D1――管外径(mm); S――管壁到沟槽壁的距离(mm),按表确定。 4、沟槽边坡的最陡坡度应根据沟槽土质确定,必要时沟槽壁应设置支撑或护板,并编制应急预案。土方开挖采用机械开挖,槽底预留20cm由人工清底,开挖过程严禁超挖,以防扰动地基。 5、在软土沟槽坡顶不宜设置静载或动载;需要设置时,应对土的承载力和边坡的稳定性进行验算。 6、当沟槽挖深较大时,应按机械性能合理确定分层开挖的深度。 基础处理 1、当土壤承载力为8~100KPa和非岩石时应采用原状土作为基础;当土壤承载力为5~70KPa时,应采用经夯实后的原土作为基础,夯实密度应达到95%。 2、沟槽底遇淤泥、卵石、岩石、硬质土、不规则碎石块及浸泡土质应挖除后作相应的管基处理。管道经过不良地质时应按设计要求进行管基加固。 管道敷设及装配 1、下管 在沟槽地基质量检验合格,并核对管节、管件位置无误后及时下管。下

石油管线钢市场分析

石油管线钢市场分析 一、概况 1、简介 石油管线钢主要指用于制造输送石油的大口径焊接钢管用热轧卷板或宽厚板。国际多采用美国石油协会规范(API5L),通用为X系列,级别越高表示其强度及抗压性越大,如X42、X46为低强度管线钢,X52、X56为中强度管线钢,X60、X65、X70为高强度管线钢,X80、X100、X110为超高强度管线钢。不过管线钢强度级别的提高不是依靠C、Mn的提高来实现的,而是依靠轧制时的控轧控冷来实现的,通过控轧控冷得到超细晶粒的钢,强度级别高的钢种,需要添加微量元素,如Nb、V、B、Ti、Mo等,目前管线钢已成为低合金高强度和微合金钢领域内富有活力的一个重要分支。 石油输送管线管多由石油管线钢经过深加工(压力加工、焊接、热处理、机加工、表面处理、无损检测等)而成,一般板卷用于生产直缝电阻焊管(ERW)或埋弧螺旋焊管(SSAW),中厚板制成厚壁直缝焊管(LSAW)。用无缝钢管作为输送油管的数量相对较少。 图 1 输油管线用(钢)管 目前我国石油输送管线钢屈服强度多为306—450MPa(约相当于X52~X65),但随着石油需求量的不断增加,管道的输送压力和管径也不断地增大以增加其输送效率,考虑到管道的结构稳定性和安全性,还需增加管壁厚度和进步管材的强度,因此用作石油输送管的管线钢都向着厚规格和高强度方向发展。

2、使用标准 目前在我国使用的油气输送管线(钢)管的主要技术标准有API SPEC 5L、GB/T 9711、ISO 3183。除对管线钢化学成分、冶金质量、力学性能、残余应力、可焊性等有严格的要求外,对成品的几何形状和尺寸例如外径、内径、壁厚、圆度、直度等结构完整性也都有要求。 表 1 输油管线(钢)管使用标准 上大多数石油公司都习惯采用API SPEC 5L规范作为管线钢管采购的基础规范,国内1985年才开始按API标准生产。不过API SPEC 5L是一个通用标准,技术要求显得比较松,而世界各地地理、气候等自然条件差别很大,输送介质的性质也不尽相同,因此,很多石油公司将API SPEC 5L视为一个基础标准,在该标准基础上,根据当地实际情况或管线的具体要求,制订质量技术补充技术规范(技术条件)。 (2)ISO 3183—l(—2、—3)(石油天然气工业输送钢管交货技术条件第一部分:A级钢管/第二部分:B级钢管/第三部分:C级钢管)是国际标准化组织制定的关于油气输送钢管交货条件的标准,根据钢管不同的服役条件,分成A、B、C三个级别。 (3)GB/T 9711.1(一2)是中国标准化委员会管材专标委等同采用IS03183—l(—2)标准制定的石油工业用输送钢管交货技术条件。对钢管的化学成分、力学性能、止裂韧性、焊接性能等提出要求。 (4)DNV OS—F101(海底管线系统)是挪威船级社专门针对海底管线而制定的规范。涉及内容很广泛,包括管线设计、材料、制造、安装、检测、运行、维护等各方面。单就对钢管的技术要求,通常比API 5L要严格。

玻璃钢管道施工工艺

[复习] 5.4.6玻璃钢管 5.4. 6.1构件检验 (1)管道、管件检查 管道尺寸应符合标准规范要求,管端应标明材料执行标准、规格类型等,并提供产品质量合格证明及验收内容等。管道内表面应光滑,无龟裂、分层、针孔、杂质、贫胶区及气泡等,管端面应平齐,无毛刺,外表面无明显裂纹、分层等缺陷。承插管承口内外所有表面应平滑,不得有裂纹、断口或对连接面使用性能不利的其他缺陷。O型圈槽的台阶及端面必须粘合为一体,不得有分层。管道的厚度要符合使用要求。 (2)承插用xx橡胶圈验收 密封橡胶圈严禁使用再生胶,其外观应完好,无接头,表面不得有裂纹、杂质和气泡,规格、外观尺寸必须与管道圈槽加工尺寸一致,橡胶圈截面直径差不得超过?0.5mm,橡胶圈环的直径差不得超过?10mm。橡胶圈的性能指标以保证密封、无渗漏为准,一般应符合下列要求:硬度(邵氏A)45,55;拉伸强度大于16 MPa;伸长率大于500,;永久变形小于20,;老化系数0.8 (70?,44h)。 5.4. 6.2管道装卸 (1)管道装卸过程中应该轻装轻放,严禁摔跌或者撞击。 (2)管道装卸机具的工作位置必须稳定,机具的起吊能力必须可靠。 (3)管道可以采取一个或者两个支撑点进行起吊,要保证管道在空 中均衡,严禁用绳子贯穿管道两端进行装卸管道。(4)装卸用的吊绳应该是柔韧、较宽的皮带、吊带或者绳索,严禁用钢丝绳或者锁链进行吊装管道。 5.4. 6.3材料存放

(1)管道到达现场应运至相应作业地段立即展开施工,如遇到不可抗拒因素无法立即进行施工,则要对管材进行安全存放。 (2)玻璃钢管道的辅助连接材料主要有玻璃纤维纱、短切毡、玻璃丝布等增强材料和树脂、固化剂、促进剂、抗老化剂等基体材料以及各种胶泥等,这些材料必须分类妥善存放在无阳光直射的干燥处。橡胶圈应防晒且远离热源,不得与油脂类和有机溶剂接触。管道、管件应按类型、规格、等级分类堆放,层间应加软质衬垫,远离热源和易燃易爆物品,不宜长期露天存放,防止爆晒。 (3)当管道直接存放在地上时,地面应该平坦。严禁将管道存放在尖锐的硬物上,所堆放的管道应该加木楔防止滚动。 (4)管道应该按规格分类存放。每堆一层应该垫放枕木,枕木间距应该小于管长。管道堆放高度不得高于2米,DN1400以上管道不得堆放。 5.4. 6.4基槽处理 (1)沟槽开挖 1)沟槽开挖时,采用机械开挖为主。人工开挖为辅的方法。开挖时沟底表面应连续平整。沟壁应视情况考虑放坡。以保证安全。清除直 径大于38mm的圆石或大于25mm的夹角形石块。并清除沟上可能掉落的、碰落的物体。以防损坏管子。2)沟槽的断面尺寸除应满足设计文件的要求之外。还需符合GB50268-97、CECS129:2001的规定;沟槽的宽度应便于管道的铺设和安装,应便于夯实机具的操作和地下水的排出,沟槽的最小宽度b应按照(5.4.6.1)式进行计算。(5.4.6.1) 式中b——沟槽的最小宽度(mm);——管外径(mm) ——管壁到沟槽壁的距离(mm) 管壁到沟槽壁的距离宜按照表5.4.6.1确定。表5.4.6.1推荐的s值管公称直径DNs 200 300

钢材基础知识大全

钢材基础知识大全 This model paper was revised by LINDA on December 15, 2012.

钢材基础知识(一) 第一部分基础知识 一、钢及其分类 1、按冶炼方法分类: 平炉钢:包括碳素钢和低合金钢。按炉衬材料不同又分酸性和碱性平炉钢两种。 转炉钢:包括碳素钢和低合金钢。按吹氧位置不同又分底吹、侧吹和氧气顶吹转炉钢三种。 电炉钢:主要是合金钢。按电炉种类不同又分电弧炉钢、感应电炉钢、真空感应电炉钢和电渣炉钢四种。 沸腾钢、镇静钢和半镇静钢:按脱氧程度和浇注制度不同区分。 2、按化学成分分类: 碳素钢:是铁和碳的合金。据中除铁和碳之外,含有硅、锰、磷和硫等元素。 按含碳量不同可分为低碳(C<%)、中碳(C:%%)和高碳(C>%)钢三类。 碳含量小于%的钢称工业纯铁。 普通低合金钢:在低碳普碳钢的基础上加入少量合金元素(如硅、钙、钛、铌、硼和稀土元素等,其总量不超过3%)。而获得较好综合性能的钢种。

合金钢:是含有一种或多种适量合金元素的钢种,具有良好和特殊性能。按合金元素总含量不同可分为低合金 (总量<5%)、中合金(合金总量在5%-10%)和高合金(总量>10%)钢三类。 3、按用途分类: 结构钢:按用途不同分建造用钢和机械用钢两类。建造用钢用于建造锅炉、船舶、桥梁、厂房和其他建筑物。机械用钢用于制造机器或机械零件。 工具钢:用于制造各种工具的高碳钢和中碳钢,包括碳素工具钢、合金工具钢和高速工具钢等。 特殊钢:具有特殊的物理和化学性能的特殊用途钢类,包括不锈耐酸钢、耐热钢、电热合金和磁性材料等。 二、钢材及其分类 炼钢炉炼出的钢水被铸成钢坯,钢锭或钢坯经压力加工成钢材(钢铁产品)。钢材种类很多,一般可分为型、板、管和丝四大类。 1、型钢类 型钢品种很多,是一种具有一定截面形状和尺寸的实心长条钢材。按其断面形状不同又分简单和复杂断面两种。前者包括圆钢、方钢、扁钢、六角钢和角钢;后者包括钢轨、工字钢、槽钢、窗框钢和异型钢等。直径在的小圆钢称线材。 2、钢板类

国内管线钢标准应用现状分析

收稿日期:2005-11-10 作者简介:潘丽梅(1977~),女,助理工程师,从事板带钢生产技术研究工作。 国内管线钢标准应用现状分析 潘丽梅 谢艳峰  (首钢技术研究院 北京 100041) (冶金工业信息标准研究院 北京 100730) 吴建伟 (中国标准出版社秦皇岛标准资料发行所 河北秦皇岛 066001) 摘 要:简要介绍了国内管线钢的组织分类及其特性要求,并对国内管线钢目前应用标准情况进行了分析研究。 关键词:管线钢;特性;标准应用 中图分类号:TG 335.7 文献标识码:B 文章编号:1003-0514(2005)06-0030-03 The actuality analyses about internal pipeline steel standard application PAN Li -mei (Shougang Research Institute of T echnology ,Beijing 100041,China ) XIE Y an -feng (China Metallurgical In formation &S tandardization Research Institute ,Beijing 100730,China ) W U Jian -wei (S tandards Press of China ,Qinhuangdao S tandards Fiter Issue Depantment ,Qinhuangdao 66001,China ) Abstract :Introduce the internal pipeline steel structure and characteristic ,and analysis the present situation about the inter 2nal pipeline steel standard. K ey w ords :pipeline steel ;characteristic ;standard application 在我国管道建设的不同阶段,管线钢的发展变化 非常迅速。20世纪50~70年代管线钢主要采用A3钢和16Mn 钢;70年代后期和80年代采用从日本进口的TS52K 钢(相当于X52级钢);90年代,管线钢主要采用的X52、X60、X65级热轧板卷大多数由宝钢和武钢生产供应。“八五”期间成功研制和开发了X52-X70级高韧性管线钢,并逐步得到广泛应用。西气东输工程采用了X70级管线钢。目前针对X80高钢级管材的研究和应用,石油部门与冶金部门联合开展了10余项国家基础攻关、应用基础研究和技术开发项目,其中包括国家“973”项目“高强度管线钢的重大工艺基础研究”,中油集团技术开发项目“X80管线钢管的开发与应用”,“X80管线钢的焊接及高韧性焊材选择”等等。本文针对目前国内管线钢标准应用现状 进行了系统研究。 1 管线钢的组织分类及其特性 随着合金设计、冶炼水平和轧制工艺的发展,具 有不同特性,适用于多种条件的管线钢已经生产,它应用了微合金钢发展的一切成果。铁素体-珠光体组织为第一代微合金管线钢,强度级别X42-X70;针状铁素体管线钢为第二代微合金管线钢,强度级别范围可覆盖X60-X90。其中管线钢的组织结构是决定其使用性能和安全服役的内部根据。目前,按照组织形态归类,管线钢具有以下3种典型的类型:1.1 铁素体-珠光体钢和少珠光体钢 60年代后期在国外发展起来的第一代管线系列钢(X52-X70强度级),称为铁素体-珠光体管线钢。 03冶金标准化与质量 第43卷

钢厂与钢材基础知识

钢厂与钢材基础知识 口号:我爱一诺,一诺爱我 创业理念:创立新行业,树立新标准 管理理念:职业化管理,专业化经营 团队理念:敬业,专业,专注,创新 营销理念:每人都是信息员,每人都是业务员 协同理念:大营销,大服务 钢铁物流是以“钢铁”为载体,以“物流”为运作,以“信息”为核心,集钢材贸易、电子商务、三方物流为一体,资金流、信息流、物流相互促进、相互融合,涵盖建筑行业、冶金行业、信息产业、现代物流四大行业的交叉行业。 建筑钢厂分布: 东北地区:凌源,北台,抚钢,通钢,西林钢厂 华北地区大钢厂:首钢,天钢,河北钢铁,新兴铸管,敬业,邢钢,海鑫 小钢厂:河北:九江,东海,普阳,明顺(明芳),裕华,新金,元宝山,庆元 山西:晋钢,长治钢铁,中阳,中宇,黎城太行,宏达,长平,长信,长宁,海威 华东地区大钢厂:沙钢,永钢,合钢,马钢,南昌钢铁,新钢,萍钢,福建三钢,济钢,莱钢,石横 小钢厂:山东:日照,青钢,潍坊钢铁,济钢闽源,莱钢永锋,泰乐,西王钢铁,张店 上海:申特江苏:中天,溧阳三元,南京雨花 中南地区大钢厂:安钢,济源,武钢,鄂钢,湘钢,涟钢,广钢,韶钢,柳钢 小钢厂:河南:兴安,洛钢,伟业,安信,安阳亚新 湖北:湖北大展,鄂州鸿泰,大冶华鑫 广东:广钢裕丰,珠海粤钢,宝兴 西北地区大钢厂:八一钢铁,酒泉钢铁 小钢厂:龙钢,华阴钢铁,略阳钢铁 西南地区:成钢,水钢,重钢,云南德胜,昆钢 中厚板生产厂家: 华东:宝钢,马钢,新钢,济钢 中南:安钢,武钢,重钢,舞钢,韶钢,柳钢,湘钢等 北方:鞍钢,本钢,天钢,首钢,邯钢 二线钢厂: 华北:普阳,文丰,敬业,临钢 华东:江阴长达,上海春冶,江阴上钢,江苏张家港华伟,无锡兆顺,泰州兴化兆泰等 卷板生产厂家: 东北:鞍钢,本钢,北台,通钢 华北:邯钢,唐钢,包钢,太钢,国丰,港陆,首钢,迁安,德龙,天铁,津西(海鑫) 华东:宝钢,梅钢,上一,沙钢,马钢,济钢,莱钢,日照,南钢(南京)(宁波钢铁) 华南:广钢珠江,韶钢

管线钢综述

综述 管线钢指用于输送石油、天然气等的大口径焊接钢管用热轧卷板或宽厚板。管线钢在使用过程中,除要求具有较高的耐压强度外,还要求具有较高的低温韧性和优良的焊接性能。随着石油、天然气消费量的增长,其输送的重要性显越发突出,尤其是长距离输送。而提高输送效率,提高输送的经济效益就要通过加大输送管道口径,提高输送压力来解决。从而提高了对高级别、高性能管线钢的需求。 国外高级别管线钢呈现强劲的发展趋势,从20世纪70年代初期X65管线钢开始投入使用,80年代X70级管线钢逐渐被引入工程建设,1985年API标准中增加了X80钢级,随后X80开始部分在一些管线工程中使用,并很快就投入到X100和X120管线钢的开发试制工作。有关X100最早的研究报告发表于1988年,通过大量工作已形成很好的技术体系。高级别管线钢概述我国管道建设正处于大力发展阶段,因此管线钢的发展也非常迅速。20世纪50~70年代管线钢主要采用A3钢和16Mn钢;70年代后期和80年代采用从日本进口的TS52K钢(相当于X52级钢);90年代,管线钢主要采用的X52、X60、X65级热轧板卷主要由宝钢和武钢生产供应。“八五”期间成功研制和开发了X52~X70级高韧性管线钢,并逐步得到广泛应用。西气东输工程采用了X70级管线钢并逐渐向X80过度。国内管线钢生产技术现状分析由于市场要求单管输气量不断提高。我国早期四川、西北地区的天然气管道采用X52及以下钢级、426mm以下管径的管线钢管,设计年输气量在10亿m3/a以下;陕京一线第一次采用了X60钢级、

D660mm管线钢管设计年输量提高到33亿m3/a;西气东输一线采用X70钢级、D1016mm管线钢管,设计年输量提高到170亿m3/a;最近建设的西气东输二线管道,采用X80钢级、D1219 mm管线钢管,设计年输量提高到300亿m3/a。 这种单管输气量不断提高的趋势仍在持续。当前国际上新一轮巨型天然气长输管道,单管输气量将达到450亿-500亿m3/a的水平。干线一般采用X80钢级,具有输送距离长、采用更高工作压力和大管径输送的特点。 一个具有代表性的项目是正在建设的俄罗斯巴甫年科沃-乌恰天然气管道。管线长度1100km,采用1420mm管径和K65(类似于X80)钢级,输送压力11.8MPa,单管设计输气量约500亿m3/a,计划于2012年第三季度进行系统调试。 另一个有代表性的项目是拟在北美建设的阿拉斯加北坡天然气外输管道,管道的输送能力约465亿m3/a,管线长度2737km,采用1219mm管径和X80钢级,将阿拉斯加北坡丰富的天然气资源输送到加拿大和北美市场。 我国也已在规划研究未来多条西气东输管道(西三线~西八线)的方案。包括将单管输气量提高到400亿~500亿m3/a的多种方案都在研究之中。 由于西气东输二线采用的X80钢级、管径1219mm,12MPa工作压力的方案只能达到300亿m3/a的输气能力,要将输气能力进一步提高到400亿-500亿m3/a,只能进一步提高输送压力和管径。

玻璃钢管道施工规范标准

目录 第一章高压玻璃钢管的储存、运输、装卸第一节储存 第二节运输 第三节装卸 第二章 高压玻璃钢管道安装、维修所需工具及材料 第三章高压玻璃钢管道的施工 第一节管道的开槽 第二节管道的连接 第三节止推座、固定锚块的安装 第四节管道的试压 第五节保温管的补口 第六节管道的回填 第七节管道的冬季施工 第四章高压玻璃钢管道的维修 第一节高压玻璃钢管道的维修 第二节现场螺纹的粘接

第一章高压玻璃钢管的储存、运输、装卸 第一节储存 玻璃钢管应存放在平地或管架上,为防止发生点荷载,可用4条50mm(厚)×100mm(宽)的木板放在平地上做管架,并且垂直于管道轴向均匀摆放玻璃钢管可一层一层摆放,为防止两端接头或接箍磨损,每层管的下方至少应均匀摆放4条25mm(厚)×90mm(宽)的木板,并且垂直于管道轴向,管道储存时,应安装好螺纹护套、罩上苫布,避免紫外线降解与机械损伤。打包成捆的管道摆放限制在2个包装的高度,裸管及保温管堆放的层数应限制在12-15层之间。 第二节运输 玻璃钢管在运输前要打好包装,层与层之间最少要用4道木板均匀地隔开,最底层木板尺寸不小于50mm(厚)×100mm(宽),中间两道木板加垫木托板,便于叉车装卸,每层管道在摆放时,管与管之间要相互错开,防止运输过程中损伤螺纹。运输时,若车厢长度不够, 要求悬在车厢外面的管道长度不能超过1.2m管道在车厢上要用尼龙绳或麻绳捆绑牢固,不得使用钢丝绳等金属绳索。如果采用厢式货车散装管道时,应先在两侧车厢板上等距垂直固定3条150mm(宽)×20mm(厚)×厢高的木板,每层管道之间用再生棉毯隔离。 第三节装卸 打包成捆的玻璃钢管可采用叉车(吊车)进行装卸,如果没有叉车,可以打开包装,人工一根一根装卸,装卸时不能对管线进行抛掷,避免损伤管道,对于10MPa 以下的裸管及保温管,要人工一根一根装卸,对于10MPa以上管道的装卸可采用吊车进行,但吊带的间距要在2.5m-4.5m之间不得用钢丝绳或吊钩直接装卸,卸车时管道堆放的场地要平整,以避免螺纹的损伤,并派专人看护。 玻璃钢管道二次转运,应注意以下几点: 1、转运所用车辆的货箱不得短于6米。 2、车上裸露金属突起不得直接与玻璃钢管道接触,须用胶皮包裹。 3、玻璃钢管道应分层摆放,每层须用木板隔开。

管线钢综述

管线钢综述 欧阳高凤 摘要:本文对管线钢的大概发展历程、成分冶金、显微组织、力学性能、轧制工艺、焊接性及焊接工艺进行了论述,从而能够了解管线钢的发展,为课题研究打下基础。 关键词:管线钢成分显微组织力学性能生产工艺焊接工艺发展 1 管线钢的大概发展历程 半个多世纪以来,随着石油和天然气的开发和需求量的增加,从而带动了管线钢的发展。由于管道运输具有经济、方便、安全等特点,进入二十一世纪以来,管线钢呈现蓬勃发展的趋势。我国管线钢的应用和起步较晚,过去已铺设的油、气管线大部分采用Q235和16Mn钢。我国开始按照API标准研制X60、X65管线钢,并成功地与进口钢管一起用于管线铺设。90年代初宝钢、武钢又相继开发了高强高韧性的X70管线钢,随后成功研制了X80管线钢,X70和X80管线钢已大量应用于油气管道运输中。近几年开发的高强韧的X100和X120管线钢还处在试验阶段,应用方面还比较少。 在我国,石油、天然气的运输基本上已经实现了管道运输。但是与世界上工业发达国家相比,国内的管道运输在质量上和数量上都存在很大差距。中国虽然为世界的主要石油出产国之一,但输油输气的管道不足世界管线总长度的百分之一,而且普遍存在输送压力低、管径小的缺点。随着我国油气资源的进一步开发利用,西气东输的工程实施,油气管线向长距离、大口径发展是必然趋势。下面从管线钢的冶金成分、显微组织、力学性能、生产工艺及焊接工艺等方面,进一步较详细的介绍管线钢的发展。 2 管线钢的冶金成分的发展 管线钢和其他的微合金钢一样,都是在传统的C-Mn钢的基础上加上合金元素。合金元素主要以Nb、Ti、V或少量的Mo、Cu、Ni、Cr及B为主,以这些合金元素来对管线钢进行合金设计,以达到不同的强度等级及性能要求。 管线钢的冶金成分的发展大致经历三个阶段。第一阶段为1950年以前,是以C-Mn和C-Mn-Si钢为主的普通碳钢,强度级别在X52以下。第二阶段为1950-1972年,在C-Mn钢的基础上引入微量的Nb、Ti、V,通过相应的热轧和轧后处理工艺,提高了钢的综合性能,生产出X60及X65级别的钢。第三阶段为1972年至今,这一阶段合金化的发展特点为微合金的多元化,相继又加入少量的Mo、Cu、Ni、Cr及B,结合控轧控冷的新工艺,生产出综合性能优异的管线钢,主要以X70和X80管线钢为主,X100和X120管线钢在试验研究阶段。 下面具体论述以下管线钢中这些合金元素或微合金元素的作用及添加量。2.1 碳 碳是最传统的合金元素、强化元素,而且也是最经济的元素,但它对钢的可焊性影响很大。碳是影响焊接性能最敏感的一个元素,所以20多年来管线钢的碳含量是逐步趋向于低碳或超低碳方向发展。而且随着含碳量的增加,韧性下降,偏析加剧,抗HIC和SSC的能力下降。因此,随着管线钢级别的提高,碳含量应逐渐降低。管线钢的含碳量从开始的1.0%左右逐步降低,最低可达到0.01%。

最新钢材基础知识大全

钢材基础知识(一) 第一部分基础知识 一、钢及其分类 1、按冶炼方法分类: 平炉钢:包括碳素钢和低合金钢。按炉衬材料不同又分酸性和碱性平炉钢两种。 转炉钢:包括碳素钢和低合金钢。按吹氧位置不同又分底吹、侧吹和氧气顶吹转炉钢三种。 电炉钢:主要是合金钢。按电炉种类不同又分电弧炉钢、感应电炉钢、真空感应电炉钢和电渣炉钢四种。 沸腾钢、镇静钢和半镇静钢:按脱氧程度和浇注制度不同区分。 2、按化学成分分类: 碳素钢:是铁和碳的合金。据中除铁和碳之外,含有硅、锰、磷和硫等元素。 按含碳量不同可分为低碳(C<0.25%)、中碳(C:0.25%-0.60%)和高碳(C>0.60%)钢三类。 碳含量小于0.04%的钢称工业纯铁。 普通低合金钢:在低碳普碳钢的基础上加入少量合金元素(如硅、钙、钛、铌、硼和稀土元素等,其总量不超过3%)。而获得较好综合性能的钢种。 合金钢:是含有一种或多种适量合金元素的钢种,具有良好和特殊性能。按合金元素总含量不同可分为低合金 (总量<5%)、中合金(合金总量在5%-10%)和高合金(总量>10%)钢三类。 3、按用途分类: 结构钢:按用途不同分建造用钢和机械用钢两类。建造用钢用于建造锅炉、船舶、桥梁、厂房和其他建筑物。机械用钢用于制造机器或机械零件。 工具钢:用于制造各种工具的高碳钢和中碳钢,包括碳素工具钢、合金工具钢和高速工具钢等。 特殊钢:具有特殊的物理和化学性能的特殊用途钢类,包括不锈耐酸钢、耐热钢、电热合金和磁性材料等。 二、钢材及其分类 炼钢炉炼出的钢水被铸成钢坯,钢锭或钢坯经压力加工成钢材(钢铁产品)。钢材种类很多,一般可分为型、板、管和丝四大类。 1、型钢类 型钢品种很多,是一种具有一定截面形状和尺寸的实心长条钢材。按其断面形状不同又分简单和复杂断面两种。前者包括圆钢、方钢、扁钢、六角钢和角钢;后者包括钢轨、工字钢、槽钢、窗框钢和异型钢等。直径在6.5-9.0mm的小圆钢称线材。 2、钢板类 是一种宽厚比和表面积都很大的扁平钢材。按厚度不同分薄板(厚度<4mm)、中板(厚度4-25mm)和厚板(厚度>25mm)三种。钢带包括在钢板类内。 3、钢管类 是一种中空截面的长条钢材。按其截面形状不同可分圆管、方形管、六角形管和各种异形截面钢管。按加工工艺不同又可分无缝钢管和焊管钢管两大类。 4、钢丝类 钢丝是线材的再一次冷加工产品。按形状不同分圆钢丝、扁形钢丝和三角形钢丝等。钢丝除直接使用外,还用于生产钢丝绳、钢纹线和其他制品。 第二部分钢板第三部分钢板(带)类 ——钢板、钢带、镀涂钢板、不锈钢板与硅钢片 钢板是钢材四大品种(板、管、型、丝)之一,在发达国家,钢板产量占钢材生产总量50%以上,随着我国国民经济的发展,钢板生产量逐渐增长。 钢板是一种宽厚比和表面积都很大的扁平钢材。钢板按厚琊分为薄板和厚板两大规格。 薄钢板是用热轧或冷轧方法生产的厚度在0.2-4mm之间的钢板。薄钢板宽度在500-1400mm之间。

玻璃钢管道制造工艺

玻璃钢管道制造工艺说明 一、玻璃钢管壁结构说明: 玻璃钢管壁结构从内到外分别为:玻璃钢内衬层、玻璃钢次内衬层、玻璃钢缠绕层、玻璃钢外部保护层。 玻璃钢内衬层、玻璃钢次内衬层起防腐、防渗作用,缠绕层担负起管道的强度和刚度作用,外保护层起抗老化、防腐蚀、抗日晒的作用。 二、玻璃钢管道制作工艺流程 →玻璃钢模具准备 →设备调试、原材料准备 →玻璃钢管道内衬制作 →远红外固化站内衬固化 →玻璃钢管道内衬质量检验 →玻璃钢管道增强层缠绕 →远红外管道整体固化 →玻璃钢管道外观及主要尺寸检验 →玻璃钢管道脱模 →1.5倍工作压力水压试验及其它标准要求的检测项目 →玻璃钢管道包装入库 三、玻璃钢管道工艺详细说明: (1)准备工序 a、设备调试。首先认真检查设备运转及工作部位是否正常,特别要细心检查树脂-固化剂双组分泵是否有堵塞现象,之间配比是否达到设计要求;要确保制衬、缠绕、修整、脱模等设备的运行稳定和工作精度; b、清理模具。要求模具表面无坑凹、粉尘、杂物及其他附着物,模具要作到表面平滑,有问题及时修理、维护; c、缠聚酯薄膜。为方便管道脱模,在模具表面应包覆1层聚酯薄膜,薄膜搭接宽度1~2㎝,厚度为40um之间。要求薄膜无破损,无皱折,两面光滑洁净。薄膜产品质量满足GB 13950-1992的要求。 (2)制衬工序 a、内衬树脂配制。按质检部门根据当时的工作环境、温度条件作出的树脂配方体系进行内衬树脂配兑,配料量要根据制造进度合理掌握。当现场情况发生变化时,质检部门和制造部门应及时调整配方,并按新配方配制需用的树脂;

b、增强材料准备。按设计要求将制作内衬需用的增强材料运送到指定位置,并对一些宽幅面的增强材料先裁切加工到设计宽度; c、内衬层制作。按设计要求的铺层步骤进行内衬层制作,各单层铺设过程中应施加合理的张力,相互之间适量搭接,并用组合压辊反复滚压赶出气泡以保证纤维完全浸透。并要求各增强材料层达到设计的树脂含量要求; d、初步自检。按设计要求铺覆完各层后,要求操作工人进行初步的质量检测:内衬是否达到设计厚度,局部是否有贫胶、挂胶现象,是否有白斑、气泡,是否有等,若发生上述情况应及时汇报并采取处理措施; e、进入内衬远红外深度固化工序。 (3)远红外深度固化 我厂生产制造的玻璃钢管道都必须进行远红外深度固化处理,目的是:可以提高内衬层的固化度,改善管道的抗腐耐温性能; (4)过程质量检验 在缠绕前再次确认内衬无气泡、气孔,无杂质,表面平整,树脂含量合理,无白斑和局部固化不良等现象。必须认真检查内衬是否合格,不合格的严禁上机缠绕。 (5)缠绕工序 将设计好的参数输入微机,待内衬固化后,由微机控制用无碱无捻玻璃纤维进行往复式缠绕直至缠绕层厚度。按规定厚度外敷100%树脂含量的外保护层。缠绕层的树脂含量一般为35%左右,其厚度取决于管道设计的强度和刚度的综合。 (6)红外线固化 管道进入固化养护阶段。在固化过程中应以适宜的转速保持模具滚动,使其均匀固化。固化过程中应注意监控管体温度,合理调整固化方案。 (7)修整、脱模: 待管道的巴氏硬度大于30时,对管道端口进行修整。然后用液压脱模机将管道和模具分离,并在其管道中间部分按要求作标记。 (8)管道水压试验及摆放: 每批管道按规定进行水压试验,注满水,均匀升压至管道设计压力的1.5倍,并保持不低于2分钟,仔细检查管道的表面和压力表。试压合格后二点支撑摆放管

玻璃钢管道施工方案

玻璃钢管道施工方案 Final revision on November 26, 2020

主要施工方法和技术要求 1 施工工艺流程 测量放样→沟槽开挖→基础处理→管道敷设及装配→接口严密性试验→固定支墩→管道回填→系统严密性试验→系统冲洗消毒 2 操作要点 测量放样 开工前应校测与本工程衔接的已建管道、构筑物等平面位置和高程。测量时先测量管道系统中心线和检查井、阀门井位置,在管道转弯、分支处设置施工控制桩并撒出石灰线以便开挖,在机械开挖施工时架设水准仪进行跟踪测量。 沟槽开挖 1、沟槽开挖前,应根据施工需要进行调查,掌握管道沿线的现场地形、地貌、建筑物、各种管线和其他设施的情况以及工程地质、水文地质资料、排水条件,并编制排水方案。施工排水系统排出的水,应输送至抽水影响半径范围以外,不得影响交通和破坏道路、农田、河岸及其它构筑物。当管道未具备抗浮条件时,严禁停止排水。 2、沟槽开挖过程及时控制开挖深度,防止超挖;沟槽开挖后应及时恢复沟槽中心线和控制高程,采用设置坡度板来进行高程、中心线控制,随时检查坡度板设置位置和高程是否准确,确保沟槽中心线、坡度及附属构筑物位置正确。 3、沟槽的宽度应便于管道铺设、安装,以及夯实机具操作和地下水排出。沟槽的最小宽度应按下式计算确定: b≥D1+2S ()

式中 b――沟槽的最小宽度(mm); D1――管外径(mm); S――管壁到沟槽壁的距离(mm),按表确定。 4、沟槽边坡的最陡坡度应根据沟槽土质确定,必要时沟槽壁应设置支撑或护板,并编制应急预案。土方开挖采用机械开挖,槽底预留20cm由人工清底,开挖过程严禁超挖,以防扰动地基。 5、在软土沟槽坡顶不宜设置静载或动载;需要设置时,应对土的承载力和边坡的稳定性进行验算。 6、当沟槽挖深较大时,应按机械性能合理确定分层开挖的深度。 基础处理 1、当土壤承载力为8~100KPa和非岩石时应采用原状土作为基础;当土壤承载力为5~70KPa时,应采用经夯实后的原土作为基础,夯实密度应达到95%。 2、沟槽底遇淤泥、卵石、岩石、硬质土、不规则碎石块及浸泡土质应挖除后作相应的管基处理。管道经过不良地质时应按设计要求进行管基加固。 管道敷设及装配 1、下管 在沟槽地基质量检验合格,并核对管节、管件位置无误后及时下管。下 管采用吊装设备与人工配合。下管时注意承口方向保持与管道安装方向一

钢铁基础知识大全

钢铁基础知识大全 一、钢材机械性能介绍 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo (MPa),MPa 称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB)

以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。 ⑶维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV) 二、钢的分类 (一)、黑色金属和有色金属 1、黑色金属 是指铁和铁的合金。如钢、生铁、铁合金、铸铁等。钢和生铁都是以铁为基础,以碳为主要添加元素的合金,统称为铁碳合金。 生铁是指把铁矿石放到高炉中冶炼而成的产品,主要用来炼钢和制造铸件。 把铸造生铁放在熔铁炉中熔炼,即得到铸铁(液状,含碳量大于 2.11%的铁碳合金),把液状铸铁浇铸成铸件,这种铸铁叫铸铁件。 铁合金是由铁与硅、锰、铬、钛等元素组成的合金,铁合金是炼钢的原料之一,在炼钢时做钢的脱氧剂和合金元素添加剂用。 含碳量低于2.11%的铁碳合金称为钢,把炼钢用生铁放到炼钢炉内按一定工艺熔炼,即得到钢。钢的产品有钢锭、连铸坯和直接铸成各种钢铸件等。通常所讲的

高级别管线钢概述

高级别管线钢概述 管线钢是指用于输送石油、天然气等的大口经焊接钢管用热轧卷板或宽厚板。管线钢在使用过程中,除要求具有较高的耐压强度外,还要求具有较高的低温韧性和优良的焊接性能。随着石油、天然气消费量的增长,其输送的重要性显越发突出,尤其是长距离输送。而提高输送效率,提高输送的经济效益就要通过加大输送管道口径,提高输送压力来解决。从而提高了对高级别、高性能管线钢的需求。 1、国内发展概况 我国管线钢的起步较晚,国内生产符合API5L标准的管线工程设计要求的管线钢仅有10多年的历史,X60~X70级管线钢已在国际市场上占有一定的地位,目前国内已投入生产的X80级管线钢质量也达到了国际先进水平,X100级管线钢已经研制出来。随着国内冶金技术装备水平的提高,我国能生产管线钢板卷的企业逐渐增多,但是能够生产X70及以上级别的钢厂仅有宝钢、武钢、鞍钢、舞钢、等。近两年来,许多钢铁厂加大了对高级别管线钢的研究开发,宝钢已研发出X120级别的管线用钢板。 21世纪是我国输气管建设的高峰时期。“西气东输”管线采用大口径、高压输送管的方法,这条管线全长4167km,输送压力为10MPa,管径为1016mm,采用的钢级为X70、厚度4.6mm,-20℃的横向冲击功≥120J。从西气东输工程钢材与钢板的国产化率统计看(表1.1)[1],此项目X70钢材与钢管的总国产化率并不高,说明我国迫切需要加速高钢级管线钢宽厚板生产能力的建设。从总体上来看,我国X80级别以上高级别管线钢与国际上还有很大的差距,同级别管线钢的开发与应用整整比发达国家晚了近30年。 表1.1西气东输工程钢材与钢板的国产化率统计 2、国外发展概况 国外高级别管线钢呈现强劲的发展趋势,从20世纪70年代初期X65管线钢开始投入使用,80年代X70级管线钢逐渐被引入工程建设,1985年API标准中

玻璃钢管道施工工艺.doc

[复习 ] 5.4.6 玻璃钢管 5.4. 6.1 构件检验 (1)管道、管件检查 管道尺寸应符合标准规范要求,管端应标明材料执行标准、规格类型等, 并提供产品质量合格证明及验收内容等。管道内表面应光滑,无龟裂、分层、 针孔、杂质、贫胶区及气泡等,管端面应平齐,无毛刺,外表面无明显裂纹、 分层等缺陷。承插管承口内外所有表面应平滑,不得有裂纹、断口或对连接面 使用性能不利的其他缺陷。 O 型圈槽的台阶及端面必须粘合为一体,不得有分层。管道的厚度要符合使用要求。 (2)承插用 xx 橡胶圈验收 密封橡胶圈严禁使用再生胶,其外观应完好,无接头,表面不得有裂纹、 杂质和气泡,规格、外观尺寸必须与管道圈槽加工尺寸一致,橡胶圈截面直径 差不得超过?0.5mm,橡胶圈环的直径差不得超过?10mm。橡胶圈的性能指标以保证密封、无渗漏为准,一般应符合下列要求:硬度(邵氏A)45,55;拉伸强度大于16 MPa;伸长率大于 500,;永久变形小于 20,;老化系数 0.8 (70?,44h)。 5.4. 6.2 管道装卸 (1)管道装卸过程中应该轻装轻放,严禁摔跌或者撞击。 (2)管道装卸机具的工作位置必须稳定,机具的起吊能力必须可靠。 (3)管道可以采取一个或者两个支撑点进行起吊,要保证管道在空 中均衡,严禁用绳子贯穿管道两端进行装卸管道。 (4)装卸用的吊绳应该是柔韧、较宽的皮带、吊带或者绳索,严禁用钢丝绳或者锁链进行吊装管道。 5.4. 6.3 材料存放

(1)管道到达现场应运至相应作业地段立即展开施工,如遇到不可抗拒因素 无法立即进行施工,则要对管材进行安全存放。 (2)玻璃钢管道的辅助连接材料主要有玻璃纤维纱、短切毡、玻璃丝布等增 强材料和树脂、固化剂、促进剂、抗老化剂等基体材料以及各种胶泥等,这些 材料必须分类妥善存放在无阳光直射的干燥处。橡胶圈应防晒且远离热源,不 得与油脂类和有机溶剂接触。管道、管件应按类型、规格、等级分类堆放,层 间应加软质衬垫,远离热源和易燃易爆物品,不宜长期露天存放,防止爆晒。 (3)当管道直接存放在地上时,地面应该平坦。严禁将管道存放在尖锐的硬 物上,所堆放的管道应该加木楔防止滚动。 (4)管道应该按规格分类存放。每堆一层应该垫放枕木,枕木间距应该小于 管长。管道堆放高度不得高于 2 米, DN1400以上管道不得堆放。 5.4. 6.4 基槽处理 (1)沟槽开挖 1)沟槽开挖时,采用机械开挖为主。人工开挖为辅的方法。开挖时沟底表 面应连续平整。沟壁应视情况考虑放坡。以保证安全。清除直 径大于 38mm 的圆石或大于 25mm 的夹角形石块。并清除沟上可能掉落 的、碰落的物体。以防损坏管子。2)沟槽的断面尺寸除应满足设计文件的要求 之外。还需符合GB50268-97、CECS129:2001的规定 ;沟槽的宽度应便于管道的铺设和安装,应便于夯实机具的操作和地下水的排出,沟槽的最小宽度 b 应按照(5.4.6.1)式进行计算。 (5.4.6.1) 式中 b——沟槽的最小宽度 (mm);——管外径 (mm) ——管壁到沟槽壁的距离 (mm) 管壁到沟槽壁的距离宜按照表 5.4.6.1 确定。表 5.4.6.1 推荐的 s 值管公称直径 DNs 200 300

玻璃钢管道与其它管道的优势

玻璃钢夹砂管道性能比较 2010年5月5日

一、玻璃钢夹砂管的管材性能 二、玻璃钢管(FRPM)与钢管的比较 三、玻璃钢管(FRPM)与PE塑料管的比较 四、玻璃钢管(FRPM)与球墨铸铁管的比较

第一章 玻璃钢夹砂管的管材性能

玻璃钢夹砂管的管材性能 注:玻璃钢夹砂管道属于复合材料,可设计性极强,通过改变材料、缠绕角度以及夹砂比例等方面,可以得到不同的力学指标,以上性能指标仅供参考,具体性能指标以实际设计为准,不同条件下指标的要求见国家有关行业标准,如GB/T21238-2007.

玻璃钢夹砂管的水力学性能 玻璃钢的内表面相当光滑(糙率系数O.OO84 ),内表面的绝对粗糙度也很小,管内水的流态也大多数情况处于水力光滑管区和过渡系统区,壁面对紊流阻力的影响小,而象钢管、铸铁管、混凝土管等传统管材的糙率系数高,绝对粗糙度大,管内水的流态大多数情况处于粗糙区,壁面对紊流阻力的影响大,故磨擦阻力小,显著减少沿程的流体压力损失,提高输送能力20%以上。因此,在输送能力相同时,工程可选用内径较小的玻璃钢管道(见缩径表1)从而降低一次性的工程投入:若采用同等内径的管道,玻璃钢管道可比其它传统管材减少压头损失,节省泵的功率和能源(约30 % -40 % ),从而减少长期的运行费用(见表2)。 注:建议水头损失计算公式: 一、钢管和铸铁管 ⑴ V<1.2m/s时 I = 0.000912 2v2. ( l+O.O867/V)0.8/dj1.8 (2) V≥1.2m/s.v2.时 1=0.00107.v2/dj1.8 I一每米管段长度的水头损失(m) Dj一水管计算内径(m) Ⅴ一平均流速(m/s) 二、混凝土管、钢筋混凝土管 n=0.013时 I=0.001743.g2/j5.33 N=O.014时

相关文档
最新文档